
18 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

A Modified Strassen Algorithm to Accelerate Numpy
Large Matrix Multiplication with Integer Entries

Anthony Breitzman‡∗

✦

Abstract—Numpy is a popular Python library widely used in the math and
scientific community because of its speed and convenience. We present a
Strassen type algorithm for multiplying large matrices with integer entries. The
algorithm is the standard Strassen divide and conquer algorithm but it crosses
over to Numpy when either the row or column dimension of one of the matrices
drops below 128. The algorithm was tested on a MacBook, an I7 based Windows
machine as well as a Linux machine running a Xeon processor and we found
that for matrices with thousands of rows or columns and integer entries, the
Strassen based algorithm with crossover performed 8 to 30 times faster than
regular Numpy on such matrices. Although there is no apparent advantage for
matrices with real entries, there are a number of applications for matrices with
integer coefficients.

Index Terms—Strassen, Numpy, Integer Matrix

Introduction

A recent article [1] suggests that Python is rapidly becoming
the Lingua Franca of machine learning and scientific computing
because of powerful frameworks such as Numpy, SciPy, and
TensorFlow. These libraries offer great flexibility while boosting
the performance of Python because they are written in compiled
C and C++.

In this short paper we present a modified Strassen-based [2]
algorithm for multiplying large matrices of arbitrary sizes contain-
ing integer entries. The algorithm uses Strassen’s algorithm for
several divide and conquer steps before crossing over to a regular
Numpy matrix multiplication. For large matrices the method is 8
to 30 times faster than calling Numpy.matmul or Numpy.dot to
multiply the matrices directly. The method was tested on a variety
of hardware and the speed advantage was consistent for cases
with integer entries. There is no such advantage for matrices with
floating point entries however as [3] points out, there are numerous
applications for large matrices with integer entries, including high
precision evaluation of so-called holonomic functions (e.g. exp,
log, sin, Bessel functions, and hypergeometric functions) as well
as areas of Algebraic Geometry to name just two. Integer matrices
are also frequently used as adjacency matrices in graph theory
applications and are also used extensively in combinatorics.

To give the reader some early perspective, we will see later
in the paper that some of the matrix multiplies that we do with

* Corresponding author: breitzman@rowan.edu
‡ Rowan University Department of Computer Science

Copyright © 2023 Anthony Breitzman. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

the suggested algorithm take approximately two minutes using the
new algorithm, but take 44 minutes using Numpy.matmul.

It is suggested in [4] that Numpy may be the single most-
imported non-stdlib module in the entire Pythonverse. Therefore,
an algorithm that speeds Numpy for large integer matrices may be
of interest to a large audience.

Motivating Exploration with Baseline Timings

For motivation consider the well-known standard algorithm for
multipyling a pair of NxN matrices, as found in [5] as well as any
algorithms book.
#multiply matrix A and B and put
#the product into C.
#A,B,C are assumed to be square
#matrices of the same dimension.
#No error checking is done.
def multiply(A, B, C):

for i in range(N):
for j in range(N):

C[i][j] = 0
for k in range(N):

C[i][j]+=A[i][k]*B[k][j]

It is clear from the three nested loops that this algorithm has O(N3)
running time.

Strassen’s algorithm [2] is described most easily in Figure
1 which is modified from GeeksForGeeks [5]. We see that to
multiply two N×N matrices via Strassen’s method requires seven
multiplications plus eighteen additions or subtractions of matri-
ces that are size (N/2)× (N/2). The additions and subtractions
will cost O(N2) and therefore the time complexity of Strassen’s
algorithm is T (N) = 7T (N/2) + O(N2) which by the Master
Theorem [6] is O(Nlog2 7 ≃ O(N2.81). Python code for an initial
implementation of the standard Strassen algorithm can be found
in [5].

To get a baseline for our improved algorithms below we
show how the standard multiplication and the Geeks-for-Geeks
implementation of the Strassen algorithm perform compared to
Numpy.matmul on several large square matrices with integer
coefficients. Timings are provided in Table 1. Unsurprisingly, the
Numpy implementation of matrix multiply is orders of magnitude
faster than the other methods. This is expected because Numpy
is written in compiled C and as discussed above is known for
its speed and efficiency. The table contains a column where we
compute the current timing divided by the previous timing. As
noted above the complexity of Strassen’s algorithm is O(Nlog2 7)
thus when we double the size of N we expect the timing to
increase about 7-fold. The current/previous column shows that

mailto:breitzman@rowan.edu

A MODIFIED STRASSEN ALGORITHM TO ACCELERATE NUMPY LARGE MATRIX MULTIPLICATION WITH INTEGER ENTRIES 19

Fig. 1: Illustration of Strassen’s Algorithm for multiplying 2 Square
Matrices (Modified from GeeksForGeeks)

this is the case. Similarly we expect the standard algorithm’s
timing to increase about 8-fold when we double the N and this
seems to be the case as well. Still, the Strassen algorithm as
implemented here is not a practical algorithm in spite of the lower
complexity. Although it would start to be faster than the standard
matrix multiplication for N = 4096 and larger, it would not rival
the Numpy multiplication until N reached 1016

Implementing Strassen with a Crossover to Numpy

It is clear from the initial timings in Table 1 that to improve the
Strassen implementation we should crossover to Numpy at some
level of our recursion rather than go all the way to the base case.

As long as we are modifying the algorithm we should also
generalize it so that is will work on any size matrices. The current
strassen function described in Figure 1 will crash if given a matrix
with odd row dimension or odd column dimension. We can easily
fix this by padding matrices with a row of zeros in the case of an
odd row dimension or by padding with a column of zeros in the
case of an odd column dimension. Code for padding a single row
or column can be found below.
"""add row of zeros to bottom of matrix"""
def padRow(m):

x = []
for i in range(len(m[0])):

x.append(0)
return(np.vstack((m,x)))

def padColumn(m):
"""add column of zeros to right of matrix"""

x = []
for i in range(len(m)):
x.append(0)

return(np.hstack((m,np.vstack(x))))

Since the padded rows (or columns) will need to be removed from
the product at each level one might wonder whether padding once
to a power of 2 would be more efficient? For example, a matrix
with 17 rows and 17 columns will be padded to 18×18, but then
each of its 9×9 submatrices will be padded to 10×10 which will
require 5×5 submatrices to be padded and so on. Cases like this
could be avoided by padding the original matrix to 32×32. This
was tested however, and it was found that padding of a single row
at multiple levels of recursion is considerably faster than padding
to the next power of 2.

To ensure that the new version of Strassen based matrix
multiplier shown below works as expected, more than a million
matrix multiplications of various sizes and random values were

computed and compared to Numpy.matmul to ensure both gave
the same answer.
#x,y, are matrices to be multiplied. crossoverCutoff
#is the dimension where recursion stops.
def strassenGeneral(x, y,crossoverCutoff):
#Base case when size <= crossoverCutoff
if len(x) <= crossoverCutoff:

return np.matmul(x,y)
if len(x[0])<= crossoverCutoff:

return np.matmul(x,y)

rowDim = len(x)
colDim = len(y[0])
#if odd row dimension then pad
if (rowDim & 1 and True):

x = padRow(x)
y = padColumn(y)

#if odd column dimension then pad
if (len(x[0]) & 1 and True):

x = padColumn(x)
y = padRow(y)

if (len(y[0]) & 1 and True):
y = padColumn(y)

#split the matrices into quadrants.
a, b, c, d = split(x)
e, f, g, h = split(y)

#Compute the 7 products, recursively (p1, p2...p7)
if (len(x) > crossoverCutoff):
p1 = strassenGeneral(a, f - h,crossoverCutoff)
p2 = strassenGeneral(a + b, h,crossoverCutoff)
p3 = strassenGeneral(c + d, e,crossoverCutoff)
p4 = strassenGeneral(d, g - e,crossoverCutoff)
p5 = strassenGeneral(a + d, e + h,crossoverCutoff)
p6 = strassenGeneral(b - d, g + h,crossoverCutoff)
p7 = strassenGeneral(a - c, e + f,crossoverCutoff)
else:
p1 = np.matmul(a, f - h)
p2 = np.matmul(a + b, h)
p3 = np.matmul(c + d, e)
p4 = np.matmul(d, g - e)
p5 = np.matmul(a + d, e + h)
p6 = np.matmul(b - d, g + h)
p7 = np.matmul(a - c, e + f)

#combine the 4 quadrants into a single matrix
c = np.vstack((np.hstack((p5+p4-p2+p6,p1+p2)),

np.hstack((p3+p4,p1+p5-p3-p7))))

x = len(c) - rowDim
if (x > 0):

c = c[:-x, :] #delete padded rows
x = len(c[0]) - colDim
if (x > 0):

c = c[:,:-x] #delete padded columns

return c

Timings of the Strassen Algorithm with Crossover to Numpy
for Square Matrices

Before checking the performance on random inputs we check the
performance on square matrices of size 2n × 2n for various n.
The results for the first machine which is a MacBook Pro 16
with a 6-Core Intel Core i7 at 2.6 GHz with 16GB of RAM
is shown in Table 2. The column headings are given shorthand
names but they can be described as follows. The Numpy column
contains timings in seconds for Numpy.matmul. The Strassen
column contains timings in seconds for the standard Strassen algo-
rithm shown discussed above modified from [5]. The Strassen16,
Strassen32, etc. columns represent timings from the Python code

20 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

Numpy Strassen 1 Standard Multiply

Matrix
Size

Time
(seconds)

Current/
Previous

Time
(seconds)

Current/
Previous

Time
(seconds)

Current/
Previous

128x128 0.002 - 3.777 - 1.869 -

256x256 0.02 8.728 26.389 6.986 15.031 8.043

512x512 0.222 10.999 188.781 7.154 125.279 8.334

TABLE 1: Timing for Base Algorithms on Matrices with Integer Entries. (Intel Core I7-9700 CPU @ 3.00 GHz, 8 Cores)

Matrix Size Numpy Strassen Strassen16 Strassen32 Strassen64 Strassen128 Strassen256 Strassen512 Standard

128 x 128 0.00 3.88 0.02 0.00 0.00 0.00 0.00 0.00 1.32

256 x 256 0.03 26.85 0.13 0.03 0.01 0.01 0.01 0.01 10.67

512 x 512 0.27 188.09 0.90 0.19 0.09 0.08 0.11 0.20 86.63

1024 x 1024 3.75 ——– 6.70 1.41 0.64 0.63 0.82 1.45 ——–

2048 x 2048 82.06 ——– 44.03 9.29 4.24 4.23 5.44 9.84 ——–

4096 x 4096 988.12 ——– 322.82 68.06 31.61 31.10 40.14 72.56 ——–

8192 x 8192 14722.33 ——– 2160.77 457.28 211.77 211.02 270.69 483.54 ——–

TABLE 2: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. MacBook Pro 16 with Core i7 @ 2.6 GHz

Matrix Size Numpy Strassen Strassen128 Standard

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

128 x 128 0.00 3.88 0.00 1.32

256 x 256 0.03 11.30 26.85 6.93 0.01 7.39 10.67 8.07

512 x 512 0.27 10.20 188.09 7.00 0.08 7.48 86.63 8.12

1024 x 1024 3.75 13.69 ——– 0.63 7.72 ——–

2048 x 2048 82.06 21.89 ——– 4.23 6.67 ——–

4096 x 4096 988.12 12.04 ——– 31.10 7.35 ——–

8192 x 8192 14722.33 14.90 ——– 211.02 6.78 ——–

TABLE 3: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. MacBook Pro 16 with Core i7 @ 2.6 GHz

Matrix Size Numpy Strassen Strassen128 Standard

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

128 x 128 0.00 3.76 0.00 1.96

256 x 256 0.02 8.80 27.67 7.36 0.01 6.96 15.60 7.95

512 x 512 0.22 10.77 183.88 6.64 0.10 7.06 124.48 7.98

1024 x 1024 1.94 8.97 1283.43 6.98 0.68 7.03 1002.26 8.05

2048 x 2048 77.42 439.91 8979.96 7.00 4.84 7.07 8426.06 8.41

4096 x 4096 760.60 9.82 63210.78 7.04 35.40 7.31 68976.25 8.19

8192 x 8192 7121.69 9.36 441637.97 6.99 239.26 6.76 549939.81 7.97

TABLE 4: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. Windows 11 with Core i7 @ 3.0 GHz

A MODIFIED STRASSEN ALGORITHM TO ACCELERATE NUMPY LARGE MATRIX MULTIPLICATION WITH INTEGER ENTRIES 21

Matrix Size Numpy Strassen Strassen128 Standard

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

Time (s) Current /
Previous

128 x 128 0.00 4.58 0.00 1.82

256 x 256 0.03 9.56 32.71 7.14 0.02 7.91 15.11 8.29

512 x 512 0.45 17.77 228.34 6.98 0.11 6.76 122.98 8.14

1024 x 1024 4.21 9.38 ——– 0.78 7.26 ——–

2048 x 2048 98.00 23.27 ——– 5.61 7.21 ——–

4096 x 4096 1029.60 10.51 ——– 41.88 7.46 ——–

8192 x 8192 10050.31 9.76 ——– 287.43 6.86 ——–

TABLE 5: Timings (seconds) for Matrix Multiplication on Square Matrices with Integer Entries. Linux with Xeon E5-2680 v3 @ 2.50GHz

for strassenGeneral shown above with various crossover
levels. The Standard column contains timings for the standard
matrix multiplication algorithm previously discussed. We see in
Table 2 that using a Strassen type algorithm and crossing over to
Numpy when Matrix size is 128 gives a very slight advantage over
crossing over at 64. Crossing over at larger or smaller values is
slower than crossing over at size 128. We also see that not crossing
over at all is even slower than the standard matrix multiplication
for these sizes. Since the non-crossover Strassen algorithm and the
standard matrix multiplication are not competitive and very slow,
we stopped timing them after the 512× 512 case because they
would have taken a very long time to compute.

Table 3 is similar to Table 2 except we’ve removed all but
the best crossover case for Strassen (crossover 128) and added
columns to show the current time divided by the previous time.
These latter columns are instructive because for Strassen we
expect that if we double the size of the matrices the timing
should increase seven-fold and it does. Similarly for the standard
algorithm when we double the input size we expect the timing to
increase eight-fold which it does. We don’t exactly know what to
expect for Numpy without closely examining the code, but we see
that for the largest 2 cases when we double the size of the inputs
the timing increases 12 to 15-fold. This suggests that if we further
increase the size of the matrices that the Strassen type algorithm
with a crossover at size 128 will continue to be much faster than
the Numpy computation for square matrices with integer entries.

Normally, we would expect a matrix multiplication to increase
no more than eight-fold when we double the inputs. This suggests
that Numpy is tuned for matrices of size 128× 128 or smaller.
Alternatively, perhaps at larger sizes there are more cache misses
in the Numpy algorithm. Without a close examination of the
Numpy code it is not clear which is the case, but the point is that
a divide and conquer algorithm such as Strassen combined with
Numpy will perform better than Numpy alone on large matrices
with integer entries.

Timings from a second machine are shown in Table 4. These
timings are for the same experiment as above on a Windows 11
Machine with 3.0 GHz Core i7-9700 with 8 cores and 32 GB
of RAM. In this case we see again that using a Strassen type
algorithm that crosses over to Numpy at size 128 is considerably
faster than using Numpy alone for large matrices with integer
entries. Moreover we see that for the largest cases if we double
the matrix size, the timings for the Strassen based algorithm will
continue to grow seven-fold while the Numpy timings will grow
ten-fold for each doubling of input-size.

Since both of these trials were based on Intel i7 chips, we ran a
third experiment on a Linux machine with an Intel Xeon E5-2680
v3 @ 2.50GHz with 16 GB of RAM. Timings from this machine
are in Table 5 and are similar to the previous tables.

Timings of the Strassen Algorithm with Crossover to Numpy
for Arbitrary Matrices

Although the Python function strassenGeneral shown above
will work for Arbitrary sized matrices, to this point we have only
shown timings for square matrices N ×N where N is a power
of 2. The reason for this is that growth rates in timings when N
increases are easier to track for powers of 2. However, to show that
the Strassen type algorithm with crossover is viable in general we
need to test for a variety of arbitrary sizes. For this experiment it
is not possible to show the results in simple tables such as Table 2
through Table 5.

To motivate the next experiment consider the sample output
shown below:
(1701 x 1267) * (1267 x 1678)
numpy (seconds) 15.43970187567
numpyDot (seconds) 15.08170314133
a @ b (seconds) 15.41474305465
strassen64 (seconds) 3.980883831158
strassen128 (seconds) 2.968686999753
strassen256 (seconds) 2.88325377367
DC64 (seconds) 6.42917919531
DC128 (seconds) 4.37878428772
DC256 (seconds) 4.12086373381

(1659 x 1949) * (1949 x 1093)
numpy (seconds) 33.79341135732
numpyDot (seconds) 33.8062295187
a @ b (seconds) 33.6903500761
strassen64 (seconds) 2.929703416
strassen128 (seconds) 2.54137444496
strassen256 (seconds) 2.75581365264
DC64 (seconds) 4.581859096884
DC128 (seconds) 4.08950223028
DC256 (seconds) 4.01872271299

(1386 x 1278) * (1278 x 1282)
numpy (seconds) 7.96956253983
numpyDot (seconds) 7.54114297591
a @ b (seconds) 8.81335245259
strassen64 (seconds) 2.425855960696
strassen128 (seconds) 1.823907148092
strassen256 (seconds) 1.74107060767
DC64 (seconds) 3.8810345549
DC128 (seconds) 2.672704061493
DC256 (seconds) 2.603429134935

This snippet of output shows three different matrix multiplies
using three different variations of three different methods on

22 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

the Linux machine with the Xeon processor mentioned above.
To illustrate what this output means consider the first block of
output which represents a 1701 × 1267 matrix multiplied by a
1267 × 1678 matrix. The first three timings are variations of
Numpy. The first is Numpy.matmul, the second is Numpy.dot and
the third is called via the @ operator [4] which is really just an
infix operator that should be the same as Numpy.matmul. The next
three timings are for the Strassen type algorithm with crossover to
Numpy at size 64, 128, and 256. The third set of timings are Divide
and Conquer matrix multiplications that crossover to Numpy at
size 64, 128, and 256. These latter three methods were added since
much of the increase in efficiency of the Strassen type algorithms
is due to their divide and conquer approach which allows us to
compute Numpy multiplications on smaller matrices. We don’t
show the source code for this approach because it is not faster than
the Strassen approach, however it can be produced with a simple
modification of the code in strassenGeneral. The Strassen
algorithm divides the first matrix into sub-matrices a,b,c,d and
the second matrix into e, f ,g,h and reassembles via seven clever
products. The regular divide and conquer approach creates the
final product as the four submatrices a ∗ e+ b ∗ g, a ∗ f + b ∗ h,
c∗ e+d ∗g, and c∗ f +d ∗h. This uses eight products but is more
straightforward than Strassen and allows for recursively calling
itself until crossing over to Numpy for the smaller products.

We note for the three arbitrary size matrix multiplies shown
above that the Strassen based approaches are fastest, and the
alternative divide and conquer approaches are two to three times
faster than the Numpy method but slower than the Strassen
method.

To create a good experiment we set three variables dim1,
dim2, dim3 to random integers between 1000 and 8000 and then
created two matrices one of size (dim1 × dim2) and the other
of size (dim2 × dim3). Both were filled with random integers
and multiplied using the 9 methods described above. We then
put this experiment into a loop to repeat several thousand times.
In actuality we stopped the experiment on the MacBook and
the Windows machine after about 2 weeks and we stopped the
Linux machine after a few hours because the latter machine is a
shared machine used by students at Rowan and the timings are not
accurate when it has many users.

The question is how do we present the results of several
hundred such experiments on random sized matrices in a compact
manner? Since we have a large number of different dimension
multiplies they cannot easily be put into a table so instead we
decided to organize the results by elapsed time. To see how
consider Figure 2. We bin the Strassen128 results into round
number of seconds and we see the x-axis of Figure 2 shows the
number of seconds of Strassen128. Let us consider the case of
102 seconds. The matrix multiply (6977×4737)∗ (4737×7809)
took 101.56 seconds using Strassen128 and took 2482.76
seconds using Numpy. Meanwhile the matrix multiply (7029×
7209)∗(7209×6283) using Strassen128 took 101.80 seconds
compared to 2792.11 seconds using Numpy. These are the only
2 cases that round to 102 seconds for Strassen128 so they
get bucketed together and averaged. The Average Strassen128
time for these 2 cases is 101.68 seconds and the average Numpy
time for these 2 cases is 2637.43 seconds. In the Figure we
normalize by Strassen128 so the Strassen128 value for
102 seconds is 1.0 and the Numpy value for 102 seconds is
2637.43/101.68 = 25.94. Thus for matrix multiplies that take 102
seconds for Strassen128 the Numpy routines take almost 26

times as long which in this case is 44 minutes versus less than 2
for the Strassen128 routine.

Now that we’ve described how Figure 2 is derived it is useful
to describe several things shown by the Figure. First note that for
large matrix multiplies that take at least 15 seconds for the Strassen
type algorithm that crosses over at size 128, the regular Numpy
algorithms all take at least 8 times as long and in some cases up
to 30 times as long. Moreover the general trend is increasing so
that if we tested even larger sizes we would expect the disparity
to continue to increase. Another item to notice is there is really
no difference between Numpy.matmul, Numpy.dot or the infix
operator a@b as expected. Also notice that the Strassen algorithms
with crossover are almost twice as fast as the more straightforward
divide and conquer algorithm discussed above. The last item to
notice is the crossing over at size 128 seems to work best, just as
in the square cases of Table 2.

Figure 3 is similar to Figure 2 except these timings are done
on the Windows 11 machine described above. Here we see that
the Numpy algorithms take between 8 and 16 times as long as the
Strassen type algorithm that crosses over to Numpy at size 128.
One other difference between the Mac and Windows machine is
that crossing over at size 64 is better than crossing over at size 128
more frequently on the Windows machine.

Since the run-time to compute these last 2 figures is more than
several weeks, we did not repeat the experiment on the shared
machine with the Xeon processor, however we did run it for
several hours and the Strassen128 algorithm seems to be 8 to 16
times faster than Numpy for cases longer than 15 seconds just as
with the Mac and Windows machines.

Conclusions

Numpy is a Python library which is widely used in the math
and scientific community because of its speed. In this paper we
presented a Strassen type algorithm that greatly improves on
Numpy performance for large matrices with integer entries. For
integer matrices with row dimension or column dimension in
the thousands the algorithm can be 8 to 30 times faster than
Numpy. The algorithm is the standard Strassen divide and conquer
algorithm but it crosses over to Numpy when either the row
or column dimension of one of the matrices drops below 128.
The algorithm was tested on a MacBook, an I7 based Windows
machine as well as a Linux machine running a Xeon processor
with similar results. Although there is no apparent advantage for
matrices with real entries, there are a number of applications for
matrices with integer coefficients.

REFERENCES

[1] Z. Fink, S. Liu, J. Choi, M. Diener, and L. V. Kale, “Performance evalu-
ation of python parallel programming models: Charm4py and mpi4py,”
2021 IEEE/ACM 6th International Workshop on Extreme Scale Pro-
gramming Models and Middleware (ESPM2), pp. 38–44, 2021, https:
//doi.org/10.1109/ESPM254806.2021.00010.

[2] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathe-
matik, pp. 354–356, 1969, https://doi.org/10.1007/BF02165411.

[3] D. Harvey and J. V. der Hoeven, “On the complexity of integer matrix
multiplication,” Journal of Symbolic Computation, pp. 1–8, 2018, https:
//doi.org/10.1016/j.jsc.2017.11.001.

[4] Python.org, “Pep 465: A dedicated infix operator for matrix multiplica-
tion,” Available at https://peps.python.org/pep-0465/, 2014.

[5] GeeksforGeeks, “Strassen’s matrix multiplication - geeksforgeeks,” Avail-
able at https://www.geeksforgeeks.org/strassens-matrix-multiplication/,
2022.

[6] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algo-
rithms. Cambridge, MA: MIT Press, 2009.

https://doi.org/10.1109/ESPM254806.2021.00010
https://doi.org/10.1109/ESPM254806.2021.00010
https://doi.org/10.1007/BF02165411
https://doi.org/10.1016/j.jsc.2017.11.001
https://doi.org/10.1016/j.jsc.2017.11.001
https://peps.python.org/pep-0465/
 https://www.geeksforgeeks.org/strassens-matrix-multiplication/

A MODIFIED STRASSEN ALGORITHM TO ACCELERATE NUMPY LARGE MATRIX MULTIPLICATION WITH INTEGER ENTRIES 23

Fig. 2: Timing of Multiple Algorithms Relative to Strassen128 on MacBook Pro 16 with Core i7 @ 2.6 GHz.

Fig. 3: Timing of Multiple Algorithms Relative to Strassen128 on Windows 11 with Core i7 @ 3.0 GHz.

	Introduction
	Motivating Exploration with Baseline Timings
	Implementing Strassen with a Crossover to Numpy
	Timings of the Strassen Algorithm with Crossover to Numpy for Square Matrices
	Timings of the Strassen Algorithm with Crossover to Numpy for Arbitrary Matrices
	Conclusions
	References

