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Abstract—Remote sensing data is complicated, very complicated! It is not
only geometrically tricky but also, unlike in-situ methods, indirect as the sensor
measures the interaction of the scattering media (eg raindrops) with the probing
radiation, not the geophysics. However the problem is made tractable by the
large number of algorithms available in the Scientific Python community. While
SciPy provides many helpful algorithms for signal processing in this domain,
a full software stack from highly specialized file formats from specific sensors
to interpretable geospatial analysis requires a common data model for active
remote sensing data that can act as a middle layer This paper motivates this
work by asking: How big is a rainshaft? What is the natural morphology of rainfall
patterns and how well is this represented in fine scale atmospheric models.
Rather than being specific to the domain of meteorology, we will break down
how we approach this problem in terms of the tools used from numerous Python
packages to read, correct, map and reduce the data into a form better able to
answer our science questions. This is a "how" paper, covering the Python-ARM
Radar Toolkit (Py-ART) containing signal processing using linear programming
methods and mapping using k-d trees. We also cover image analysis using
SciPy’s ndimage sub-module and graphics using matplotlib.

Index Terms—Remote sensing, radar, meteorology, hydrology

Introduction

RADARs (RAdio Detection And Ranging, henceforth radars) spe-
cialized to weather applications do not measure the atmosphere,
rather, the instrument measures the interaction of the probing radi-
ation with the scattering medium (nominally cloud or precipitation
droplets or ice particulate matter). Therefore, in order to extract
geophysical insight, such as the relationship between large scale
environmental forcing and heterogeneity of surface precipitation
patterns, a complex application chain of algorithms needs to be set
up.

This paper briefly outlines a framework, using a common
data model approach, for assembling such processing chains: the
Python-ARM Radar Toolkit, Py-ART [Heistermann2014]. This
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paper also provides an example application: using rainfall maps to
objectively evaluate the skill of fine scale models in representing
precipitation morphology.

The data source: scanning centimeter wavelength radar

Rainfall can occur at many different scales. From small, descrete
storm cells at scales of 10’s of kilometers to to large scale
tropical systems such as hurricanes which cover 100’s to 1000’s
of kilometers. Some complex systems can contain many scales
and in order to understand this spatial complexity of precipitating
cloud systems a sensor is required that can collect spatially diverse
data. Radars emit a spatially discrete pulse of radiation with a
particular beamwidth and pulse length. A gated receiver detects
the backscattered signal and calculates a number of measurements
based on the radar spectrum (the power as a function of phase
delay which is due to the motion of the scattering medium relative
to the antenna). These moments include radar reflectivity factor Ze,
radial velocity of the scattering medium vr and spectrum width w.
Polarimetric radars transmit pulses with the electric field vector
horizontal to the earth’s surface as well as vertical to the earth’s
surface. These radars can give a measure of the anisotropy of
the scattering medium with measurements including differential
reflectivity ZDR, differential phase difference φd p and correlation
coefficient ρHV . The data is laid out on a time/range grid with
each ray (time step) having an associated azimuth and elevation.
Data presented in this paper are from 4 ARM [Mather2013] radar
systems: One C-Band (5 cm wavelength) and three X-Band (3 cm
wavelength) radars as outlined in table 1.

These instruments are arranged as show in figure 1.

The Python ARM Radar Toolkit: Py-ART

Radar data comes in a variety of binary formats but the content is
essentially the same: A time-range array for each radar moment
along with data describing the pointing and geolocating of the
platform. For mobile radar the platform’s motion must also be
described in the file. Py-ART takes a common data model ap-
proach, carefully designing the data containers and mandating that
functions and methods accept the container as an argument and
return the same data structure. The common data model for radar
data in Py-ART is the Radar class which stores data and metadata
in Python dictionaries in a particular instance’s attributes. Data is
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X-SAPR C-SAPR
Frequency 9.4 GHZ 6.25GHz
Transmitter Magnetron Magnetron
Power 200kW 350kW
Gate spacing 50m 120m
Maximum
Range

40km 120km

Beam width 1◦ 1◦

Polar. mode Simul. H/V Simul. H/V
Manufacturer Radtec Adv. Radar Corp.
Native format Iris Sigmet NCAR MDV

TABLE 1: ARM radar systems used in this paper.

Fig. 1: Arrangement of radars around the ARM Southern Great Plains
Facility from [Giangrande2014].

stored in a NumPy array in the ’data’ key of the dictionary. For
example:
print xnw_radar.fields.keys()
['radar_echo_classification',
'corrected_reflectivity',
'differential_phase',
'cross_correlation_ratio',
'normalized_coherent_power',
'spectrum_width',
'total_power', 'reflectivity',
'differential_reflectivity',
'specific_differential_phase',
'velocity',
'corrected_differential_reflectivity']
print xnw_radar.fields['reflectivity'].keys()
['_FillValue', 'coordinates', 'long_name',
'standard_name', 'units', 'data']
print xnw_radar.fields['reflectivity']['long_name']
Reflectivity
print xnw_radar.fields['reflectivity']['data'].shape
(8800, 801)

The xnw_radar has a variety of fields, including ’reflectivity’ with
the numerical moment data stored in the ’data’ key with 8800 time
steps and 801 range gates. Data on instrument pointing is stored in

Format name Example radar system(s) Note
CF-Radial NCAR SPOL, ARM Cloud

Radars
Output format

UF Lots of legacy data Via RSL
Lassen BoM CPOL in Darwin, Aus-

tralia
Via RSL

IRIS Sigmet ARM X-SAPR Native
NCAR MDV ARM C-SAPR Native
GAMIC European radar network Native
WSR-88D USA operational network Native
CHILL NSF funded deployable S-

Band
Native

TABLE 2: Py-ART formats.

x_nw.azimuth and x_nw.elevation attributes while the center point
of each range gate is stored in x_nw.range. Again these attributes
are dictionaries with data stored in the ’data’ key. Functions in
Py-ART can append fields or modify data in existing fields (rare).

The vital key is a ’Babelfish’ layer which ingests a variety of
formats into the common data model. Currently table 2 outlines
the formats which are compatible with Py-ART. A number of these
formats are available via a Cython wrapper around NASA’s Radar
Software Library.

There is also active development on supporting NOAA NOX-
P and NASA D3R radars. Py-ART supports a single output format
for radial geometry radar data which is, CF-Radial. CF-Radial is
a NetCDF based community format on which the common data
model in Py-ART is based on.

Py-ART forms part of an ecosystem of open source radar
applications, many of which are outlined in [Heistermann2014].
A key challenge for the radar community is reaching consensus
on data transport layers so that an application chain can be built
using multiple applications. In terms of the rest of the Scientific
python ecosystem, Py-ART brings the data into Python in a very
simple way so users can simply and quickly get to doing Science.

Pre-mapping corrections and calculations

Once raw data is collected there is often a number of processing
steps that need to be performed. In our case this includes:

• Correcting false Azimuth readings in the Northwest X-
Band system.

• Cleaning data of undesirable components such as multiple
trips, clutter and non-meteorological returns.

• Processing the raw φDP and extracting the component
due to rain water content by using a linear programming
technique to fit a profile which mandates positive gradient,
see [Giangrande2013].

• Using reflectivity and φDP to retrieve attenuation (in
dBZ/km) due to rainwater path.

• Using the techniques outlined in [Ryzhkov2014] to re-
trieve rainfall rate (in mm/hr) from attenuation.

These are all outlined in the first of the three notebooks
which accompany this manuscript: http://nbviewer.ipython.org/
github/scollis/notebooks/tree/master/scipy2014/. Each process ei-
ther appends a new field to the Radar instance or returns a field
dictionary which can then be added to the instance. Py-ART also
comes with visualization methods allowing for the conical (or
Plan Position Indicator, PPI) scan to be plotted and geolocated

http://nbviewer.ipython.org/github/scollis/notebooks/tree/master/scipy2014/
http://nbviewer.ipython.org/github/scollis/notebooks/tree/master/scipy2014/


MEASURING RAINSHAFTS: BRINGING PYTHON TO BEAR ON REMOTE SENSING DATA 15

Fig. 2: Raw reflectivity factor and polarimetric phase difference from
the lowest (0.5 degree) tilt.

using matplotlib and Basemap. An example plot of raw φDP and
reflectivity is shown in figure 2.

The code necessary to create this plot:
fields_to_plot = ['differential_phase',

'reflectivity']
ranges = [(180, 240), (0, 52)]
display = pyart.graph.RadarMapDisplay(xnw_radar)

nplots = len(fields_to_plot)
plt.figure(figsize=[7 * nplots, 4])
for plot_num in range(nplots):

field = fields_to_plot[plot_num]
vmin, vmax = ranges[plot_num]
plt.subplot(1, nplots, plot_num + 1)
display.plot_ppi_map(field, 0, vmin=vmin,

vmax=vmax, lat_lines=np.arange(20, 60, .2),
lon_lines=np.arange(-99, -80, .4),
resolution='l')

display.basemap.drawrivers()
display.basemap.drawcountries()
display.plot_range_rings([20, 40])

Here, a RadarMapDisplay instance is instantiated by providing a
Radar object which is insensitive to the data source. The sample
plotting routines can be used to plot data ingested from any of the
formats which Py-ART supports.

Mapping to a Cartesian grid

Radars sample in radial coordinates of elevation, azimuth and
range. Mathematics for atmospheric phenomena are greatly sim-
plified on Cartesian and Cartesian-like (eg pressure surfaces) grids.
Therefore the raw and processed data in the Radar object often
need to be mapped onto a regular grid. In the field, this is known
as "Objective analysis" (see, for example [Trapp2000]). In this
paper we use a technique known as Barnes analysis [Barnes1964]
which is an inverse distance weighting, sphere of influence based
technique. For each grid point in the Cartesian grid a set of
radar gates within a radius of influence are interpolated using the
weighting function:

W (r) = e
−r2

in f l
2.0∗r2

where r is the distance from the grid point and rin f l is the search
radius of influence. A brute force method for performing this map-
ping would be to calculate the distance from each Cartesian point
to each radar gate to find those within the radius of influence, a
method which scales as n∗m where n is the number of points in the
grid and m the number of gates in the radar volume. With a typical
grid being 200 by 200 by 37 points and a modern radar having on
the order of 8000 time samples and 800 range gates this quickly
becomes intractable. A better method is to store the radar gates in
a k-d tree or related data structure. This reduces the search to an
order n∗ log(m) problem. This method is implemented in Py-ART.

Fig. 3: Single C-Band reflectivity factor field.

In addition a variable radius of influence algorithm is implemented
which analyzes the radar volume coverage pattern and deduces an
optimized rin f l at each grid point. Unlike many other objective
analysis codes Py-ART implementation can operate on multiple
Radar objects simultaneously, treating the radar gates as a cloud
of points. This allows the merging of multiple radar data sets. The
method is simple to invoke, for example the code snippet:

mesh_mapped_x = pyart.map.grid_from_radars(
(xnw_radar, xsw_radar, xse_radar),
grid_shape=(35, 401, 401),
grid_limits=((0, 17000), (-50000, 40000),

(-60000, 40000)),
grid_origin=(36.57861, -97.363611),
fields=['corrected_reflectivity','rain_rate_A',

'reflectivity'])

will map the gates in the three Radar objects (in this case the three
ARM X-Band systems in figure 1) to a grid that is (z,y,x) = (35,
401, 401) points with a domain of 0 to 17 km in altitude, -50 to
40 km in meridional extend and -60 to 40 km in zonal extent. The
method returns a Grid object which follows a similar layout to a
Radar object: fields are stored in the fields attribute, geolocation
data in the axes attribute with the numerical data found in the
’data’ key of the dictionaries.

Again, as with the Radar object Py-ART has a menu of
available routines to visualize data contained in Grid objects as
well as an input output layer that can inject CF-compliant netCDF
grids and write Grid object out to a CF-complaint file for future
analysis and distribution.

For example figure 3 shows a slice through mapped reflectivity
from the ARM C-SAPR at 500 m and cross sections at 36.5 N
degrees latitude and -97.65 E longitude.

In the vertical cross sections clear artifacts can be seen due to
the poor sampling. Figure 4 shows the same scene but using a grid
created from three X-Band radars in a network. In both figures the
radar data are mapped onto a grid with 225 m spacing.

It is clear that more fine scale detail is resolved due to the rain
systems being closer to any given radar in the X-Band network
grid. In addition, due to the higher density of high elevation beams
(essentially a "web" of radar beams sampling the convective anvil)
sampling artifacts are greatly reduced and finer details aloft are
able to be studied.

Mesh mapping only works for "specific" measurements, ie
not integrated measurements like φDP or directionally dependent
moments like vr. One measurement that can be mapped is our
retrieved rain rate.

Figures 5 and 6 show mappings for rain rate using just the C-
Band measurement and X-Band network respectively. Again the
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Fig. 4: Reflectivity factor mapped from a network of X-Band radars.

Fig. 5: Single C-Band rainfall field.

mesh map of the X-Band retrieval shows very fine detail resolving
(in a volumetric dataset) fall streak patterns. The maxima near
4 km (just below the freezing level) is due to melting particles.
The rainfall retrieval has a cut off at the sounding determined
freezing level but the "bright band" can extend some depth below
this. Future work will entail using polarimetric measurements to
determine where there is only pure liquid returns and conditionally
apply the rainfall retrieval to those positions.

Spatial distribution of rainfall: a objective test of fine scale
models

Previous sections have detailed the correction, retrieval from and
mapping to a Cartesian grid of radar data. The last section showed
enhanced detail can be retrieved by using a network of radars. The
question remains: how can the detail in rain fields be objectively
compared? Can parameters derived from radar data be compared
to those calculated from forecast models? The meshes generated

Fig. 6: Rainfall from a network of X-Band systems.

Fig. 7: An example of figure segmentation using scipy.ndimage.label.

using the mapping techniques previously discussed can be treated
like image data for which a number of packages exist for analysis.

Measuring rainshafts using SciPy’s ndimage subpackage

A simple technique for documenting the features present in an
image is to partition it into segments which are above a certain
threshold and calculate the number of segments, their accumulated
area and the mean rainfall across the segment. The ndimage
subpackage in Scipy is perfect for accomplishing this. Figure 7
shows the use of scipy.ndimage.label to segment regions above 5
and 20mm/h.

The code is very simple, for a given rain rate it creates a "black
and white" image with whites above the threshold point and the
black below, then scipy.ndimage.label segments the regions into a
list of regions from which metrics can be calculated:
def area_anal(pixel_area, rr_x, rain_rates):

A_rainrate = np.zeros(rr_x.shape)
N_rainrate = np.zeros(rr_x.shape)
Rm_rainrate = np.zeros(rr_x.shape)
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Fig. 8: Number of regions, region covered and mean rain rate as a
function of rain rate threshold for a rainmap produced by a single
C-Band system.

for i in range(len(rr_x)):
b_fld = np.zeros(rain_rates.shape)
b_fld[rain_rates > rr_x[i]] = 1.0
regions, N_rainrate[i] = ndimage.label(b_fld)
try:

A_rainrate[i] = (len(np.where(
regions > 0.5)[0]) *
pixel_area)

Rm_rainrate[i] = rain_rates[
np.where(regions > 0.5)].mean()

except IndexError:
A_rainrate[i] = 0.0
Rm_rainrate[i] = 0.0

return N_rainrate, A_rainrate, Rm_rainrate

This produces plots for the X-Band mesh as seen in 9 and single
C-Band sytems in 8.

The results presented in this paper show that the rainfall field
for this case is under-resolved when observed by a single C-Band
system. While we have not established that a nework of X-Band
systems fully resolve the spatial complexity of the rainfall field it
clearly shows more detail, especially at higher altitudes.

Future work will focus on establishing limits to spatial com-
plexity and understanding how large scale forcing (instability,
mouisture etc) influence complexity. In addition we will be ap-
plying this technique to fine scale model data as an "observational
target" for the model to achieve. That is the methodes outlined in
this paper can be used as a simple optimization metric which can
be used when adjusting the parameters in a model.

Conclusions

This paper has covered the pipeline for proceeding from raw radar
measurements through quality control and geophysical retrieval
to mapping and finally to the extraction of geophysical insight.
The simple conclusion is that, with careful processing, a network
of X-Band radars can resolve finer details than a single C-Band
radar. More importantly, finer details exist. The paper also presents

Fig. 9: Number of regions, region covered and mean rain rate as a
function of rain rate threshold for a rainmap produced by a network
of X-Band systems.

a very simple, image processing based technique to take the
"morphological finger print" of rainfall maps. This technique can
be used on both remotely sensed and numerically modeled data
providing a objective basis for model assessment.
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