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Abstract—Author identification also known as ‘author attribution’ and more
recently ‘forensic linguistics’ involves identifying true authors of anonymous
texts. The Federalist Papers are 85 documents written anonymously by a com-
bination of Alexander Hamilton, John Jay, and James Madison in the late 1780’s
supporting adoption of the American Constitution. All but 12 documents have
confirmed authors based on lists provided before the author’s deaths. Mosteller
and Wallace in 1963 provided evidence of authorship for the 12 disputed docu-
ments, however the analysis is not readily accessible to non-statisticians. In this
paper we replicate the analysis but in a much more accessible way using modern
text mining methods and Python. One surprising result is the usefulness of filler-
words in identifying writing styles. The method described here can be applied to
other authorship questions such as linking the Unabomber manifesto with Ted
Kaczynski, identifying Shakespeare’s collaborators, etc. Although the question
of authorship of the Federalist Papers has been studied before, what is new in
this paper is we highlight a process and tools that can be easily used by Python
programmers, and the methods do not rely on any knowledge of statistics or
machine learning.

Index Terms—Federalist, Author Identification, Attribution, Forensic Linguistics,
Text-Mining

Introduction

Author attribution is a long-standing problem involving identify-
ing true authors in anonymous texts. Recently the problem has gar-
nered headlines with several high profile cases that were made pos-
sible with computers and text mining methods. In 2017 The Dis-
covery Channel created a TV series called Manhunt:Unabomber
that showed how Forensic Linguistics was used to determine
that Ted Kaczynski was the author of the Unabomber manifesto
[1]. In 2016 a headline from The Guardian shook the literary
world: "Christopher Marlowe credited as one of Shakespeare’s co-
writers" [2]. It was long suspected that Shakespeare collaborated
with others, but since Marlowe was always considered his biggest
rival, it was quite a surprise that the two collaborated. See [3]
for other examples including the best seller Primary Colors about
the Clinton campaign that was published anonymously and the
question of authorship of "Twas the Night Before Christmas" as
well as other examples
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About this Paper

Purpose of this Paper

While forensic linguistics may be a recent name for such attri-
bution, the idea of using statistical modeling to identify authors
goes back to at least 1963 when Mosteller and Wallace published
their ground-breaking study of the Federalist Papers [4]. Since that
study was published in a Statistics journal, it requires a thorough
understanding of statistics to understand it. Because our audience
consists mostly of Software Engineers instead of Statisticians, we
present a more accessible analysis of the Federalist Papers which
can be applied to other author attribution problems. In this paper
we endeavor to show a self-contained process that can be used for
author attribution problems as well as other text-analysis problems
such as gender identification of texts, genre classification, or
sentiment analysis.

The Contribution of this Paper

The use of the Federalist Papers as a case study in author
attribution is not new and dates to 1963 [4]. However, this paper’s
contribution is that it shows a process for author attribution and
text mining in general that requires only knowledge of Python and
requires no previous background in statistics or machine learning.

Outline of the Remaining Paper

We first describe how rudimentary author attribution was done
before 1963. We then briefly describe the notion of Exploratory
Data Analysis by way of a key table before showing the Python
tools necessary for building said table. We then discuss how to
build a dictionary of terms for each potential author and use
Python to turn that dictionary into a set of probabilities that can be
used as a Naive Bayes classifier. We then present a self-contained
explanation of Naive Bayes and use it to predict the author of
the disputed Federalist Papers. Finally, we show how a Python
programmer who has little background in machine learning, can
still successfully run numerous machine learning models to do
predictions.

The Disputed Federalist Papers as a Case Study

This brief history is shortened from [4] which itself is a much
shortened history from [5] and [6]. The Federalist Papers were
a series of essays written by Alexander Hamilton, John Jay, and
James Madison published under the pseudonym "Publius" in New
York newspapers in 1787 and 1788 in support of ratification of
the constitution. It is surmised that the authors were not anxious
to claim the essays for decades because the opinions in the essays
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Fig. 1: Boxplots showing Sentence Length Statistics Federalist Au-
thors

sometimes opposed positions each later supported [4]. Hamilton
was famously killed in a duel in 1804 but he left a list of
the essays he wrote with his lawyer before his death. Madison
later generated his own list a decade later and attributed any
discrepancies between the lists as "owing doubtless to the hurry
in which (Hamilton’s) memorandum was made out" [5]. Of the
85 essays, the 5 essays written by Jay are not in dispute. Another
51 by Hamilton, 14 by Madison, and 3 joint essays coauthored
by Hamilton and Madison are also not in dispute. However, 12
essays (Federalist Nos. 49-58, 62 amd 63) were claimed by both
Hamilton and Madison in their respective lists [4].

Similarities of Hamilton and Madison as Writers

Before Mosteller used advanced statistical modeling for author
attribution, the standard approach was to look at things like
sentence length to identify authors. In [7] Mosteller explains why
this won’t work with Hamilton and Madison because they are too
similar.

The writings of Hamilton and Madison are difficult
to tell apart because both authors were masters of
the popular Spectator style of writing-complicated and
oratorical. Never use a short word if a long one will
do. Double negatives are good, triple even better. To
illustrate, in 1941 Frederick Williams and I counted sen-
tence lengths for the undisputed papers and got means of
34.55 and 34.59 words, respectively, for Hamilton and
Madison, and average standard deviations for sentence
lengths of 19.2 and 20.3. [7]

To illustrate the quote above, consider the boxplot in Figure 1
of the non-disputed Federalist Papers of Hamilton, Madison, and
Jay.

We see in Figure 1 that not only do Hamilton and Madison
have the same median sentence length, but they have the same
25-percentile and 75-percentile sentence length and very similar
minimum and maximum sentence lengths. In comparison John Jay
tends to use longer sentences. In general, before 1963 this kind
of analysis was used for author attribution, and it often works.
However, as we see, Hamilton and Madison were very similar
writers. The boxplot above is easily generated with matplotlib
and a sentence tokenizer discussed below. We omit the code for
space considerations, however all of the code discussed in this pa-

per can be found at https://github.com/AbreitzmanSr/SciPy2023-
AuthorAttribution.

Exploratory Data Analysis

Before jumping into modeling and code examples, we’ll start with
a key table that will suggest that Madison is the author of most if
not all of the disputed papers. Table 1 contains a list of Hamilton’s
and Madison’s favorite words. (Although John Jay is included in
the table, he is not really of interest in this study because he has
laid no claim to the disputed papers. The only reason the 12 papers
are disputed is because both Hamilton and Madison had claimed
authorship of them.)

Note that Hamilton uses "upon" many times in place of "on".
In the disputed papers both terms are used at the Madison rate
rather than the Hamilton rate.

Madison uses "whilst" instead of "while". While is never used
in the disputed papers but "whilst" is used in half of them.

Several words like "democratic", "dishonorable", "precision",
"inconveniency", etc. are not used in any Hamilton documents but
are used in both the disputed papers and Madison documents.

"While", "enough", "nomination", "kind" appear in Hamilton
documents but either not at all in the disputed papers or at the
Madison rate within the disputed papers

Generating the previous table is an example of what Data
Scientists call Exploratory Data Analysis which is an initial inves-
tigation on data to discover patterns and trends, spot anomalies,
and generate statistical summaries which might help us check
assumptions and perform hypotheses about our data.

The previous table suggests Madison is the likely author
of most of the disputed Federalist Papers. But the table did
materialize out of nowhere. There are 2 key components to the
previous table: We need a method to identify words that have a
high probability of being used by one author but not the other and
we need a way to identify usage per 1000 words for each author

Both of those components are easily done using Python’s
NLTK (Natural Language Tool-kit) library [8].

Building the Favorite Words Table

Project Gutenberg [9] has the Federalist Papers as a plain-text e-
book with each essay as an individual chapter. The Python code
required to put the plain text of the book into a long string is
below.

import re
from urllib import request

#utility functions for slicing text
def left(s, amount):

return s[:amount]

def right(s, amount):
return s[-amount:]

#Get Federalist Papers
url="https://www.gutenberg.org/cache/epub/1404/pg1404.txt"

response=request.urlopen(url)
raw=response.read()
text=raw.decode("utf-8-sig")

#replace multiple spaces with single space
text=re.sub("\s+", " ", text)

#kill all the front matter of the book
text=right(text,len(text)-text.find('FEDERALIST No.'))

https://github.com/AbreitzmanSr/SciPy2023-AuthorAttribution
https://github.com/AbreitzmanSr/SciPy2023-AuthorAttribution
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% of Papers Containing Word Usage Per 1000 Words

word Hamilton Madison Joint Disputed Jay Hamilton Madison Joint Disputed Jay

upon 100 21.4 66.6 16.6 20 3.012 0.161 0.312 0.112 0.107

on 98 100 100 100 100 3.037 6.817 6.094 7.077 4.721

very 72.5 85.7 100 91.6 60 0.583 1.04 0.937 2.209 1.394

community 62.7 14.2 33.3 25 20 0.558 0.046 0.156 0.187 0.107

while 39.2 0 0 0 40 0.291 0 0 0 0.214

enough 35.2 0 33.3 0 0 0.267 0 0.156 0 0

nomination 13.7 0 0 0 0 0.178 0 0 0 0

consequently 5.8 57.1 0 41.6 40 0.032 0.277 0 0.337 0.429

lesser 3.9 35.7 0 16.6 20 0.016 0.161 0 0.149 0.107

whilst 1.9 57.1 66.6 50 0 0.008 0.277 0.312 0.337 0

although 1.9 42.8 0 33.3 80 0.008 0.161 0 0.149 0.536

composing 1.9 42.8 33.3 16.6 0 0.008 0.254 0.156 0.074 0

recommended 1.9 35.7 0 8.3 20 0.008 0.138 0 0.037 0.429

sphere 1.9 35.7 0 16.6 0 0.008 0.184 0 0.112 0

pronounced 1.9 28.5 0 16.6 0 0.008 0.115 0 0.074 0

respectively 1.9 28.5 0 16.6 0 0.008 0.138 0 0.074 0

enlarge 0 28.5 0 16.6 0 0 0.115 0 0.074 0

involves 0 28.5 0 16.6 0 0 0.092 0 0.074 0

stamped 0 28.5 33.3 0 0 0 0.092 0.156 0 0

crushed 0 21.4 0 8.3 0 0 0.069 0 0.037 0

democratic 0 21.4 0 8.3 0 0 0.069 0 0.037 0

dishonorable 0 21.4 0 8.3 0 0 0.069 0 0.037 0

precision 0 21.4 0 8.3 0 0 0.069 0 0.037 0

reform 0 21.4 33.3 16.6 0 0 0.161 0.156 0.074 0

transferred 0 21.4 0 8.3 0 0 0.069 0 0.037 0

universally 0 21.4 0 8.3 20 0 0.069 0 0.037 0.107

bind 0 14.2 0 8.3 20 0 0.069 0 0.037 0.107

derives 0 14.2 33.3 8.3 0 0 0.069 0.156 0.037 0

drawing 0 14.2 0 8.3 0 0 0.069 0 0.037 0

function 0 14.2 0 8.3 0 0 0.069 0 0.037 0

inconveniency 0 14.2 0 16.6 0 0 0.069 0 0.074 0

obviated 0 14.2 0 8.3 0 0 0.069 0 0.037 0

patriotic 0 14.2 0 25 20 0 0.069 0 0.112 0.107

speedy 0 14.2 0 8.3 0 0 0.069 0 0.037 0

TABLE 1: Favorite Words of Hamilton and Madison

#kill back matter
text=left(text,

text.find('*** END OF THE PROJECT GUTENBERG'))

Project Gutenberg [9] has the Federalist Papers stored as a book
with the individual papers as chapters. In the next code snippet
we reorganize the text so that each author’s Federalist papers
are contained in a list. For example the variable hamilton will
contain a list of Hamilton’s 51 known Federalist Papers.

#returns the main text of a Federalist paper.
def getFedText(s):
if (len(s)>0):
t = s + ' PUBLIUS' #additional sentinel in case

#it's not there.

#(in most cases it is)
i = t.find('PUBLIUS')
t = left(t,i)
i = t.find('State of New York')
t = right(t,len(t)-(i+19))
return t.strip()
else:
return ""

#Break Federalist papers up into individual texts
FedChapters=re.split('\sFEDERALIST No\. \d*\s',' '+text)

#Store Hamilton's Federalist papers in a Hamilton
#list, Madison's in a Madison list, etc.
hamilton = []
jay = []
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madison = []
joint = []
disputed = []
for i in range(len(FedChapters)):
if (i in {2,3,4,5,64}):
jay.append([i,[getFedText(FedChapters[i])]])
else:
if (i in {18,19,20}):

joint.append([i,[getFedText(FedChapters[i])]])
else:
if (i in {49,50,51,52,53,54,55,56,57,58,62,63}):

disputed.append(
[i,[getFedText(FedChapters[i])]])

else:
if (i in {10,14,37,38,39,40,41,42,43,

44,45,46,47,48}):
madison.append(

[i,[getFedText(FedChapters[i])]])
else:
if (i > 0):
hamilton.append(

[i,[getFedText(FedChapters[i])]])

Introduction to NLTK Tokenizers

NLTK [8] makes it easy to make lists of sentences, lists of words,
count sentences, count words in sentences etc. Here’s an example
of how to first split a text into sentences and then make a Python
list of each word in each sentence. (This could be done with split()
but we would need multiple sentence delimiters and we would lose
the punctuation if we weren’t careful.)

from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize

text_2sentences = "A short sentence. Another
short sentence."

sentences = sent_tokenize(text_2sentences)
for x in sentences:
print(word_tokenize(x))

['A','short','sentence','.']
['Another','short','sentence','.']

We will leverage the NLTK word tokenizer to build dictionaries
of word frequencies for each author.

from nltk.tokenize import word_tokenize

hamiltonDicts=[]#list of dictionaries containing
#word freq for each of Hamilton's
#Federalist Papers

madisonDicts=[]
disputedDicts=[]
jointDicts=[]

def getDocDict(str1):
#returns a dictonary containing frequencies of
#any word in string.
#e.g. str1 = 'quick brown fox is quick.'
# returns {quick:2, brown:1, fox:1, is:1}
x = {}
words = word_tokenize(str1.lower().strip())
for b in words:

if b in x:
x[b]+=1

else:
x[b]=1

return(x)

for a in hamilton:
hamiltonDicts.append(getDocDict(a[1][0]))

for a in madison:

madisonDicts.append(getDocDict(a[1][0]))

for a in joint:
jointDicts.append(getDocDict(a[1][0]))

for a in disputed:
disputedDicts.append(getDocDict(a[1][0]))

It is now straightforward to identify word usage for each author.
That is, given a word such as "upon" it is easy to identify the
percent of each author’s Federalist papers that mention "upon."
It’s also easy to identify the usage of "upon" per thousand words
for each author. What we haven’t addressed is how to find words
that are favorites of Hamilton but not Madison and vice-versa. We
will do that by building a Naive Bayes dictionary for each author,
but we will assume no prior knowledge of Naive Bayes to do so.

The code below creates a document frequency distribution
of every word mentioned in the Federalist Papers. That is, for
every word mentioned, we count how many documents the word
appears in. We then remove any word that is only mentioned
in one or two documents because it will have no discriminating
value. Similarly we remove any word that appears in all documents
because the only words mentioned in all documents are so-called
stopwords like "is", "and","the" that both authors use. Note words
like "while" and "whilst" might be considered stopwords, but these
will be kept because they are used by only one of the authors and
thus will not reach the 80 document threshold to be discarded.

completeDict={}#dictionary containing any word
#mentioned in any of the Federalist
#papers and the number of Federalist
#Papers containing the word.

kills = [',','.',"''",'',';','-',')','(']
authDicts = [hamiltonDicts,madisonDicts,

jointDicts,disputedDicts]
for authDict in authDicts:
for a in authDict:
for x in a:

if (x not in kills):
if x in completeDict:

completeDict[x]+=1
else:

completeDict[x]=1

trimDict = set() #subset of completeDict
#that contains useful words

for a in completeDict:
x = completeDict[a]
if (x >= 3 and x < 80):

trimDict.add(a)

print(len(completeDict),len(trimDict))

8492 3967

At this point completeDict contains document frequencies
for the 8,492 unique words in all the Federalist papers and
trimDict contains the subset of 3,967 potentially useful words.
We now need to find words that are much more likely to be
used by Hamilton than Madison and vice-versa. For each word
in trimDict we will compute the probability that Hamilton or
Madison used it. The words where Hamilton’s probability is 5+
times more likely than Madison (or vice-versa) is an interesting
word that gets selected for the previously shown Table 1.

The code below will help us get each author’s favorite words.
For each word in trimDict we will count how often each author
uses it. We next total up all of the word frequencies for each
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author and store them in the denominators hamiltonNBdenom
and madisonNBdenom.

#build Naive Bayes Dictionaries
#for Hamilton and Madison
hamiltonNBwordDicts = {}
madisonNBwordDicts = {}

hamiltonNBdenom = madisonNBdenom = 0

for a in trimDict: #this is equivalent
#to Laplace Smoothing

hamiltonNBwordDicts[a]=madisonNBwordDicts[a]=1
hamiltonNBdenom += 1
madisonNBdenom += 1

for dictionary in hamiltonDicts:
for word in dictionary:
if (word in trimDict):
hamiltonNBwordDicts[word]+=dictionary[word]
hamiltonNBdenom +=dictionary[word]

for dictionary in madisonDicts:
for word in dictionary:
if (word in trimDict):

madisonNBwordDicts[word]+=dictionary[word]
madisonNBdenom += dictionary[word]

For those unfamiliar with Naïve Bayes we are just computing
word frequencies of the potentially useful words for each author
and making sure no word probability is 0. (This is called Laplace
Smoothing, but essentially we’re trying to avoid cases where
Hamilton uses a word very few times but Madison uses it 0 times
(or vice-versa) because that will pollute our table with a bunch of
useless words.) We need a denominator (consisting of the sum of
frequencies of all words) in order to compute a probability of an
author using the word, then the probability of an author using that
word is just the frequency of the word divided by the denominator.

It is now straightforward to identify words that are favorites of
Hamilton but not Madison and vice-versa as follows:

interesting = []
tableData = []
j = 0
for i,a in enumerate(trimDict):

h1 = hamiltonNBwordDicts[a]/hamiltonNBdenom
m1 = madisonNBwordDicts[a]/madisonNBdenom
if (m1/h1 > 5 or h1/m1 > 5):
interesting.append(a)
if (j < 10):

tableData.append([a,m1/h1,h1/m1])
j+=1

from tabulate import tabulate
print (tabulate(tableData,

headers=["FavoriteWord","Mad. Pr/Ham. Pr",
"Ham. Pr/Mad. Pr"]))

FavoriteWord Mad. Pr/Ham. Pr Ham. Pr/Mad. Pr
-------------- ----------------- -----------------
enumeration 6.08567 0.164321
surely 10.1428 0.0985923
defined 5.07139 0.197185
whilst 16.482 0.0606722
respectively 8.87493 0.112677
address 5.07139 0.197185
usurped 5.07139 0.197185
while 0.12191 8.20279
obviated 5.79072 0.17269
upon 0.0557395 17.9406

We of course cut off the table of "interesting" words because of
space considerations. As expected, we see that the the probability

of "whilst" being used by Madison is 16 times as likely as it being
used by Hamilton. Similarly, "upon" being used by Hamilton
is 18 times as likely as it being used by Madison. To get the
table of author favorite words shown above in Table 1 we just
need to calculate the percentage of papers from each author
that contain the words, and also compute the usage per 1000
words for each author. Both of those calculations are straight-
forward so we omit the code, however it can be found at at
https://github.com/AbreitzmanSr/SciPy2023-AuthorAttribution.

Naive Bayes Model

We now have everything we need to build a model to predict
the author of the disputed Federalist Papers. We assume no prior
knowledge of Naive Bayes, but the interested reader can see
[10] or many other books for a full derivation. For our pur-
poses we only care that: P(Author|word1,word2, . . . ,wordN) =
P(word1|Author) ∗P(word2|Author) ∗ . . . ∗P(wordN|author)/k.
That is, the conditional probability that a paper (word1 through
wordN) is authored by Hamilton or Madison is equal to the
product of the probabilities of each word belonging to the authors
then divided by a constant k. (The equality is only true if the
words are independent. Since we don’t care about the actual
probabilities, but only which author has the larger value, we don’t
need independence.) The constant k is actually another probability
that is hard to compute, but since it’s the same for both authors all
we really need is the following pseudocode:

Text = [word1, word2, ..., wordN]
if (P(word1|Hamilton)*P(word2|Hamilton)*...*

P(wordN|Hamilton) >
P(word1|Madison)*P(word2|Madison)*...*
P(wordN|Madison)):

return(Hamilton)
else:

return(Madison)

The actual Python code shown below is slightly different than
the pseudocode above. Since we are computing the product of
thousands of very small values there is a risk of underflow so
instead of the product of many small constants we compute the
sum of the logs of many small constants (e.g. Log(a*b) = Log(a)
+ Log(b)). Thus, the Python code looks like the following:

import math
#given a document return 'hamilton' if NaiveBayes prob
#suggests Hamilton authored it. similarly return
#'madison' if he is the likely author
def NB_federalist_predict(docDict,vocab1=trimDict):
h_pr = m_pr = 0
for word in docDict:
if (word in vocab1):
h_pr += float(docDict[word])*(math.log(

hamiltonNBwordDicts[word]/hamiltonNBdenom))
m_pr += float(docDict[word])*(math.log(

madisonNBwordDicts[word]/madisonNBdenom))

if (h_pr > m_pr):
return('hamilton')

else:
return('madison')

def check_accuracy(vocab1=trimDict):
right = wrong = 0
for a in hamiltonDicts:

if NB_federalist_predict(a,vocab1)=='hamilton':
right+=1

else:
wrong+=1

https://github.com/AbreitzmanSr/SciPy2023-AuthorAttribution
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for a in madisonDicts:
if NB_federalist_predict(a,vocab1)=='madison':
right+=1

else:
wrong+=1

return([100*right/(right+wrong),right,wrong])

print('% correct:',check_accuracy()[0])

% correct: 100.0

The NB_federalist_predict is a Naive Bayes classifier
which takes in a document dictionary such as the elements in
hamiltonDicts or madisonDicts we defined earlier in
the paper. We check the accuracy of the classifier with the
straightforward function check_accuracy that simply looks
at the predictions for all the known Hamilton papers and all
the known Madison papers and counts the correct and erroneous
author predictions.

The classifier will work with any vocabulary but defaults to
trimDict if no vocabulary is provided. We will see below that
this allows us to run the classifier on various word lists which may
be useful for our analysis.

The last line shows that the Naive Bayes classifier correctly
predicts 100% of the undisputed papers from Hamilton and
Madison. The next thing to check is the 12 disputed papers and
see if they are attributed to Madison as the authors in [4] found.
For those familiar with machine learning or data mining we call
the known Federalist papers, the "training" set and the disputed
papers the "test" set.

Predicting Authors for the Disputed Papers

We saw how the predict function works above on the undisputed
papers. Now to see how various word sets can be used to predict
who wrote the disputed papers consider the code and output below:

#the following checks accuracy on the training set and
#then identifies how many of the disputed papers are
#by each author
def Federalist_report(words=trimDict):
if (len(words)<10):

print(words)
else:

temp = words[:9]
temp.append('...')
print(temp)

print(str(check_accuracy(words)[0])+'% accuracy')
madison = hamilton = 0
for a in disputedDicts:

if (NB_federalist_predict(a,words)=='madison'):
madison+=1

else:
hamilton+=1

print("disputed papers: madison:"+str(madison)+
', hamilton:'+str(hamilton)+'\n')

Federalist_report(interesting)
Federalist_report(['although','composing','involves',

'confederation','upon'])
Federalist_report(['although','obviated','composing',

'whilst','consequently','upon'])
Federalist_report(['against','within','inhabitants',

'whilst','powers','upon','while'])
Federalist_report(['against','upon','whilst',

'inhabitants','within'])
Federalist_report(['against','within','inhabitants',

'whilst','upon'])
Federalist_report(['against','while','whilst','upon',

'on'])
Federalist_report(['concurrent','upon','on',

'very','natural'])
Federalist_report(['while','upon','on','inconveniency'])

['enumeration', 'surely', 'whilst', 'respectively',
'relief', 'reform', 'jury', 'dishonorable',
'term', '...']
100.0% accuracy
disputed papers: madison:12, hamilton:0

['although', 'composing', 'involves', 'confederation',
'upon']
100.0% accuracy
disputed papers: madison:12, hamilton:0

['although', 'obviated', 'composing', 'whilst',
'consequently', 'upon']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['against', 'within', 'inhabitants', 'whilst', 'powers',
'upon', 'while']
100.0% accuracy
disputed papers: madison:12, hamilton:0

['against', 'upon', 'whilst', 'inhabitants', 'within']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['against', 'within', 'inhabitants', 'whilst', 'upon']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['against', 'while', 'whilst', 'upon', 'on']
96.92307692307692% accuracy
disputed papers: madison:12, hamilton:0

['concurrent', 'upon', 'on', 'very', 'natural']
98.46153846153847% accuracy
disputed papers: madison:12, hamilton:0

['while', 'upon', 'on', 'inconveniency']
95.38461538461539% accuracy
disputed papers: madison:12, hamilton:0

The Federalist_report function shown above does two
things. It shows the vocabulary we are using to test on. It checks
the accuracy on the undisputed Federalist Papers (the training set)
and then counts how many of the disputed papers (the testing set)
the Naive Bayes model attributes to Madison and Hamilton. We
see that for several different subsets of the author Favorite words
from Table 1 the model suggests Madison is the author of all 12
of the disputed papers. We also see that for each word-set the
accuracy is at least 95% with several word-sets yielding 100%
accuracy.

More Advanced Models

Our hand-built Naive Bayes model was useful for showing how to
build a probability dictionary which was useful for our exploratory
data analysis and ultimately the model was sufficient for identify-
ing Madison as the likely author of the disputed papers. However,
Python programmers have an excellent library for running more
sophisticated models called Scikit-learn [11]. The advantage of the
Scikit-learn library is it has numerous built-in models that all take
the same parameters. Thus we can prepare the data set once and
run multiple models without needing to know how the underlying
machine learning models work.

Below we show how to run multiple models using only the
words "against," "within," "inhabitants," "whilst," and "upon" on
the undisputed and disputed Federalist Papers in less than 50 lines
of code.



30 PROC. OF THE 22nd PYTHON IN SCIENCE CONF. (SCIPY 2023)

def mPercent(results):
mcount = 0
tcount = 0
for a in results:
if (a == 'm'):
mcount+=1
tcount+=1

print('% Disputed attributed to Madison:',
100.0*mcount/tcount,"\n")

"""
Build and test multiple models via SKlearn.
X is a dataframe consisting of known Hamilton
and Madison papers.

y is a data frameconsisting of author labels.
X_test is a dataframe consisting of disputed
papers
"""
smallVocab5 = ['against','within','inhabitants',

'whilst','upon']
tfidf = sklearn.feature_extraction.text.

TfidfVectorizer(analyzer="word",
binary=False,min_df=2,
vocabulary=smallVocab5)

X_transformed = tfidf.fit_transform(X)
lb = sklearn.preprocessing.LabelEncoder()
y_transformed = lb.fit_transform(y)
X_test_transformed = tfidf.transform(X_test)

models = [
KNeighborsClassifier(3),
DecisionTreeClassifier(max_depth=5),
RandomForestClassifier(n_estimators=25,max_depth=3),
LinearSVC(),
SVC(gamma=2, C=1),
ComplementNB(),
AdaBoostClassifier()
]

CV = 5
cv_df = pd.DataFrame(index=range(CV * len(models)))
for model in models:
model_name = model.__class__.__name__
accuracies = cross_val_score(model, X_transformed,

y_transformed,scoring='accuracy',cv=CV)
avgAccur = 0
for fold_idx, accuracy in enumerate(accuracies):

print(model_name,"fold:",fold_idx,
"accuracy:",str(accuracy)[:5])

print(model_name,"avg accuracy:",
str(accuracies.mean())[:5])

model.fit(X_transformed, y_transformed)
y_final_predicted=model.predict(X_test_transformed)
y_final_predicted_labeled=

lb.inverse_transform(y_final_predicted)
mPercent(y_final_predicted_labeled)

KNeighborsClassifier fold: 0 accuracy: 1.0
KNeighborsClassifier fold: 1 accuracy: 1.0
KNeighborsClassifier fold: 2 accuracy: 1.0
KNeighborsClassifier fold: 3 accuracy: 1.0
KNeighborsClassifier fold: 4 accuracy: 1.0
KNeighborsClassifier avg accuracy: 1.0
% Disputed attributed to Madison: 100.0

DecisionTreeClassifier fold: 0 accuracy: 1.0
DecisionTreeClassifier fold: 1 accuracy: 0.846
DecisionTreeClassifier fold: 2 accuracy: 1.0
DecisionTreeClassifier fold: 3 accuracy: 1.0
DecisionTreeClassifier fold: 4 accuracy: 1.0
DecisionTreeClassifier avg accuracy: 0.969
% Disputed attributed to Madison: 100.0

RandomForestClassifier fold: 0 accuracy: 1.0
RandomForestClassifier fold: 1 accuracy: 0.846

RandomForestClassifier fold: 2 accuracy: 1.0
RandomForestClassifier fold: 3 accuracy: 1.0
RandomForestClassifier fold: 4 accuracy: 1.0
RandomForestClassifier avg accuracy: 0.969
% Disputed attributed to Madison: 100.0

LinearSVC fold: 0 accuracy: 1.0
LinearSVC fold: 1 accuracy: 1.0
LinearSVC fold: 2 accuracy: 1.0
LinearSVC fold: 3 accuracy: 1.0
LinearSVC fold: 4 accuracy: 1.0
LinearSVC avg accuracy: 1.0
% Disputed attributed to Madison: 100.0

SVC fold: 0 accuracy: 1.0
SVC fold: 1 accuracy: 1.0
SVC fold: 2 accuracy: 1.0
SVC fold: 3 accuracy: 1.0
SVC fold: 4 accuracy: 1.0
SVC avg accuracy: 1.0
% Disputed attributed to Madison: 100.0

ComplementNB fold: 0 accuracy: 0.923
ComplementNB fold: 1 accuracy: 1.0
ComplementNB fold: 2 accuracy: 1.0
ComplementNB fold: 3 accuracy: 1.0
ComplementNB fold: 4 accuracy: 1.0
ComplementNB avg accuracy: 0.985
% Disputed attributed to Madison: 100.0

AdaBoostClassifier fold: 0 accuracy: 1.0
AdaBoostClassifier fold: 1 accuracy: 0.846
AdaBoostClassifier fold: 2 accuracy: 1.0
AdaBoostClassifier fold: 3 accuracy: 1.0
AdaBoostClassifier fold: 4 accuracy: 1.0
AdaBoostClassifier avg accuracy: 0.969
% Disputed attributed to Madison: 100.0

The code snippet above puts multiple Scikit-learn models [11]
into a list and loops through each. Inside the loop a 5-fold cross
validation is run on the training data consisting of all known
Hamilton and Madison essays. (This just means that we randomly
cut the training set into 5 slices (called folds) and test on each
fold individually while using the remaining folds for training the
model.)

The models are then run on the disputed papers and a function
called mPercent is called that calculates how many of the
disputed papers were written by Madison.

We note that the 5-fold cross validation is 100% accurate for
each fold for the K-Nearest Neighbors model, and the Support-
Vector classifiers. For the other models 4 out of 5 folds were 100%
accurate and overall the models were 97% accurate or better. All
of the models predicted that the disputed papers were written by
Madison.

Note Scikit-learn offers multiple Naive Bayes classifiers. The
Complement Naive Bayes model was chosen above because it
was empirically shown by [12] to outperform other Naive Bayes
models on text classification tasks.

One Last Simple Model

We’ve seen several subsets of Table 1 that accurately identify the
authors of the known Federalist papers and also identify Madison
as the author of the disputed papers. The reader may be wondering
what is the smallest set of words that can be used to make
such predictions? From Table 1 it’s clear that "while", "whilst",
and "upon" can mostly distinguish between papers authored by
Hamilton or Madison. The use of "while" suggests Hamilton,
while the use of "whilst" often suggests Madison, particularly if
the rate is above 0.25 mentions per 1,000 words. If neither "while,"



AN ACCESSIBLE PYTHON BASED AUTHOR IDENTIFICATION PROCESS 31

or "whilst" is mentioned we can look for "upon." Both authors use
"upon", but if the rate of "upon" is at 0.9 mentions per 1,000 words
or above, then it is almost certainly authored by Hamilton.

The description above can be made into a very simple deci-
sion tree. A decision tree can be made into a series of if-then
statements, yielding the simple model below.

#return usage rate per 1000 words of a target word
#e.g. if target=='upon' appears 3 times in a 1500
#word essay, we return a rate of 2 per 1000 words.
def rate_per_1000(docDict,target):
if (target in docDict):

wordCount=0
for a in docDict:

wordCount+=docDict[a]
return(1000*docDict[target]/wordCount)

else:
return(0)

#given a document dictionary, predict if it was
#authored by Hamilton or Madison
def federalist_decison_tree(docDict):
if ('while' in docDict):

return('hamilton')
else:

if (rate_per_1000(docDict,'whilst') >= .25):
return('madison')

if (rate_per_1000(docDict,'upon') >= .9):
return('hamilton')

else:
return('madison')

The simple model above is 100% accurate on the known doc-
uments, and predicts Madison as the author of the 12 disputed
documents. In general, it is not recommended that we base an at-
tribution on only three words because of a potential of overfitting,
but it’s interesting that these two authors that are rather similar in
style, can be differentiated with such a simple model.

Conclusions

In this brief paper we presented a number of ways to solve
the problem of disputed author identification. First we did some
exploratory data analysis using each author’s favorite words. We
showed that the steps to build a Naive Bayes dictionary were
useful in helping us to find those favorite words. We built a
Naive Bayes model that suggested that James Madison is the
likely author of the disputed Federalist Papers. We showed how the
Scikit-learn [11] library could be used to build and test numerous
models very quickly and easily and noted that each of these models
also point to Madison as the author. Finally, we built a very simple
decision tree using only the words "while," "whilst," and "upon"
which also points to Madison as the author. Note that while this is
a case-study of the Federalist Papers, the methods shown here can
easily be applied to other author identification problems or other
text-mining tasks where we need to tokenize and explore large
bodies of text.
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