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Abstract

We present mandala, a Python library that largely eliminates the accidental complexity of sci-
entific data management and incremental computing. While most traditional and/or popular
data management solutions are based on logging, mandala takes a fundamentally different
approach, using memoization of function calls as the fundamental unit of saving, loading,
querying and deleting computational artifacts.

It does so by implementing a compositional form of memoization, which keeps track of how
memoized functions compose with one another. In this way: (1) complex computations are
effectively memoized end-to-end, and become ‘interfaces’ to their own intermediate results
by retracing the memoized calls; (2) all computations in a project form a single computational
graph, which can be explored, queried and manipulated in high-level ways through a compu�
tation frame, which is a natural generalization of a dataframe that replaces columns by a
computation graph, and rows by (partial) executions of this graph.

Several features implemented on top of the core memoization data structures — such as
natively and transparently handling Python collections, in-memory caching of intermediate
results, and a flexible versioning system with dynamic dependency tracking — turn mandala
into a practical and simple tool for managing and interacting with computational data.

Keywords scientific data management, machine learning

1. Introduction
Numerical experiments and simulations are growing into a central part of many areas of
science and engineering [1]. Recent trends in computation-intensive fields, such as machine
learning, point towards (1) ever-increasing complexity of computational pipelines, and (2)
adoption in more safety-critical domains, such as autonomous driving [2] and healthcare
[3], [4].

These developments impose opposing constraints on the tools used to manage the resulting
computational artifacts. On the one hand, they should be simple and easy to use by
researchers, with a minimal learning curve and unobtrusive syntax and semantics. On the
other hand, they should deliver a lot of added functionality, such as high-level operations
[5], full data & code provenance auditing [6] and reproducibility [7] in complex projects.
Rules and best practices that help with these requirements exist and are well-known [8],
[9], but still require manual effort, attention to extraneous details, and discipline to follow.
Researchers often operate under time pressure and/or the need to quickly iterate on code,
which makes these best ‘practices’ a rather impractical time investment.

Thus, ideally we would like a system that (1) does not get in the way by imposing a complex
new language/semantics/syntax, (2) provides powerful high-level data management opera-
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tions over complex computational projects, and (3) incorporates best practices by design
and without cognitive overhead.

# decorate any
# Python funcs
@op
def f(x):
  return x**2

@op
def g(x, y):
  return x + y

...

(a)

storage = Storage()

# memoizing context
with storage:
  for x in range(3):
    y = f(x)

In [1]: y # wrapped value
Out[1]: AtomRef(4,
          hid='628...',
          cid='a82...')

(b)

with storage:
  # just add more calls
  # & reuse old results
  for x in range(5):
    y = f(x)
    # unwrap for control flow
    if storage.unwrap(y) > 5:
      z = g(x, y)

# the "program" is now end-
to-end
# memoized & retraceable

(c)
Figure 1.  Basic imperative usage of mandala. (a): add the @op decorator to any Python functions to make
them memoizable. (b): create a Storage, and use it as a context manager to automatically memoize any
calls to @op-decorated functions in the block. Memoized functions return Ref objects, which wrap a value
with two pieces of metadata: a content ID, which is a hash of the value of the object, and a history ID,
which is a hash of the identity of the @op that produced the Ref (if any), and the history IDs of the @op’s
inputs. (c): the storage context allows simple incremental computation and recovery from failures. Here,
we add more computations while automatically reusing already computed values.

In this paper we present mandala, our proposal for such a system. It integrates data man�
agement logic and best practices such as

• Full data provenance tracking
• Idempotent & reproducible computation
• Content-addressable versioning of code and its dependencies
• Declarative high-level manipulation of persisted computational graphs

into Python’s already familiar syntax and semantics (Figures Figure 1 and Figure 2). The
integration aims to be maximally transparent and unobtrusive, so that the user can focus
on the essential complexity (the scientific problem at hand), rather than on the accidental
complexity (the data management tools necessary to implement the solution) [10].

The rest of this paper presents the design and main functionalities of mandala, and is orga-
nized as follows:

• In Section 2, we describe how memoization is designed, how this allows memoized
calls to be composed and memoized results to be reused without storage duplication,
and how this enables the retracing pattern of interacting with computational artifacts.

• In Section 3, we introduce the concept of a computation frame, which generalizes a
dataframe by replacing columns with a computational graph, and rows with individ-
ual computations that (partially) follow this graph. Computation frames allow high-
level exploration and manipulation of the stored computation graph, such as adding
the calls that produced/used given values to the graph, deleting all computations that
depend on the calls captured in the frame, and restricting the frame to a particular
subgraph or subset of values with given properties.

• In Section 4, we describe some other features of mandala necessary to make it a practical
tool, such as:

‣ Representing Python collections in a way transparent to the storage, so that the
membership relationships between a collection and its items are propagated
through the saved computational graph;

‣ Caching of intermediate results to speed up retracing and memoization;
‣ A flexible versioning system with automatic dynamic dependency tracking.
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Finally, we give an overview of related work in Section 5.

2. Core Concepts

2.1. Memoization and the Computational Graph

Memoization is a technique that stores the results of expensive function calls to avoid
redundant computation. mandala uses automatic memoization [11] which is applied via the
combination of a decorator (@op) and a context manager which specifies the Storage object
to use (Figure 1). The memoization can optionally be made persistent to disk, which is what
you would typically want in a long-running project. Any Python function can be memoized
(as long as its inputs and outputs are serializable by the joblib library; see the limitations
section Section 6 for caveats); there is no restriction on the type, number or naming scheme
(positional, keyword, variadic, or variable keyword) of the arguments or return values.

2.1.1. Call and Ref objects, and content/history IDs.:

Refs and Calls are the two atomic data structures in mandala’s model of computations. When
a call to an @op-decorated function f is executed inside a storage context, this results in the
creation of

• A Ref object for each input to the call. These wrap the ‘raw’ values passed as inputs
together with content IDs (hashes of the Python objects) and history IDs (hashes of the
memoized calls that produced these values, if any).

‣ If an input to the call is already a Ref object, it is passed through as is;
‣ If it is a ‘raw’ (i.e., non-Ref) value, a new Ref object is created with a ‘empty’ history

ID that is simply a hash of the content ID itself.
• A Call object, which has pointers to the input and output (defined below) Refs of the call

to f, as well as a content ID for the call (a hash of the identity of f and the content IDs of
the input Refs) and a history ID (by analogy, a hash of the identity of f and the history
IDs of the inputs). The version of f is also part of the identity of f; see the versioning
section Section 4.2 for details.

• A Ref object for each return value of the call. These are again assigned content IDs
by value, and history IDs by hashing the tuple (history ID of the call, corresponding
output name¹).

The Refs and the Call are then stored in the storage backend, and the next time f is called on
inputs that have the same content IDs, the stored Call is looked up to find the output Refs,
which are then returned (possibly with properly updated history IDs, if the call exists in
storage by content ID only). The combination of all stored Calls and Refs across memoized
functions form the computational graph represented by the storage. Importantly, the
‘interesting’ structure of this graph is built up automatically by the way the user composes
memoized calls.

2.2. Motivation for the Design of Memoization

2.2.1. Why content and history IDs?:

The simultaneous use of content and history IDs has a few subtle advantages. First, it allows
for the de-duplication of storage, as the same content ID can be used to store the same value
produced by different computations. For instance, there may be many computaitions all
producing the value 42 (or a large all-zero array), but only one copy of 42 is stored in the

¹Since Python functions don’t have designated output names, we instead generate output names
automatically using the order in the tuple of return values.
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backend. At the same time, the history IDs allow us to distinguish between computations
that produced the same value, but in different ways. This avoids ‘parasitic’ results in declar-
ative queries. For example, a call to f may result in 42, and we may be interested in all calls
that were ran on this particular 42 returned by f and not on any other Ref whose value
happens to be 42. Without history IDs, it would be impossible to make this distinction in the
stored computational graph.

2.2.2. Why memoization?:

Memoization is an unusual choice for data management systems, most of which are based
on logging, i.e. explicitly pointing to the value to be saved and the address where it should
be saved (whether this is some kind of name or a file path). Basing data management on
memoization means that the ‘address’ of a value is now implicit in the code that produced
it, and the value itself is stored in a shared storage backend. This has several advantages:

• It eliminates the need to manually name artifacts. This eliminates a major source
of accidental complexity: names are arbitrary, ambiguous, and can drift away from
the actual content of the value they point to over time. On the other hand, names are
not strictly necessary, because the composition of memoized functions that produced
a given value — which must be specified anyway for the computation to take place —
is already an unambiguous pointer to it.

• Since the @op decorator encourages (and in a sense enforces) composition of @ops, it
automatically builds up a computational graph of the project. Most data manage-
ment tasks — e.g., a frequent use case is getting a table of relationships between some
variables — are naturally expressed as queries over this graph, as we will see in
Section 3.

• It organizes storage functionality around a familiar and flexible interface: the
function call. This automatically enforces the good practice of partitioning code into
functions, and eliminates extra ‘accidental’ code to save and load values explicitly.
Furthermore, it synchronizes failures between computation and storage, as the mem-
oized calls are the natural points to recover from.

On the other hand, memoization suffers from the following limitations:

• Referring to values without reference to the code that produced or used them becomes
difficult, because from the point of view of storage the ‘identity’ of a value is its place
in the computational graph. We discuss practical ways to overcome this in Section 3.

• Modifying @op functions requires care, as changes may invalidate the stored computa-
tional graph. We discuss a versioning system that automates this process in Section 4.2.

2.3. Retracing as a Versatile Imperative Interface to the Stored Computation Graph

The compositional nature of memoization makes it possible to build complex computations
out of calls to memoized functions, turning the entire computation into an end-to-end-
memoized interface to its own intermediate results. The main way to interact with such
a persisted computation is through retracing, which means stepping through memoized
code with the purpose of resuming from a failure, loading intermediate values, or contin-
uing from a particular point with new computations. A small example of retracing is shown
in Figure 1 (c).

This pattern is simple yet powerful, as it allows the user to interact with the stored compu-
tation graph in a way that is adapted to their use case, and to explore the graph in a way that
is natural and familiar to them. It also simplifies the management of state in an interactive
environment such as a Jupyter notebook, because it makes it very cheap to re-run cells in
order to recreate the intended state of local variables.
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3. Computation Frames

In [1]:
# get the computation frame
for f
storage.cf(f).\
  # add all computations
reachable
  # from calls to f
  expand().\
  # extract as a dataframe
  eval()
Out[1]: Extracting tuples
from the
computation graph:
  output_0 = f(x=x)
  output_1 = g(y=output_0,
x=x)
       

(a) (b) (c)
Figure 2.  Basic declarative usage of mandala and an example of computation frames.

In order to be able to explore and manipulate the full stored computation graph, patterns
like retracing are insufficient, because they require the complete code producing part of
the graph to be available. To complement retracing, we introduce the ComputationFrame data
structure, which is a high-level declarative interface to the stored computation graph.

3.1. Motivation and Intuition

Intuitively, a computation frame is a way to organize a collection of saved @op calls into
groups, where the calls in each group have an analogous role in the computation, and the
groups form a high-level computational graph of variables (which represent groups of Refs)
and functions (groups of Calls). The illustration in Figure 2 (c) shows a visualization of a
computation frame extracted from the computations in Figure 1.

This kind of organization is useful because it reflects how the user thinks about the compu-
tation, and allows them to tailor the exploration of the computation graph to a particular
use case, much like a database view. For instance, sometimes it makes sense to group the
outputs of several different @ops into a single variable because they are treated the same
way by downstream computations.

From another point of view, computation frames are ‘views’ of the stored computation
graph, analogous to database views. In particular, they may contain multiple references to
the same Ref or Call object from different nodes of the graph, and do not necessarily contain
all calls to a given @op.

3.2. Formal Definition

A computation frame (Figure 2) consists of the following data:

• Computation graph: a directed graph 𝐺 = (𝑉 , 𝐹 ,𝐸) where 𝑉  are named variables and
𝐹  are named instances of @op-decorated functions. The edges 𝐸 are labeled with the
input/output names of the adjacent functions. An example is shown in Figure 2 (c);

• Groups of Refs and Calls: for each variable 𝑣 ∈ 𝑉 , a set of (history IDs of) Refs 𝑅𝑣, and
for each function 𝑓 ∈ 𝐹  with underlying @op 𝑜𝑓 , a set of (history IDs of) Calls 𝐶𝑓 ;

subject to the constraint that: for every call 𝑐 ∈ 𝐶𝑓 , if there’s an input/output edge labeled 𝑙
connecting 𝑓  to some variable 𝑣, then if 𝑐 has a Ref 𝑟𝑙 corresponding to input/output name
𝑙, we have 𝑟𝑙 ∈ 𝑅𝑣.
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In other words, when we look at all calls in 𝑓 ∈ 𝐹 , their inputs/outputs must be present in
the variables connected to 𝑓  under the respective input/output name.

3.3. Basic Usage

The main advantage of computation frames is that they allow iterative exploration of
the computation graph, and high-level grouped operations over computations with some
shared structure. For example, we can use them for:

• Iteratively expanding the frame with functions that generated or used existing
variables: this is useful for exploring the computation graph in a particular direction,
or for adding more context to a particular computation. For example, in Figure 2 (a),
we start with a computation frame containing only the calls to f, and then expand it
to include all calls that can be reached from the memoized calls to f via their inputs/
outputs, which adds the calls to g to the frame.

• Converting the frame into a dataframe: this is useful at the end of an exploration,
when we want to get a convenient tabular representation of the captured computation
graph. The table is obtained by collecting all terminal Refs in the frame’s computational
graph (i.e., those that are not inputs to any function in the frame), computing their
computational history in the frame (grouped by variable), and joining the resulting
tables over the variables. This is shown in Figure 2 (right). In particular, as shown
in the example, this step may produce nulls, as the computation frame can contain
computations that only partially follow the graph.

• Performing high�level storage manipulations: such as deleting all calls captured in
the frame as well as all calls that depend on them, available using the .delete_calls()
method on the frame.

Computation frames are a powerful tool for exploring and manipulating the stored compu-
tation graph, and we’re excited to explore their full potential in future work.

4. Main Extra Features

4.1. Data Structures

Python’s native collections — lists, dicts, sets — can be memoized transparently by mandala,
using customized type annotations, e.g. MList[int] inheriting from List[int], …. By applying
this type annotation, individual elements as well as the collection itself are memoized as
Refs (with the collection merely pointing to the Refs of its elements to avoid duplication).

This is implemented fully on top of the core memoization machinery, using ‘internal’ @ops
like e.g. __make_list__ which, given the elements of a list as variadic inputs, generates a
ListRef (subclass of Ref) that points to the Refs of the elements. In this way, collections are

@op
def avg_items(xs: MList[int]) -> float:
  return sum(xs) / len(xs)

@op
def get_xs(n) -> MList[int]:
  return list(range(n))

with storage:
  xs = get_xs(10)
  for i in range(2, 10, 2):
    avg = avg_items(xs[:i])
   

Figure 3.  Illustration of native collection memoization in mandala. The custom type annotation MList[int]
is used to memoize a list of integers as a list of pointers to element Refs.
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naturally incorporated in the computation graph. These internal @ops are applied automat-
ically when a collection is passed as an argument to a memoized function, or when a
collection is returned from a memoized function (Figure 3).

4.2. Versioning

It is crucial to have a flexible and powerful code versioning system in a data management
tool, as it allows the user to keep track of the evolution of their computations, and to easily
recover from mistakes. mandala provides the option to use a versioning system with three
main features:

• Per�function content�addressed versioning [12], [13], where the version of a func-
tion is a hash of its source code and the hashes of the functions it calls. The storage can
determine, based only on the state of the codebase, whether a given call is up-to-date
or not.

• Dynamic dependency tracking, where each function call traces the dependencies it
calls. This avoids the need for static analysis of the code to find dependencies, which
can result in many false positives and negatives, especially in a dynamic language like
Python. Moreover, it provides a stronger notion of reusability, as certain changes of
the codebase may invalidate only a part of all memoized calls to an @op.

• The flexibility to mark changes as backward�compatible or not, which allows the
user to maintain a stable interface to computations when performing routine refac-
toring or adding logging/debugging code.

5. Related Work
mandala combines ideas from several existing projects, but is unique in the Pythonic way it
makes complex memoized computations easy to query, manipulate and version.

Memoization. There are several memoization solutions for Python that lack the composi-
tional nature of mandala, as well as the versioning and querying tools: the builtin functools
module provides decorators such as lru_cache for memoization; the incpy project [14]
enables automatic persistent memoization of Python functions directly on the interpreter
level; the funsies project [15] is a memoization-based distributed workflow executor that
uses a similar hashing approach to keep track of which computations have already been
done; koji [16] is a design for an incremental computation data processing framework that
unifies over different resource types (files or services), and uses an analogous notion of
hashing to keep track of computations.

Computation Frames. Computation frames are closely related to the relational model [17],
to graph databases, and to certain versatile in-memory data structures based on functors
ℱ : 𝒞 → 𝑺𝒆𝒕 where 𝒞 is a finite category [18].

Versioning. The unison programming language [13] uses a content-addressed system for
code storage, where a function is identified by the hash of its syntax tree. The language
shares many other features and goals with mandala, such as use of serializable values and
pure functions to ensure reproducibility.

The dynamic tracing mechanism used to capture dependencies is somewhat similar to the
@tf.function decorator in the TensorFlow library [19], which traces the function calls to
other @tf.function-decorated functions made during execution and builds a computation
graph out of them. Unlike @tf.function, mandala’s versioner uses content (code) hashes to
automatically detect changes in dependencies, and does not build a fine-grained model of
a function’s execution, but rather only tracks the set of its dependencies.
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The revision history of each function in the codebase is organized in a bare-bones git
repository [12]: it is a content-addressed tree, where each edge tracks a diff from the content
at one endpoint to that at the other. Additional metadata indicates equivalence classes of
semantically equivalent contents.

6. Limitations
Computing deterministic content IDs of any Python object is difficult. mandala uses the
joblib library to serialize Python objects into byte strings, and then hashes these strings
to get the content ID. This approach is not perfect, as it is not always possible to serialize
Python objects, and even when it is, the serialization may not be unique. For example, two
Python objects x, y which satisfy x == y may not have the same content ID (e.g., True and 1).
Furthermore, hashing is sensitive to small changes in the input, such as numerical precision
in floating point numbers. Finally, complex Python objects may contain state that is not
intrinsically part of the object’s identity, such as resource utilization data (e.g., memory
addresses). This can lead to different content IDs before and after a round trip through the
storage backend. These issues don’t come up often as long as all initial Refs are created from
simple Python objects: complex objects are hashed and saved once when returned from an
@op, and then referred to by their content ID.

Non�breaking versioning is difficult. The ability to mark code changes as backward-
compatible or not may lead to situations where the storage ‘believes’ that a call is up-to-date,
but in reality it is not. For example, a function f can be changed by extracting a subroutine
g out of it. The semantics of f is unchanged, so past calls are still valid, but g is now an
invisible (to the storage) dependency of f. Care should be taken to avoid such situations
until an automatic solution is implemented.

7. Conclusion
mandala is being actively developed, and has the potential to considerably simplify the way
scientific data is managed and interacted with in Python. The author has already used it
extensively to manage several multi-month machine learning projects, and has found it to
be a very powerful tool for managing complex computations. We hope that this paper has
given a good overview of the core concepts of mandala, and that the reader will be interested
in exploring the library further.
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