
8 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Python Array API Standard: Toward Array
Interoperability in the Scientific Python Ecosystem

Aaron Meurer‡†∗, Athan Reines‡†, Ralf Gommers‡†, Yao-Lung L. Fang§†, John Kirkham§†, Matthew Barber‡†, Stephan
Hoyer¶, Andreas Müller∥, Sheng Zha∗∗, Saul Shanabrook, Stephannie Jiménez Gacha‡, Mario Lezcano-Casado‡,

Thomas J. Fan‡, Tyler Reddy††, Alexandre Passos, Hyukjin Kwon‡‡, Travis Oliphant‡, Consortium for Python Data API
Standards

✦

Abstract—The Python array API standard specifies standardized application
programming interfaces (APIs) and behaviors for array and tensor objects
and operations as commonly found in libraries such as NumPy [1], CuPy [2],
PyTorch [3], JAX [4], TensorFlow [5], Dask [6], and MXNet [7]. The estab-
lishment and subsequent adoption of the standard aims to reduce ecosystem
fragmentation and facilitate array library interoperability in user code and among
array-consuming libraries, such as scikit-learn [8] and SciPy [9]. A key benefit
of array interoperability for downstream consumers of the standard is device
agnosticism, whereby previously CPU-bound implementations can more readily
leverage hardware acceleration via graphics processing units (GPUs), tensor
processing units (TPUs), and other accelerator devices.

In this paper, we first introduce the Consortium for Python Data API Stan-
dards and define the scope of the array API standard. We then discuss the
current status of standardization and associated tooling (including a test suite
and compatibility layer). We conclude by outlining plans for future work.

Index Terms—Python, Arrays, Tensors, NumPy, CuPy, PyTorch, JAX, Tensor-
flow, Dask, MXNet

Introduction

Python users have a wealth of choices for libraries and frame-
works for numerical computing [10][1][9][2][6][11][12][13],
data science [14][15][16][17], machine learning [8], and deep
learning [7][3][5][18]. New frameworks pushing forward the
state of the art appear every year. One consequence of all
this activity has been fragmentation in the fundamental build-
ing blocks—multidimensional arrays [19] (also known as ten-
sors)—that underpin the scientific Python ecosystem (hereafter
referred to as "the ecosystem").

This fragmentation comes with significant costs, from reinven-
tion and re-implementation of arrays and associated application

† These authors contributed equally.
* Corresponding author: asmeurer@quansight.com
‡ Quansight
§ NVIDIA Corporation
¶ Google
|| Microsoft
** Amazon
†† LANL
‡‡ Databricks

Copyright © 2023 Aaron Meurer et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

programming interfaces (APIs) to siloed technical stacks targeting
only one array library to the proliferation of user guides providing
guidance on how to convert between libraries. The APIs of each
library are largely similar, but each have enough differences that
end users have to relearn and rewrite code in order to work with
multiple libraries. This process can be very painful as the transition
is far from seamless and creates barriers for libraries wanting to
support multiple array library backends.

The Consortium for Python Data API Standards (hereafter
referred to as "the Consortium" and "we") aims to address this
problem by standardizing a fundamental array data structure and
an associated set of common APIs for working with arrays, thus
facilitating interchange and interoperability.

Paper Overview

This paper is written as an introduction to the Consortium and the
array API standard. The aim is to provide a high-level overview
of the standard and its continued evolution and to solicit further
engagement from the Python community.

After providing an overview of the Consortium, we first
discuss standardization methodology. We then discuss the current
status of the array API standard and highlight the main stan-
dardization areas. Next, we introduce tooling associated with the
standard for testing compliance and shimming incompatible array
library behavior. We conclude by outlining open questions and
opportunities for further standardization. Links to the specification
and all current repository artifacts, including associated tooling,
can be found in the bibliography.

Consortium Overview

History

While the Python programming language was not explicitly de-
signed for numerical computing, the language gained popularity
in scientific and engineering communities soon after its release.
The first array computing library for numerical and scientific
computing in Python was Numeric, developed in the mid-1990s
[20][1]. To better accommodate this library and its use cases,
Python’s syntax was extended to include indexing syntax [21].

In the early 2000s, Numarray introduced a more flexible data
structure [22]. Numarray had faster operations for large arrays, but

mailto:asmeurer@quansight.com

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 9

slower operations for small arrays. Subsequently, both Numeric
and Numarray coexisted to satisfy different use cases.

In early 2005, the NumPy library unified Numeric and Nu-
marray as a single array package by porting Numarray’s features
to Numeric [1]. This effort was largely successful and resolved
the fragmentation at the time. For roughly a decade, NumPy was
the only widely used array library. Building on NumPy, pandas
was subsequently introduced in 2008 in order to address the need
for a high performance, flexible tool for performing quantitative
analysis on labeled tabular data [23].

Over the past 10 years, the rise of deep learning and the
emergence of new hardware has led to a proliferation of new
libraries and a corresponding fragmentation within the PyData
array and dataframe ecosystem. These libraries often borrowed
concepts from, or entirely copied, the APIs of older libraries, such
as NumPy, and then modified and evolved those APIs to address
new needs and use cases. Although the communities of each
library individually discussed interchange and interoperability,
no general coordination arose among libraries to avoid further
fragmentation and to arrive at a common set of API standards
until the founding of the Consortium.

The genesis for the Consortium grew out of many conversa-
tions among maintainers during 2019–2020. During those conver-
sations, it quickly became clear that any attempt to create a new
reference library to address fragmentation was infeasible. Unlike
in 2005, too many different use cases and varying stakeholders
now exist. Furthermore, the speed of innovation of both hardware
and software is simply too great.

In May 2020, an initial group of maintainers and industry
stakeholders1 assembled to form the Consortium for Python Data
API Standards and began drafting a specification for array APIs,
which could then be adopted by existing array libraries and their
dependents and by any new libraries which arise.

Objectives

Standardization efforts must maintain a balance between codifying
what already exists and maintaining relevance with respect to
future innovation. The latter aspect is particularly fraught, as rel-
evance requires anticipating future needs, technological advances,
and emerging use cases. Accordingly, if a standard is to remain
relevant, the standardization process must be conservative in its
scope, thorough in its consideration of current and prior art, and
have clearly defined objectives against which success is measured.

To this end, we established four objectives for the array API
standard. 1) Allow array-consuming libraries to accept and operate
on arrays from multiple different array libraries. 2) Establish a
common set of standardized APIs and behaviors, enabling more
sharing and code reuse. 3) For new array libraries, offer a concrete
API that can be adopted as-is. 4) Minimize the learning curve and
friction for users as they switch between array libraries.

We explicitly omitted three notable possible objectives. 1)
Make array libraries identical for the purpose of merging them.
Different array libraries have different strengths (e.g., performance
characteristics, hardware support, and tailored use cases, such as
deep learning), and merging them into a single array library is

1. Direct stakeholders include the maintainers of Python array and dataframe
libraries and organizations which sponsor library development. Indirect stake-
holders include maintainers of libraries which consume array and dataframe
objects ("consuming libraries"), developers of compilers and runtimes with
array- and dataframe-specific functionality, and end users, such as data scien-
tists and application developers.

neither practical nor realistic. 2) Implement a backend or runtime
switching system in order to switch from one array library to
another via a single setting or line of code. While potentially
feasible, array consumers are likely to need to modify code in
order to ensure optimal performance and behavior. 3) Support
mixing multiple array libraries in a single function call. Mixing
array libraries requires defining hierarchies and specifying rules
for device synchronization and data localization. Such rules are
likely to be specific to individual use cases.

Design Principles

In order to define the contours of the standardization process, we
established the following design principles:

Functions. The standardized API should consist primarily of
standalone functions. Function-based API design is the dominant
pattern among array libraries, both in Python and in other fre-
quently used programming languages supporting array computa-
tion, such as MATLAB [24] and Julia [25]. While method chaining
and the fluent interface design pattern are also relatively common,
especially among array libraries supporting deferred execution and
operator fusion, function-based APIs are generally preferred. This
mirrors design patterns used in underlying implementations, such
as those written in C/C++ and Fortran, and more closely matches
written mathematical notation.

Minimal array object. The standard should not require that
an array object have any attributes or methods beyond what is
necessary for inspection (e.g., shape, data type, and device) or for
supporting operator overloading (i.e., magic methods).2

No dependencies. The standard and its implementations
should not require any dependencies outside of Python itself.

Accelerator support. Standardized APIs and behaviors
should be possible to implement for both central processing
units (CPUs) and hardware-accelerated devices, such as graphics
processing units (GPUs), tensor processing units (TPUs), and
field-programmable gate arrays (FPGAs).

Compiler support. Standardized APIs and behaviors should
be amenable to just-in-time (JIT) and ahead-of-time (AOT) compi-
lation and graph-based optimization techniques, such as those used
by PyTorch [3], JAX [4], and TensorFlow [5]. APIs and behaviors
not amenable to compilation, such as APIs returning arrays having
data-dependent output shapes or polymorphic return types, should
either be omitted or specified as optional.3 In general, the shape,
data type, and device of the return value from any function should
be predictable from its input arguments.

Distributed support. Standardized APIs and behaviors should
be amenable to implementation in array libraries supporting dis-
tributed computing (e.g., Dask [6]).

Consistency. Except in scenarios involving backward compat-
ibility concerns, naming conventions and design patterns should
be consistent across standardized APIs.

Extensibility. Conforming array libraries may implement
functionality which is not included in the array API standard. Ar-
ray consumers thus bear responsibility for ensuring that their API
usage is portable across specification-conforming array libraries.

Deference. Where possible, the array API standard should
defer to existing, widely-used standards. For example, the accu-

2. Notably, array strides should be considered an implementation detail and
should not be required as a public Python attribute.

3. Copy-view mutation semantics, such as those currently supported by
NumPy, should be considered an implementation detail and, thus, not suitable
for standardization.

10 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

racy and precision of numerical functions should not be specified
beyond the guidance included in IEEE 754 [26].

Universality. Standardized APIs and behaviors should reflect
common usage among a wide range of existing array libraries.
Accordingly, with rare exception, only APIs and behaviors having
existing implementations and broad support within the ecosystem
may be considered candidates for standardization.

Methodology

A foundational step in technical standardization is articulating
a subset of established practices and defining those practices in
unambiguous terms. To this end, the standardization process must
approach the problem from two directions: design and usage.

The former direction seeks to understand both current imple-
mentation design (APIs, names, signatures, classes, and objects)
and semantics (calling conventions and behavior). The latter di-
rection seeks to quantify API consumers (who are the downstream
users of a given API?), usage frequency (how often is an API
consumed?), and consumption patterns (which optional arguments
are provided and in what context?). By analyzing both design
and usage, we sought to ground the standardization process and
specification decisions in empirical data and analysis.

Design

To understand API design of array libraries within the ecosystem,
we first identified a representative sample of commonly used
array libraries. This sample included NumPy, CuPy, PyTorch,
JAX, TensorFlow, Dask, and MXNet. Next, we extracted public
APIs for each library by analyzing module exports and scraping
public web documentation. The following APIs for computing the
arithmetic mean provide an example of extracted API data:

numpy.mean(a, axis=None, dtype=None, out=None,
keepdims=<no value>)

cupy.mean(a, axis=None, dtype=None, out=None,
keepdims=False)

torch.mean(input, dim, keepdim=False, out=None)
jax.numpy.mean(a, axis=None, dtype=None, out=None,

keepdims=False)
tf.math.reduce_mean(input_tensor, axis=None,

keepdims=False, name=None)
dask.array.mean(a, axis=None, dtype=None, out=None,

keepdims=False, split_every=None)
mxnet.np.mean(a, axis=None, dtype=None, out=None,

keepdims=False)

We determined commonalities and differences by analyzing the
intersection, and its complement, of available APIs across each
array library. From the intersection, we derived a subset of
common APIs suitable for standardization based on prevalence
and ease of implementation. The common API subset included
function names, method names, attribute names, and positional
and keyword arguments. As an example of a derived API, consider
the common API for computing the arithmetic mean:

mean(a, axis=None, keepdims=False)

To assist in determining standardization prioritization, we lever-
aged usage data (discussed below) to confirm API need and to
inform naming conventions, supported data types, and optional
arguments. We have summarized findings and published tooling
[27] for additional analysis and exploration, including Jupyter
notebooks [17], as public artifacts available on GitHub.

Usage

To understand usage patterns of array libraries within the ecosys-
tem, we first identified a representative sample of commonly
used Python libraries ("downstream libraries") which consume
the aforementioned array libraries. The sample of downstream
libraries included SciPy [9], pandas [23], Matplotlib [14], xarray
[12], scikit-learn [8], statsmodels [16], and scikit-image [11],
among others. Next, we ran downstream library test suites with
runtime instrumentation enabled. We recorded input arguments
and return values for each API invocation by inspecting the
bytecode stack at call time [28]. From the recorded data, we
generated inferred signatures for each function based on provided
arguments and associated types, noting which downstream library
called which empirical API and at what frequency. We organized
the API results in human-readable form as type definition files
and compared the inferred API to the publicly documented APIs
obtained during design analysis.

The following is an example of two inferred API signatures for
numpy.mean, with the docstring indicating the number of lines
of code which invoked the function for each downstream library
when running library test suites. Based on the example, we can
infer that invoking the function with an array input argument is
a more common usage pattern among downstream libraries than
invoking the function with a list of floats.

@overload
def mean(a: numpy.ndarray):

"""
usage.dask: 21
usage.matplotlib: 7
usage.scipy: 26
usage.skimage: 36
usage.sklearn: 130
usage.statsmodels: 45
usage.xarray: 1
"""

@overload
def mean(a: List[float]):

"""
usage.networkx: 6
usage.sklearn: 3
usage.statsmodels: 9
"""

As a final step, we ranked each API according to relative usage
using the Dowdall positional voting system [29] (a variant of the
Borda count [30] that favors candidate APIs having high relative
usage). From the rankings, we assigned standardization priorities,
with higher ranking APIs taking precedence over lower ranking
APIs, and extended the analysis to aggregated API categories
(e.g., array creation, manipulation, statistics, etc.). All source code,
usage data, and analysis are publicly available on GitHub [28][27].

Array API Standard

The Python array API standard specifies standardized APIs and
behaviors for array and tensor objects and operations. The scope of
the standard includes defining, but is not limited to, the following:
1) a minimal array object; 2) semantics governing array interac-
tion, including type promotion and broadcasting; 3) an interchange
protocol for converting array objects originating from different
array libraries; 4) a set of required array-aware functions; and 5)
optional extensions for specialized APIs and array behaviors. We
discuss each of these standardization areas in turn.

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 11

Single element

x[1,2]

0 1 2
3 4 5
6 7 8
9 10 11

b Indexing

Single axis slice

x[:,0]

0 1 2
3 4 5
6 7 8
9 10 11

x[0,:]

0 1 2
3 4 5
6 7 8
9 10 11

x[1::2,::2]

0 1 2
3 4 5
6 7 8
9 10 11

Multiple axis slices

x[1:3,1:]

0 1 2
3 4 5
6 7 8
9 10 11

x[x > 9]

0 1 2
3 4 5
6 7 8
9 10 11

Boolean mask

c Vectorization

0 1
2 3
4 5
6 7

+

1 1
1 1
1 1
1 1

1 2
3 4
5 6
7 8

d Broadcasting

2
4
6
8

2 3

×

4 6
8 16

12 18
16 24

0 1 2
3 4 5
6 7 8

e Reduction

3
12
21

9 12 15 36

sum

axis 1

sum

axis 0

sum

axis (0,1)

x =

1 20
3 4 5
6 7 8
9 10 11

a Data structure array

dtype
shape

device

data type

shape

device

0 1 2 3 4 5 6 7 8 9 10 11
data storage

Fig. 1: The array data structure and fundamental concepts. a) An array data structure and its associated metadata fields. b) Indexing an array.
Indexing operations may access individual elements or sub-arrays. Applying a boolean mask is an optional indexing behavior and may not be
supported by all conforming libraries. c) Vectorization obviates the need for explicit looping in user code by applying operations to multiple
array elements. d) Broadcasting enables efficient computation by implicitly expanding the dimensions of array operands to equal sizes. e)
Reduction operations act along one or more axes. In the example, summation along a single axis produces a one-dimensional array, while
summation along two axes produces a zero-dimensional array containing the sum of all array elements.

Array Object

An array object is a data structure for efficiently storing and
accessing multidimensional arrays [19]. Within the context of the
array API standard, the data structure is opaque—libraries may
or may not grant direct access to raw memory—and includes
metadata for interpreting the underlying data, notably "data type",
"shape", and "device" (Fig. 1a).

An array data type ("dtype") describes how to interpret a single
array element (e.g., integer, real- or complex-valued floating-point,
boolean, or other). A conforming array object has a single dtype.
To facilitate interoperability, conforming libraries must support
and provide a minimal set of dtype objects (e.g., int8, int16,
int32, float32, and float64). To ensure portability, data
type objects must be provided by name in the array library
namespace (e.g., xp.bool).

An array shape specifies the number of elements along each
array axis (also referred to as "dimension"). The number of axes
corresponds to the dimensionality (or "rank") of an array. For ex-
ample, the shape (3, 5) corresponds to a two-dimensional array
whose inner dimension contains five elements and whose outer
dimension contains three elements. The shape () corresponds to
a zero-dimensional array containing a single element.

An array device specifies the location of array memory allo-
cation. A conforming array object is assigned to a single logical
device. To support array libraries supporting execution on different
device types (e.g., CPUs, GPUs, TPUs, etc.), conforming libraries
must provide standardized device APIs in order to coordinate
execution location. The following example demonstrates how an

array-consuming library might use standardized device APIs to
ensure execution occurs on the same device as the input.

def some_function(x):
Retrieve a standard-compliant namespace
xp = x.__array_namespace__()

Allocate a new array on the same device as x
y = xp.linspace(0, 2*xp.pi, 100, device=x.device)

Perform computation (on device)
return xp.sin(y) * x

To interact with array objects, one uses "indexing" to access sub-
arrays and individual elements, "operators" to perform logical
and arithmetic operations (e.g., +, -, *, /, and @), and array-
aware functions (e.g., for linear algebra, statistical reductions,
and element-wise computation). Array indexing semantics extend
built-in Python sequence __getitem__() indexing semantics
to support element access across multiple dimensions (Fig. 1b).4

Indexing an array using a boolean array (also known as "masking")
is an optional standardized behavior.5 The result of a mask oper-
ation is data-dependent and thus difficult to implement in array
libraries relying on static analysis for graph-based optimization.

4. The array API standard includes support for in-place operations via
__setitem__(); however, behavior is undefined if an in-place operation
would affect arrays other than the target array (e.g., in array libraries supporting
multiple "views" of the same underlying memory).

5. While not currently supported, integer array indexing may be included in
a future revision of the array API standard.

12 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Array Interaction

The Python array API standard further specifies rules governing
expected behavior when an operation involves two or more array
operands. For operations in which the data type of a resulting
array object is resolved from operand data types, the resolved
data type must follow type promotion semantics. Importantly, type
promotion semantics are independent of array shape or contained
values (including when an operand is a zero-dimensional array).
For example, when adding one array having a float32 data type
to another array having a float64 data type, the data type of the
resulting array should be the promoted data type float64.
>>> x1 = xp.ones((2, 2), dtype=xp.float32)
>>> x2 = xp.ones((2, 2), dtype=xp.float64)
>>> y = x1 + x2
>>> y.dtype == xp.float64
True

In addition to type promotion, the array API standard specifies
rules governing the automatic (and implicit) expansion of array
dimensions to be of equal sizes (Fig. 1d). Standardized broadcast-
ing semantics are the same as those popularized by NumPy [1].

Interchange Protocol

We expect that array library consumers will generally prefer to
use a single array "type" (e.g., a NumPy ndarray, PyTorch
Tensor, or Dask array) and will thus need a standardized
mechanism for array object conversion. For example, suppose
a data visualization library prefers to use NumPy internally but
would like to extend API support to any conforming array ob-
ject type. In such a scenario, the library would benefit from a
reliable mechanism for accessing and reinterpreting the memory
of externally provided array objects without triggering potential
performance cliffs due to unnecessary copying of array data. To
this end, the Python array API standard specifies an interchange
protocol describing the memory layout of a strided, n-dimensional
array in an implementation-independent manner.

The basis of this protocol is DLPack, an open in-memory
structure for sharing tensors among frameworks [31]. DLPack is
a standalone protocol with an ABI stable, header-only C imple-
mentation with cross hardware support. The array API standard
builds on DLPack by specifying Python APIs for array object
data interchange [32]. Conforming array objects must support
__dlpack__ and __dlpack_device__ magic methods for
accessing array data and querying the array device. A standardized
from_dlpack() API calls these methods to construct a new
array object of the desired type using zero-copy semantics when
possible. The combination of DLPack and standardized Python
APIs thus provides a stable, widely adopted, and efficient means
for array object interchange.

Array Functions

To complement the minimal array object, the Python array API
standard specifies a set of required array-aware functions for
arithmetic, statistical, algebraic, and general computation. Where
applicable, required functions must support vectorization (Fig.
1d), which obviates the need for explicit looping in user code
by applying operations to multiple array elements. Vectorized
abstractions confer two primary benefits: 1) implementation-
dependent optimizations leading to increased performance and 2)
concise expression of mathematical operations. For example, one
can express element-wise computation of z-scores in a single line.

def z_score(x):
return (x - xp.mean(x)) / xp.stdev(x)

In addition to vectorized operations, the array API standard in-
cludes, but is not limited to, functions for creating new arrays,
with support for explicit device allocation, reshaping and manipu-
lating existing arrays, performing statistical reductions across one,
multiple, or all array axes (Fig. 1e), and sorting array elements.
Altogether, these APIs provide a robust and portable foundation
for higher-order array operations and general array computation.

Optional Extensions

While a set of commonly used array-aware functions is sufficient
for many array computation use cases, additional, more special-
ized, functionality may be warranted. For example, while most
data visualization libraries are unlikely to explicitly rely on APIs
for computing Fourier transforms, signal analysis libraries sup-
porting spectral analysis of time series are likely to require Fourier
transform APIs. To accommodate specialized APIs, the Python
array API standard includes standardized optional extensions.

An extension is a sub-namespace of a main namespace and is
defined as a coherent set of standardized functionality which is
commonly implemented across many, but not all, array libraries.
Due to implementation difficulty (or impracticality), limited gen-
eral applicability, a desire to avoid significantly expanding API
surface area beyond what is essential, or some combination of
the above, requiring conforming array libraries to implement
and maintain extended functionality beyond their target domain
is not desirable. Extensions provide a means for conforming
array libraries to opt-in to supporting standardized API subsets
according to need and target audience.

Specification Status

Following formation of the Consortium in 2020, we released an
initial draft of the Python array API standard for community
review in 2021. We have released two subsequent revisions:

v2021.12: The first full release of the specification, detailing
purpose and scope, standardization methodology, future standard
evolution, a minimal array object, an interchange protocol, re-
quired data types, type promotion and broadcasting semantics, an
optional linear algebra extension, and array-aware functions for ar-
ray creation, manipulation, statistical reduction, and vectorization,
among others.

v2022.12: This revision includes errata for the v2021.12 re-
lease and adds support for single- and double-precision complex
floating-type data types, additional array-aware APIs, an optional
extension for computing fast Fourier transforms.

For future revisions, we expect annual release cadences; how-
ever, array API standard consumers should not assume a fixed
release schedule.

Implementation Status

Reference Implementation

To supplement the Python array API standard, we developed
a standalone reference implementation. The implementation is
strictly compliant (i.e., any non-portable usage triggers an ex-
ception) and is available as the numpy.array_api submodule
(discussed in [33]). In general, we do not expect for users to
rely on the reference implementation for production use cases.
Instead, the reference implementation is primarily useful for array-
consuming libraries as a means for testing whether array library
usage is guaranteed to be portable.

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 13

Ecosystem Adoption

Arrays are fundamental to scientific computing, data science,
and machine learning. As a consequence, the Python array API
standard has many stakeholders within the ecosystem. When
establishing the Consortium, we thus sought participation from a
diverse and representative cross-section of industry partners and
maintainers of array and array-consuming libraries. To satisfy
stakeholder needs, array library maintainers worked in close part-
nership with maintainers of array-consuming libraries throughout
the array API standardization process to identify key use cases and
achieve consensus on standardized APIs and behaviors.

Direct participation in the Consortium by array and array-
consuming library maintainers has facilitated coordination across
the ecosystem. In addition to the numpy.array_api reference imple-
mentation [34], several commonly used array libraries, including
NumPy [35], CuPy [36], PyTorch [37], JAX [38], Dask [39],
and MXNet [40], have either adopted or are in the process of
adopting the array API standard. Increased array library adoption
has increased array interoperability, which, in turn, has encouraged
array-consuming libraries, such as SciPy [41] and scikit-learn [42]
(discussed below), to begin adopting the standard by decoupling
their implementations from specific array libraries. As array li-
brary adoption of the standard matures, we expect ecosystem
adoption to accelerate.

Tooling

Test Suite

To facilitate adoption of the Python array API standard by libraries
within the ecosystem, we developed a test suite to measure speci-
fication compliance [43]. The test suite covers all major aspects of
the specification, such as broadcasting, type promotion, function
signatures, special case handling, and expected return values.

Underpinning the test suite is Hypothesis, a Python library for
creating unit tests [44]. Hypothesis uses property-based testing, a
technique for generating arbitrary data satisfying provided spec-
ifications and asserting the truth of some "property" that should
be true. Property-based testing is particularly convenient when
authoring compliance tests, as the technique enables the direct
translation of specification guidance into test code.

The test suite is the first example known to these authors of
a Python test suite capable of running against multiple different
libraries. As part of our work, we upstreamed strategies to Hy-
pothesis for generating arbitrary arrays from any conforming array
library, thus allowing downstream array consumers to test against
multiple array libraries and their associated hardware devices.

Compatibility Layer

While we expect that maintainers of conforming array libraries
will co-evolve library APIs and behaviors with those specified in
the Python array API standard, we recognize that co-evolution is
not likely to always proceed in unison due to varying release cycles
and competing priorities. Varying timelines for adoption and full-
compliance present obstacles for array-consuming libraries hoping
to use the most recent standardized behavior, as such libraries are
effectively blocked by the slowest array library release schedule.

To address this problem and facilitate adoption of the standard
by array-consuming libraries, we developed a compatibility layer
(named array-api-compat), which provides a thin wrapper
around common array libraries [45]. The layer transparently
intercepts API calls for any API which is not fully-compliant

and polyfills non-compliant specification-defined behavior. For
compliant APIs, it exposes the APIs directly, without interception,
thus mitigating performance degradation risks due to redirection.
To reduce barriers to adoption, the layer supports vendoring and
has a small, pure Python codebase with no hard dependencies.

While the Python array API standard facilitates array inter-
operability in theory, the compatibility layer does so in practice,
helping array-consuming libraries decouple adoption of the stan-
dard from the release cycles of upstream array libraries. Currently,
the layer provides shims for NumPy, CuPy, and PyTorch and
aims to support additional array libraries in the future. By ensur-
ing specification-compliant behavior, we expect the compatibility
layer to have a significant impact in accelerating adoption among
array-consuming libraries.

Discussion

The principle aim of the Python array API standard is to facilitate
interoperability of array libraries within the ecosystem. In achiev-
ing this aim, array-consuming libraries, such as those for statistical
computing, data science, and machine learning, can decouple
their implementations from specific array libraries. Decoupling
subsequently allows end users to use the array library that is most
applicable to their use case and to no longer be limited by the set
of array libraries a particular array-consuming library supports.

In addition to improved developer ergonomics afforded by
standardized APIs and increased interoperability, standardization
allows end users and the authors of array-consuming libraries to
use a declarative, rather than imperative, programming paradigm.
This paradigm change has a key benefit in enabling users to opt
into performance improvements based on their constraints and
hardware capabilities. To assess the impact of this change, we
worked with maintainers of scikit-learn and SciPy to measure the
performance implications of specification adoption (Fig. 2).

scikit-learn

scikit-learn is a widely-used machine learning library. Its current
implementation relies heavily on NumPy and SciPy and is a
mixture of Python and Cython. Due to its dependence on NumPy
for array computation, scikit-learn is CPU-bound, and the library
is unable to capture the benefits of GPU- and TPU-based execution
models. By adopting the Python array API standard, scikit-learn
can decouple its implementation from NumPy and support non-
CPU-based execution, potentially enabling increased performance.

To test this hypothesis, we examined the scikit-learn code-
base to identify APIs which rely primarily on NumPy for their
implementation. scikit-learn estimators are one such set of APIs,
having methods for model fitting, classification prediction, and
data projection, which are amenable to input arrays supporting
alternative execution models. Having identified potential API
candidates, we selected the estimator class for linear discrimi-
nant analysis (LDA) as a representative test case. Refactoring
the LDA implementation was illustrative in several respects, as
demonstrated in the following code snippet showing source code
modifications6:
1 Xc = []
2 for idx, group in enumerate(self.classes_):
3 - Xg = X[y == group, :]
4 - Xc.append(Xg - self.means_[idx])

6. Source code modifications reflect those required for NumPy version
1.24.3 and Python array API standard version 2022.12.

14 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

CuPy PyTorch
CPU

PyTorch
GPU

0

10

20

30

40

50

60

7.9

1.9

45.1

scikit-learn
LDA fit

a

CuPy PyTorch
CPU

PyTorch
GPU

0

10

20

30

40

50

60

24.6

2.5

44.9

scikit-learn
LDA predict

b

CuPy PyTorch
CPU

PyTorch
GPU

0

10

20

30

40

50

60
52.4

1.4

51.6

SciPy
welch (optimized)

c

CuPy PyTorch
CPU

PyTorch
GPU

0.0

0.2

0.4

0.6

0.8

1.0

0.08
0.12

0.06

SciPy
welch (strict)

d
S

pe
ed

up
 v

s.
 N

um
P

y

Fig. 2: Benchmarks measuring performance implications of adoption in array-consuming libraries. Displayed timings are relative to NumPy.
All benchmarks were run on Intel i9-9900K and NVIDIA RTX 2080 hardware. a) Fitting a linear discriminant analysis (LDA) model. b)
Predicting class labels using LDA. c) Estimating power spectral density using Welch’s method and library-specific optimizations. d) Same as
c, but using a strictly portable implementation. Note that d has different vertical axis limits than a-c.

5 + Xg = X[y == group]
6 + Xc.append(Xg - self.means_[idx, :])
7

8 - self.xbar_ = np.dot(self.priors_, self.means_)
9 + self.xbar_ = self.priors_ @ self.means_

10

11 - Xc = np.concatenate(Xc, axis=0)
12 + Xc = xp.concat(Xc, axis=0)
13

14 - std = Xc.std(axis=0)
15 + std = xp.std(Xc, axis=0)
16

17 std[std == 0] = 1.0
18 - fac = 1.0 / (n_samples - n_classes)
19 + fac = xp.asarray(1.0 / (n_samples - n_classes))
20

21 - X = np.sqrt(fac) * (Xc / std)
22 + X = xp.sqrt(fac) * (Xc / std)
23

24 U, S, Vt = svd(X, full_matrices=False)
25

26 - rank = np.sum(S > self.tol)
27 + rank = xp.sum(xp.astype(S > self.tol, xp.int32))

Indexing: (lines 3-6) NumPy supports non-standardized in-
dexing semantics. To be compliant with the standard, 1) boolean
masks must be the sole index and cannot be combined with other
indexing expressions, and 2) the number of provided single-axis
indexing expressions must equal the number of dimensions.

Non-standardized APIs: (lines 8-9) NumPy supports several
APIs having no equivalent in the array API standard; np.dot()
is one such API. For two-dimensional arrays, np.dot() is
equivalent to matrix multiplication and was updated accordingly.

Naming conventions: (lines 11-12) NumPy contains several
standard-compliant APIs whose naming conventions differ from
those in the array API standard. In this and similar cases, adoption
requires conforming to the standardized conventions.

Functions: (lines 14-15) NumPy supports several array object
methods having no equivalent in the array API standard. To ensure
portability, we refactored use of non-standardized methods in
terms of standardized function-based APIs.

Scalars: (lines 18-22) NumPy often supports non-array input
arguments, such as scalars, Python lists, and other objects, as
"array-like" arguments in its array-aware APIs. While the array
API standard does not prohibit such polymorphism, the standard
does not require array-like support. In this case, we explicitly

convert a scalar expression to a zero-dimensional array in order
to ensure portability when calling xp.sqrt().

Data types: (lines 26-27) NumPy often supports implicit type
conversion of non-numeric data types in numerical APIs. The
array API standard does not require such support, and, more
generally, mixed-kind type promotion semantics (e.g., boolean to
integer, integer to floating-point, etc.) are not specified. To ensure
portability, we must explicitly convert a boolean array to an integer
array before calling xp.sum().

To test the performance implications of refactoring scikit-
learn’s LDA implementation, we generated a random two-class
classification problem having 400,000 samples and 300 features.7

We next devised two benchmarks, one for fitting an LDA model
and the second for predicting class labels for each simulated
sample. We ran the benchmarks and measured execution time
for NumPy, PyTorch, and CuPy backends on Intel i9-9900K
and NVIDIA RTX 2080 hardware. For PyTorch, we collected
timings for both CPU and GPU execution models. To ensure
timing reproducibility and reduce timing noise, we repeated each
benchmark ten times and computed the average execution time.

Fig. 2a and Fig. 2b display results, showing average execution
time relative to NumPy. When fitting an LDA model (Fig. 2a), we
observe 1.9× higher throughput for PyTorch CPU, 7.9× for CuPy,
and 45.1× for PyTorch GPU. When predicting class labels (Fig.
2b), we observe 2.5× higher throughput for PyTorch CPU, 24.6×
for CuPy, and 44.9× for PyTorch GPU. In both benchmarks, using
GPU execution models corresponded to significantly increased
performance, thus supporting our hypothesis that scikit-learn can
benefit from non-CPU-based execution models.

SciPy

SciPy is a collection of mathematical algorithms and convenience
functions for numerical integration, optimization, interpolation,
statistics, linear algebra, signal processing, and image processing,
among others. Similar to scikit-learn, its current implementation
relies heavily on NumPy. We thus sought to test whether SciPy
could benefit from adopting the Python array API standard.

7. To ensure that observed performance is not an artifact of the generated
dataset, we tested performance across multiple random datasets and did not
observe a measurable difference across benchmark runs.

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 15

Following a similar approach to the scikit-learn benchmarks,
we identified SciPy’s signal processing APIs as being amenable to
input arrays supporting alternative execution models and selected
an API for estimating the power spectral density using Welch’s
method [46] as a representative test case. We then generated a
representative synthetic test signal (a 2 Vrms sine wave at 1234
Hz, corrupted by 0.001 V2/Hz of white noise sampled at 10 kHz)
having 50,000,000 data points. We next devised two benchmarks,
one using library-specific optimizations and a second strictly using
APIs in the array API standard. We ran the benchmarks for the
same backends, on the same hardware, and using the same analysis
approach as the scikit-learn benchmarks discussed above.

Fig. 2c and Fig. 2d display results, showing average execution
time relative to NumPy. When using library-specific optimizations
(Fig. 2c), we observe 1.4× higher throughput for PyTorch CPU,
51.6× for PyTorch GPU, and 52.4× for CuPy. When omitting
library-specific optimizations (Fig. 2d), we observe a 12-25×
decreased throughput across all non-NumPy backends.

The source of the performance disparity is due to use of
strided views in the optimized implementation. NumPy, CuPy, and
PyTorch support the concept of strides, where a stride describes
the number of bytes to move forward in memory to progress to the
next position along an axis, and provide similar, non-standardized
APIs for manipulating the internal data structure of an array. While
one can use standardized APIs to achieve the same result, using
stride "tricks" enables increased performance. This finding raises
an important point. Namely, while the array API standard aims to
reduce the need for library-specific code, it will never fully elimi-
nate that need. Users of the standard may need to maintain similar
library-specific performance optimizations to achieve maximal
performance. We expect, however, that the maintenance burden
should only apply for those scenarios in which the performance
benefits significantly outweigh the maintenance costs.

Future Work

Consortium work is comprised of three focus areas: standardiza-
tion, adoption, and coordination.

Standardization: Standardization is the core of Consortium
efforts. The Python array API standard is a living standard, which
should evolve to reflect the needs and evolution of array libraries
within the ecosystem. As such, we expect to continue working
with array and array-consuming library maintainers to codify APIs
and behaviors suitable for standardization.

Adoption: To ensure the success of the Python array API
standard, we work closely with maintainers of array and array-
consuming libraries to facilitate adoption by soliciting feedback,
addressing pain points, and resolving specification ambiguities.
In the immediate future, we plan to release additional tooling for
tracking adoption and measuring specification compliance. For the
former, we are collecting static compliance data and will publish
compatibility tables as part of the array API standard publicly
available on-line. For the latter, we are developing an automated
test suite reporting system to gather array API test suite results
from array libraries as part of continuous integration. We expect
these tools to be particularly valuable to array-consuming libraries
in order to quickly assess API portability.

Coordination: Providing a forum for coordination among
array libraries (and their consumers) was the primary motivating
factor behind Consortium formation and is the most important
byproduct of Consortium efforts. By facilitating knowledge ex-
change among array library communities, the Consortium serves

as a critical bulwark against further fragmentation and siloed tech-
nical stacks. Preventing such fragmentation is to the ultimate bene-
fit of array library consumers and their communities. Additionally,
coordination allows for orienting around a shared long-term vision
regarding future needs and possible solutions. We are particularly
keen to explore the following areas and open questions: device
standardization, extended data type support (including strings
and datetimes), input-output (IO) APIs, support for mixing array
libraries, parallelization, and optional extensions for deep learning,
statistical computing, and, more generally, functionality which is
out-of-scope, but needed in specific contexts.8

We should also note that array API standardization is not
the only standardization effort spearheaded by the Consortium.
We are also working to standardize APIs and behaviors for
Python dataframe libraries, including an interchange protocol and
a library-author focused dataframe object and associated set of
APIs. This work will be discussed in a future paper.

Conclusion

We introduced the Consortium and the Python array API standard,
which specifies standardized APIs and behaviors for array and
tensor objects and operations. In developing an initial specification
draft, we analyzed common array libraries in the ecosystem and
determined a set of common APIs suitable for standardization. In
consultation with array and array-consuming library maintainers,
we published two specification revisions codifying APIs and
behaviors for array objects and their interaction, array interchange,
and array-aware functions for array creation and manipulation,
statistical reduction, and linear algebra. In addition, we released
tooling to facilitate adoption of the array API standard: 1) a test
suite for measuring specification compliance and 2) a compatibil-
ity layer to allow array-consuming libraries to adopt the standard
without having to wait on upstream release cycles.

We further explored performance implications of adopting
the array API standard in two commonly-used array-consuming
libraries: scikit-learn and SciPy. For the former, we found that
adoption enabled scikit-learn to use GPU-based execution models,
resulting in significantly increased performance. For the latter, we
found similar performance gains; however, in order to realize
the performance gains, we needed to use library-specific opti-
mizations. This finding highlights a limitation of the standard.
Namely, while the array API standard aims to reduce the need
for library-specific code, it will never fully eliminate that need.
Users of the standard may need to maintain similar library-specific
performance optimizations to achieve maximal performance.

Our work demonstrates the usefulness of the Consortium and
the array API standard in facilitating array interoperability within
the ecosystem. In addition to shepherding standardization and
promoting adoption of the array API standard, the Consortium
provides a critical forum for coordinating efforts among array and
array-consuming library maintainers. Such coordination is critical
to the long-term success and viability of the ecosystem and its
communities. Having established a blueprint for standardization
methodology and process, the Consortium is also leading a similar
effort to standardize Python dataframe APIs and behaviors, thus
working to reduce fragmentation for the two fundamental data
structures underpinning the ecosystem—arrays and dataframes.

8. To participate in Consortium efforts, consult the Python array API
standard public issue tracker [47].

16 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

REFERENCES

[1] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F.
del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard,
T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant,
“Array programming with NumPy,” Nature, vol. 585, no. 7825, pp. 357–
362, Sep. 2020, https://doi.org/10.1038/s41586-020-2649-2. [Online].
Available: https://www.nature.com/articles/s41586-020-2649-2

[2] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis,
“CuPy: A NumPy-Compatible Library for NVIDIA GPU
Calculations,” in Proceedings of Workshop on Machine Learning
Systems (LearningSys) in The Thirty-first Annual Conference
on Neural Information Processing Systems (NIPS), 2017.
[Online]. Available: https://www.semanticscholar.org/paper/CuPy-
%3A-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-
Unno/a59da4639436f582e483347a4833e7659fd3e598

[3] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: an imperative style, high-
performance deep learning library,” in Proceedings of the 33rd Inter-
national Conference on Neural Information Processing Systems. Red
Hook, NY, USA: Curran Associates Inc., Dec. 2019, no. 721, pp. 8026–
8037.

[4] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne,
and Q. Zhang, “JAX: composable transformations of Python+NumPy
programs,” http://github.com/google/jax, 2018. [Online]. Available:
http://github.com/google/jax

[5] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden,
M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: a system for large-scale
machine learning,” in Proceedings of the 12th USENIX conference on
Operating Systems Design and Implementation, ser. OSDI’16. USA:
USENIX Association, Nov. 2016, pp. 265–283.

[6] M. Rocklin, “Dask: Parallel Computation with Blocked algorithms and
Task Scheduling,” in Proceedings for the Annual Scientific Computing
with Python Conference, Austin, Texas, 2015, pp. 126–132, https:
//doi.org/10.25080/Majora-7b98e3ed-013. [Online]. Available: https:
//conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang, “MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems,” Dec.
2015, https://doi.org/10.48550/arXiv.1512.01274. [Online]. Available:
http://arxiv.org/abs/1512.01274

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. VanderPlas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: machine learning in Python,” Journal of
Machine Learning Research (JMLR), vol. 12, pp. 2825–2830, 2011.
[Online]. Available: www.jmlr.org/papers/v12/pedregosa11a.html

[9] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy,
D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser, J. Bright,
S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman, N. Mayorov,
A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
I. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, and P. van
Mulbregt, “SciPy 1.0: fundamental algorithms for scientific computing
in Python,” Nature Methods, vol. 17, no. 3, pp. 261–272, Mar.
2020, https://doi.org/10.1038/s41592-019-0686-2. [Online]. Available:
https://www.nature.com/articles/s41592-019-0686-2

[10] K. J. Millman and M. Aivazis, “Python for Scientists and Engineers,”
Computing in Science & Engineering, vol. 13, no. 2, pp. 9–12, Mar.
2011, https://doi.org/10.1109/MCSE.2011.36.

[11] S. J. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. c.
Boulogne, J. D. Warner, N. Yager, E. Gouillart, and T. Yu,
“scikit-image: image processing in Python,” PeerJ, vol. 2, p.
e453, Jun. 2014, https://doi.org/10.7717/peerj.453. [Online]. Available:
https://peerj.com/articles/453

[12] S. Hoyer and J. Hamman, “xarray: N-D labeled Arrays and Datasets in
Python,” vol. 5, no. 1, p. 10, Apr. 2017, https://doi.org/10.5334/jors.148.
[Online]. Available: https://openresearchsoftware.metajnl.com/articles/
10.5334/jors.148

[13] H. Abbasi, “Sparse: A more modern sparse array library,” in Proceedings
of the 17th Python in Science Conference, Austin, Texas, 2018, pp. 65–
68, https://doi.org/10.25080/Majora-4af1f417-00a. [Online]. Available:
https://conference.scipy.org/proceedings/scipy2018/hameer_abbasi.html

[14] J. D. Hunter, “Matplotlib: A 2D Graphics Environment,” Computing in
Science & Engineering, vol. 9, no. 3, pp. 90–95, May 2007, https://doi.
org/10.1109/MCSE.2007.55.

[15] F. Pérez, B. E. Granger, and J. D. Hunter, “Python: An Ecosystem for
Scientific Computing,” Computing in Science & Engineering, vol. 13,
no. 2, pp. 13–21, Mar. 2011, https://doi.org/10.1109/MCSE.2010.119.

[16] S. Seabold and J. Perktold, “Statsmodels: Econometric and Statistical
Modeling with Python,” in Proceedings for the Annual Scientific
Computing with Python Conference, Austin, Texas, 2010, pp. 92–
96, https://doi.org/10.25080/Majora-92bf1922-011. [Online]. Available:
https://conference.scipy.org/proceedings/scipy2010/seabold.html

[17] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and J. D. Team, “Jupyter notebooks
- a publishing format for reproducible computational workflows,” in
International Conference on Electronic Publishing, 2016, https://doi.org/
10.3233/978-1-61499-649-1-87.

[18] R. Frostig, M. Johnson, and C. Leary, “Compiling machine learning
programs via high-level tracing,” in Proceedings of SysML Conference,
2018. [Online]. Available: https://mlsys.org/Conferences/doc/2018/146.
pdf

[19] S. van der Walt, S. C. Colbert, and G. Varoquaux, “The NumPy Array: A
Structure for Efficient Numerical Computation,” Computing in Science
& Engineering, vol. 13, no. 2, pp. 22–30, Mar. 2011, https://doi.org/10.
1109/MCSE.2011.37.

[20] P. F. Dubois, K. Hinsen, and J. Hugunin, “Numerical Python,” Computer
in Physics, vol. 10, no. 3, pp. 262–267, May 1996, https://doi.org/10.
1063/1.4822400. [Online]. Available: https://doi.org/10.1063/1.4822400

[21] J. Hugunin, “Extending Python for Numerical Computation,” http:
//hugunin.net/papers/hugunin95numpy.html, 1995. [Online]. Available:
http://hugunin.net/papers/hugunin95numpy.html

[22] P. Greenfield, J. T. Miller, J.-c. Hsu, and R. L. White, “numarray:
A New Scientific Array Package for Python,” in PyCon DC, 2003.
[Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.112.9899

[23] W. McKinney, “pandas: a Foundational Python Library for Data
Analysis and Statistics,” 2011. [Online]. Available: https://www.
semanticscholar.org/paper/pandas:-a-Foundational-Python-Library-for-
Data-and-McKinney/1a62eb61b2663f8135347171e30cb9dc0a8931b5

[24] C. Moler and J. Little, “A history of MATLAB,” Proceedings of
the ACM on Programming Languages, vol. 4, no. HOPL, pp. 81:1–
81:67, Jun. 2020, https://doi.org/10.1145/3386331. [Online]. Available:
https://dl.acm.org/doi/10.1145/3386331

[25] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A
Fresh Approach to Numerical Computing,” SIAM Review, vol. 59, no. 1,
pp. 65–98, Jan. 2017, https://doi.org/10.1137/141000671. [Online].
Available: https://epubs.siam.org/doi/10.1137/141000671

[26] “IEEE Standard for Floating-Point Arithmetic,” IEEE Std 754-2019
(Revision of IEEE 754-2008), pp. 1–84, Jul. 2019, https://doi.org/10.
1109/IEEESTD.2019.8766229.

[27] C. for Python Data API Standards, “Array API Comparison,” https:
//github.com/data-apis/array-api-comparison, 2022. [Online]. Available:
https://github.com/data-apis/array-api-comparison

[28] ——, “Python Record API,” https://github.com/data-apis/python-record-
api, 2020. [Online]. Available: https://github.com/data-apis/python-
record-api

[29] J. Fraenkel and B. Grofman, “The Borda Count and its real-world
alternatives: Comparing scoring rules in Nauru and Slovenia,”
Australian Journal of Political Science, vol. 49, no. 2, pp. 186–205,
Apr. 2014, https://doi.org/10.1080/10361146.2014.900530. [Online].
Available: https://doi.org/10.1080/10361146.2014.900530

[30] P. Emerson, “The original Borda count and partial voting,”
Social Choice and Welfare, vol. 40, no. 2, pp. 353–358, Feb.
2013, https://doi.org/10.1007/s00355-011-0603-9. [Online]. Available:
https://doi.org/10.1007/s00355-011-0603-9

[31] DLPack, “Open In Memory Tensor Structure,” https://github.com/dmlc/
dlpack, 2023. [Online]. Available: https://github.com/dmlc/dlpack

[32] ——, “Python Specification for DLPack,” https://dmlc.github.io/dlpack/
latest/python_spec.html, 2023. [Online]. Available: https://dmlc.github.
io/dlpack/latest/python_spec.html

[33] R. Gommers, S. Hoyer, and A. Meurer, “NEP 47 — Adopting the array
API standard — NumPy Enhancement Proposals,” https://numpy.org/

https://doi.org/10.1038/s41586-020-2649-2
https://www.nature.com/articles/s41586-020-2649-2
https://www.semanticscholar.org/paper/CuPy-%3A-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-Unno/a59da4639436f582e483347a4833e7659fd3e598
https://www.semanticscholar.org/paper/CuPy-%3A-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-Unno/a59da4639436f582e483347a4833e7659fd3e598
https://www.semanticscholar.org/paper/CuPy-%3A-A-NumPy-Compatible-Library-for-NVIDIA-GPU-Okuta-Unno/a59da4639436f582e483347a4833e7659fd3e598
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.25080/Majora-7b98e3ed-013
https://doi.org/10.25080/Majora-7b98e3ed-013
https://conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html
https://conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html
https://doi.org/10.48550/arXiv.1512.01274
http://arxiv.org/abs/1512.01274
www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1038/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.7717/peerj.453
https://peerj.com/articles/453
https://doi.org/10.5334/jors.148
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.148
https://openresearchsoftware.metajnl.com/articles/10.5334/jors.148
https://doi.org/10.25080/Majora-4af1f417-00a
https://conference.scipy.org/proceedings/scipy2018/hameer_abbasi.html
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2010.119
https://doi.org/10.25080/Majora-92bf1922-011
https://conference.scipy.org/proceedings/scipy2010/seabold.html
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.3233/978-1-61499-649-1-87
https://mlsys.org/Conferences/doc/2018/146.pdf
https://mlsys.org/Conferences/doc/2018/146.pdf
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.1063/1.4822400
https://doi.org/10.1063/1.4822400
https://doi.org/10.1063/1.4822400
http://hugunin.net/papers/hugunin95numpy.html
http://hugunin.net/papers/hugunin95numpy.html
http://hugunin.net/papers/hugunin95numpy.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9899
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.112.9899
https://www.semanticscholar.org/paper/pandas:-a-Foundational-Python-Library-for-Data-and-McKinney/1a62eb61b2663f8135347171e30cb9dc0a8931b5
https://www.semanticscholar.org/paper/pandas:-a-Foundational-Python-Library-for-Data-and-McKinney/1a62eb61b2663f8135347171e30cb9dc0a8931b5
https://www.semanticscholar.org/paper/pandas:-a-Foundational-Python-Library-for-Data-and-McKinney/1a62eb61b2663f8135347171e30cb9dc0a8931b5
https://doi.org/10.1145/3386331
https://dl.acm.org/doi/10.1145/3386331
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://github.com/data-apis/array-api-comparison
https://github.com/data-apis/array-api-comparison
https://github.com/data-apis/array-api-comparison
https://github.com/data-apis/python-record-api
https://github.com/data-apis/python-record-api
https://github.com/data-apis/python-record-api
https://github.com/data-apis/python-record-api
https://doi.org/10.1080/10361146.2014.900530
https://doi.org/10.1080/10361146.2014.900530
https://doi.org/10.1007/s00355-011-0603-9
https://doi.org/10.1007/s00355-011-0603-9
https://github.com/dmlc/dlpack
https://github.com/dmlc/dlpack
https://github.com/dmlc/dlpack
https://dmlc.github.io/dlpack/latest/python_spec.html
https://dmlc.github.io/dlpack/latest/python_spec.html
https://dmlc.github.io/dlpack/latest/python_spec.html
https://dmlc.github.io/dlpack/latest/python_spec.html
https://numpy.org/neps/nep-0047-array-api-standard.html

PYTHON ARRAY API STANDARD: TOWARD ARRAY INTEROPERABILITY IN THE SCIENTIFIC PYTHON ECOSYSTEM 17

neps/nep-0047-array-api-standard.html, Jan. 2021. [Online]. Available:
https://numpy.org/neps/nep-0047-array-api-standard.html

[34] A. Meurer, “Implementation of the NEP 47 (adopting the array API
standard) by asmeurer · Pull Request #18585 · numpy/numpy,” https:
//github.com/numpy/numpy/pull/18585, Mar. 2021. [Online]. Available:
https://github.com/numpy/numpy/pull/18585

[35] S. Berg, “Road to NumPy 2.0,” https:
//mail.python.org/archives/list/numpy-discussion@python.
org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/
#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2,
Jan. 2023. [Online]. Available: https:
//mail.python.org/archives/list/numpy-discussion@python.
org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/
#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2

[36] Y.-L. L. Fang, “Adopt Python Array API standard · Issue #4789
· cupy/cupy,” https://github.com/cupy/cupy/issues/4789, Mar. 2021.
[Online]. Available: https://github.com/cupy/cupy/issues/4789

[37] P. Meier, “Python Array API Compatibility Tracker · Issue #58743 ·
pytorch/pytorch,” https://github.com/pytorch/pytorch/issues/58743, May
2021. [Online]. Available: https://github.com/pytorch/pytorch/issues/
58743

[38] J. VanderPlas, “Initial implementation of the Python Array API
standard · Pull Request #16099 · google/jax,” https://github.
com/google/jax/pull/16099, May 2023. [Online]. Available: https:
//github.com/google/jax/pull/16099

[39] T. White, “Python Array API in Dask issue tracking · Issue
#8917 · dask/dask,” https://github.com/dask/dask/issues/8917, Apr. 2022.
[Online]. Available: https://github.com/dask/dask/issues/8917

[40] N. Yyc, “Python Array API standardization · Issue #20501
· apache/mxnet,” https://github.com/apache/mxnet/issues/20501, Aug.
2021. [Online]. Available: https://github.com/apache/mxnet/issues/20501

[41] I. Yashchuk, “Using Array API standard for functions implemented
using pure Python and NumPy API · Issue #15354 · scipy/scipy,” https:
//github.com/scipy/scipy/issues/15354, Jan. 2022. [Online]. Available:
https://github.com/scipy/scipy/issues/15354

[42] T. Fan, “Path for Adopting the Array API spec · Issue #22352
· scikit-learn/scikit-learn,” https://github.com/scikit-learn/scikit-learn/
issues/22352, Jan. 2022. [Online]. Available: https://github.com/scikit-
learn/scikit-learn/issues/22352

[43] C. for Python Data API Standards, “Test Suite for Array
API Compliance,” https://github.com/data-apis/array-api-tests, 2022.
[Online]. Available: https://github.com/data-apis/array-api-tests

[44] D. MacIver, Z. Hatfield-Dodds, and M. Contributors, “Hypothesis: A new
approach to property-based testing,” Journal of Open Source Software,
vol. 4, no. 43, p. 1891, 11 2019, https://doi.org/10.21105/joss.01891.
[Online]. Available: http://dx.doi.org/10.21105/joss.01891

[45] C. for Python Data API Standards, “Array API compatibility
library,” https://github.com/data-apis/array-api-compat, 2023. [Online].
Available: https://github.com/data-apis/array-api-compat

[46] P. Welch, “The use of fast Fourier transform for the estimation of power
spectra: A method based on time averaging over short, modified peri-
odograms,” IEEE Transactions on Audio and Electroacoustics, vol. 15,
no. 2, pp. 70–73, Jun. 1967, https://doi.org/10.1109/TAU.1967.1161901.

[47] C. for Python Data API Standards, “Array API standard,”
https://github.com/data-apis/array-api, 2022. [Online]. Available: https:
//github.com/data-apis/array-api

https://numpy.org/neps/nep-0047-array-api-standard.html
https://numpy.org/neps/nep-0047-array-api-standard.html
https://github.com/numpy/numpy/pull/18585
https://github.com/numpy/numpy/pull/18585
https://github.com/numpy/numpy/pull/18585
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://mail.python.org/archives/list/numpy-discussion@python.org/thread/XYA5KZNL362Q5KWLKS5QFBQNRT5N2ZJO/#XCJU55EXSQPN5W7UWHDKURBU7EKBBTD2
https://github.com/cupy/cupy/issues/4789
https://github.com/cupy/cupy/issues/4789
https://github.com/pytorch/pytorch/issues/58743
https://github.com/pytorch/pytorch/issues/58743
https://github.com/pytorch/pytorch/issues/58743
https://github.com/google/jax/pull/16099
https://github.com/google/jax/pull/16099
https://github.com/google/jax/pull/16099
https://github.com/google/jax/pull/16099
https://github.com/dask/dask/issues/8917
https://github.com/dask/dask/issues/8917
https://github.com/apache/mxnet/issues/20501
https://github.com/apache/mxnet/issues/20501
https://github.com/scipy/scipy/issues/15354
https://github.com/scipy/scipy/issues/15354
https://github.com/scipy/scipy/issues/15354
https://github.com/scikit-learn/scikit-learn/issues/22352
https://github.com/scikit-learn/scikit-learn/issues/22352
https://github.com/scikit-learn/scikit-learn/issues/22352
https://github.com/scikit-learn/scikit-learn/issues/22352
https://github.com/data-apis/array-api-tests
https://github.com/data-apis/array-api-tests
https://doi.org/10.21105/joss.01891
http://dx.doi.org/10.21105/joss.01891
https://github.com/data-apis/array-api-compat
https://github.com/data-apis/array-api-compat
https://doi.org/10.1109/TAU.1967.1161901
https://github.com/data-apis/array-api
https://github.com/data-apis/array-api
https://github.com/data-apis/array-api

	Introduction
	Paper Overview
	Consortium Overview
	History
	Objectives
	Design Principles

	Methodology
	Design
	Usage

	Array API Standard
	Array Object
	Array Interaction
	Interchange Protocol
	Array Functions
	Optional Extensions

	Specification Status
	Implementation Status
	Reference Implementation
	Ecosystem Adoption

	Tooling
	Test Suite
	Compatibility Layer

	Discussion
	scikit-learn
	SciPy

	Future Work
	Conclusion
	References

