PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Teaching numerical methods with IPython notebooks
and inquiry-based learning

David I. Ketcheson®*

http://www.youtube.com/watch?v=0aP6LizZuaFM

Abstract—A course in numerical methods should teach both the mathematical
theory of numerical analysis and the craft of implementing numerical algorithms.
The IPython notebook provides a single medium in which mathematics, explana-
tions, executable code, and visualizations can be combined, and with which the
student can interact in order to learn both the theory and the craft of numerical
methods. The use of notebooks also lends itself naturally to inquiry-based learn-
ing methods. | discuss the motivation and practice of teaching a course based
on the use of IPython notebooks and inquiry-based learning, including some
specific practical aspects. The discussion is based on my experience teaching
a Masters-level course in numerical analysis at King Abdullah University of
Science and Technology (KAUST), but is intended to be useful for those who
teach at other levels or in industry.

Index Terms—IPython, IPython notebook, teaching, numerical methods,
inquiry-based learning

Teaching numerical methods

Numerical analysis is the study of computational algorithms for
solving mathematical models. It is used especially to refer to
numerical methods for approximating the solution of continu-
ous problems, such as those involving differential or algebraic
equations. Solving such problems correctly and efficiently with
available computational resources requires both a solid theoret-
ical foundation and the ability to write and evaluate substantial
computer programs.
Any course in numerical methods should enable students to:

)

Understand numerical algorithms and related mathemat-
ical concepts like complexity, stability, and convergence

2) Select an appropriate method for a given problem
3) Implement the selected numerical algorithm
4) Test and debug the numerical implementation

In other words, students should develop all the skills necessary
to go from a mathematical model to reliably-computed solutions.
These skills will allow them to select and use existing numerical
software responsibly and efficiently, and to create or extend such
software when necessary. Usually, only the first of the objectives
above is actually mentioned in the course syllabus, and in some
courses it is the only one taught. But the other three objectives

% Corresponding author: david.ketcheson @kaust.edu.sa
King Abdullah University of Science and Technology

Copyright © 2014 David 1. Ketcheson. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

+

are likely to be of just as much value to students in their careers.
The last two skills are practical, and teaching them properly is in
some ways akin to teaching a craft. Crafts are not generally taught
through lectures and textbooks; rather, one learns a craft by doing.

Over the past few years, I have shifted the emphasis of my own
numerical courses in favor of addressing all four of the objectives
above. In doing so, I have drawn on ideas from inquiry-based
learning and used both Sage worksheets and IPython notebooks
as an instructional medium. I've found this approach to be very
rewarding, and students have told me (often a year or more after
completing the course) that the hands-on mode of learning was
particularly helpful to them.

The notebooks used in my course for the past two years are
available online:

2013 course:
https://github.com/ketch/finite- difference-course
2013 course: https://github.com/ketch/AMCS252

Please note that these materials are not nearly as polished as a
typical course textbook, and some of them are not self-contained
(they may rely strongly on my unpublished course notes). Never-
theless, I’'ve made them publicly available in case others find them
useful. For more context, you may find it helpful to examine the
course syllabus. You can also examine the notebooks for my short
course on hyperbolic PDEs, which are more self-contained.

Inquiry-based learning

The best way to learn is to do; the worst way to teach
is to talk. --P. R. Halmos [Hal75]

Many great teachers of mathematics (most famously, R.L.
Moore) have argued against lecture-style courses, in favor of an
approach in which the students take more responsibility and there
is more in-class interaction. The many related approaches that fit
this description have come to be called inquiry-based learning
(IBL). In an inquiry-based mathematics course, students are ex-
pected to find the proofs for themselves -- with limited assistance
from the instructor. For a very recent review of what IBL is
and the evidence for its effectiveness, see [Ernl4a], [Ernl14b]
and references therein. If an active, inquiry-based approach is
appropriate for the teaching of theoretical mathematics, then it
seems even more appropriate for teaching the practical craft of
computational mathematics.

A related notion is that of the flipped classroom. It refers to a
teaching approach in which students read and listen to recorded
lectures outside of class. Class time is then used not for lectures

http://www.youtube.com/watch?v=OaP6LiZuaFM
mailto:david.ketcheson@kaust.edu.sa
https://github.com/ketch/finite-difference-course
https://github.com/ketch/AMCS252
https://github.com/ketch/finite-difference-course/wiki/syllabus
https://github.com/ketch/HyperPython
https://github.com/ketch/HyperPython

20

but for more active, inquiry-based learning through things like
discussions, exercises, and quizzes.

The value of practice in computational mathematics

Too often, implementation, testing, and debugging are viewed
by computational mathematicians as mundane tasks that anyone
should be able to pick up without instruction. In most courses,
some programming is required in order to complete the homework
assignments. But usually no class time is spent on programming,
so students learn it on their own -- often poorly and with much
difficulty, due to the lack of instruction. This evident disdain and
lack of training seem to mutually reinforce one another. I believe
that implementation, testing, and debugging are essential skills for
anyone who uses or develops numerical methods, and they should
be also taught in our courses.

In some situations, a lack of practical skills has the same effect
as a lack of mathematical understanding. Students who cannot
meaningfully test their code are like students who cannot read
proofs: they have no way to know if the claimed results are correct
or not. Students who cannot debug their code will never know
whether the solution blows up due to an instability or due to an
error in the code.

In many cases, it seems fair to say that the skills required to
implement state-of-the-art numerical algorithms consists of equal
parts of mathematical sophistication and software engineering. In
some areas, the development of correct, modular, portable imple-
mentations of proposed algorithms is as significant a challenge as
the development of the algorithms themselves. Furthermore, there
are signs that numerical analysts need to move beyond traditional
flop-counting complexity analysis and incorporate more intricate
knowledge of modern computer hardware in order to design
efficient algorithms for that hardware. As algorithms become
increasingly adapted to hardware, the need for implementation
skills will only increase.

Perhaps the most important reason for teaching implementa-
tion, testing, and debugging is that these skills can and should
be used to reinforce the theory. The student who learns about
numerical instability by reading in a textbook will forget it after
the exam. The student who discovers numerical instability by im-
plementing an apparently correct (but actually unstable) algorithm
by himself and subsequently learns how to implement a stable
algorithm will remember and understand it much better. Similarly,
implementing an explicit solver for a stiff problem and then seeing
the speedup obtained with an appropriate implicit solver makes a
lasting impression.

It should be noted that many universities have courses (often
called "laboratory" courses) that do focus on the implementation
or application of numerical algorithms, generally using MATLAB,
Mathematica, or Maple. Such courses may end up being those of
most lasting usefulness to many students. The tools and techniques
discussed in this article could very aptly be applied therein.
Unfortunately, these courses are sometimes for less credit than
a normal university course, with an attendant reduction in the
amount of material that can be covered.

Hopefully the reader is convinced that there is some value in
using the classroom to teach students more than just the theory
of numerical methods. In the rest of this paper, I advocate the
use of inquiry-based learning and IPython notebooks in full-credit
university courses on numerical analysis or numerical methods.
As we will see, the use of [Python notebooks and the teaching of
the craft of numerical methods in general lends itself naturally

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

to inquiry-based learning. While most of the paper is devoted
to the advantages of this approach, there are some significant
disadvantages, which I describe in the Drawbacks section near
the end.

Teaching with the IPython notebook
Python and IPython

The teacher of numerical methods has several choices of program-
ming language. These can broadly be categorized as

o specialized high-level interpreted languages (MATLAB,
Mathematica, Maple)
« general-purpose compiled languages (C, C++, Fortran).

High-level languages, especially MATLAB, are used widely
in numerical courses and have several advantages. Namely, the
syntax is very similar to the mathematical formulas themselves,
the learning curve is short, and debugging is relatively simple. The
main drawback is that such languages do not provide the necessary
performance to solve large research or industrial problems. This
may be a handicap for students if they never gain experience with
compiled languages.

Python strikes a middle ground between these options. It is a
high-level language with intuitive syntax and high-level libraries
for everything needed in a course on numerical methods. At
the same time, it is a general-purpose language. Although (like
MATLAB) it can be relatively slow [VdP14], Python makes it
relatively easy to develop fast code by using tools such as Cython
or f2py. For the kinds of exercises used in most courses, pure
Python code is sufficiently fast. In recent years, with the advent
of tools like numpy and matplotlib, Python has increasingly been
adopted as a language of instruction for numerical courses.

IPython [Per07] is a tool for using Python interactively. One of
its most useful components is the IPython notebook: a document
format containing text, code, images, and more, that can be
written, viewed, and executed in a web browser.

The IPython notebook as a textbook medium

Many print and electronic textbooks for numerical methods in-
clude code, either printed on the page or available online (or
both). Some of my favorite examples are [Tre00] and [LeVO07].
Such books have become more common, as the importance of
exposing students to the craft of numerical methods -- and the
value of experimentation in learning the theory -- has become
more recognized. The IPython notebook can be viewed as the next
step in this evolution. As demonstrated in Figure 1, it combines in
a single document

« Mathematics (using LaTeX)

o Text (using Markdown)

¢ Code (in Python or other languages)
o Figures and animations

Mathematica, Maple, and (more recently) Sage have document
formats with similar capabilities. The Sage worksheet is very
similar to the IPython notebook (indeed, the two projects have
strongly influenced each other), so most of what I will say about
the IPython notebook applies also to the Sage worksheet.

The notebook has some important advantages over Mathemat-
ica and Maple documents:

e It can be viewed, edited, and executed using only free
software;

http://cython.org/
http://docs.scipy.org/doc/numpy/user/c-info.python-as-glue.html#f2py
http://www.numpy.org/
http://matplotlib.org/
http://ipython.org/
http://ipython.org/notebook.html
http://www.sagemath.org/

TEACHING NUMERICAL METHODS WITH IPYTHON NOTEBOOKS AND INQUIRY-BASED LEARNING 21

0.25

0.20

0.15

flux

0.10

0.05

0'08.0 02 04 06
q

1.0

4

This equation is fundamentally different from the advection equation because the flux
is nonlinear. This fact will have dramatic consequences for both the behavior of
solutions and our numerical methods. But we can superficially make this equation
look like the advection equation by using the chain rule to write

f@x =f"(@q, = 1 -29)q,.

Then we have

q,+(1-2¢9)q,=0.

This is like the advection equation, but with a velocity 1 — 2g that depends on the
density of cars. The value f'(q) = 1 — 2q is referred to as the characteristic speed.
This characteristic speed is not the speed at which cars move (notice that it can even
be negative!) Rather, it is the speed at which information is transmitted along the road.

Let's use the Lax-Friedrichs method from Lesson 1 to solve the LWR traffic model.

m = 400 # number of cells
dx = 1./m # Size of 1 grid cell
x = np.arange(-dx/2, 1.+dx/2, dx)

Fig. 1: An excerpt from Notebook 2 of HyperPython, showing the use of text, mathematics, code, and a code-generated plot in the IPython

notebook.

o It allows the use of multiple programming languages;

o It can be collaboratively edited by multiple users at the
same time (currently only on SageMathCloud);

« It is open source, so users can modify and extend it.

The second point above was especially important when I de-
cided to switch from using Sage worksheets to IPython notebooks.
Because both are stored as text, [was able to write a simple script
to convert them. If I had been using a proprietary binary format,
I would have lost a lot of time re-writing my materials in a new
format.

Perhaps the most important advantage of the notebook is the
community in which it has developed -- a community in which
openness and collaboration are the norm. Because of this, those
who develop teaching and research materials with IPython note-
books often make them freely available under permissive licenses;
see for example Lorena Barba’s AeroPython course [Barl4] or
this huge list of books, tutorials, and lessons. Due to this culture,
the volume and quality of available materials for teaching with
the notebook is quickly surpassing what is available in proprietary
formats. It should be mentioned that the notebook is also being
used as a medium for publishing research, both as open notebook
science and full articles.

Mechanics of an interactive, notebook-based course
I have successfully used IPython notebooks as a medium of
instruction in both

« semester-length university courses; and
o short 1-3 day tutorials

I will focus on the mechanics of teaching a university course,
but much of what I will say applies also to short tutorials. The

notebook is especially advantageous in the context of a tutorial
because one does not usually have the luxury of ensuring that
students have a textbook. The notebooks for the course can
comprise a complete, self-contained curriculum.

Typically I have used a partially-flipped approach, in which
half of the class sessions are traditional lectures and the other half
are lab sessions in which the students spend most of the time
programming and discussing their programs. Others have used
[Python notebooks with a fully-flipped approach; see for example
[Barl13].

Getting students started with the notebook

One historical disadvantage of using Python for a course was the
difficulty of ensuring that all students had properly installed the
required packages. Indeed, when I began teaching with Python
5 years ago, this was still a major hassle even for a course
with twenty students. If just a few percent of the students have
installation problems, it can create an overwhelming amount of
work for the instructor.

This situation has improved dramatically and is no longer a
significant issue. I have successfully used two strategies: local
installation and cloud platforms.

Local installation

It can be useful for students to have a local installation of all
the software on their own computer or a laboratory machine.
The simplest way to achieve this is to install either Anaconda
or Canopy. Both are free and include Python, IPython, and all
of the other Python packages likely to be used in any scientific
course. Both can easily be installed on Linux, Mac, and Windows
systems.

http://nbviewer.ipython.org/github/ketch/HyperPython/blob/master/Lesson_02_Traffic.ipynb
https://github.com/ketch/sage2ipython
https://github.com/ketch/sage2ipython
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://store.continuum.io/cshop/anaconda/
https://www.enthought.com/products/canopy/

22

Cloud platforms

In order to avoid potential installation issues altogether, or as a
secondary option, notebooks can be run using only cloud services.
Two free services exist for running IPython notebooks:

« Sage Math Cloud
o Wakari

Both services are relatively new and are developing rapidly.
Both include all relevant Python packages by default. I have
used both of them successfully, though I have more experience
with Sage Math Cloud (SMC). Each SMC project is a complete
sandboxed Unix environment, so it is possible for the user to install
additional software if necessary. On SMC, it is even possible for
multiple users to collaboratively edit notebooks at the same time.

Teaching Python

Since students of numerical methods do not usually have much
prior programming experience, and what they have is usually
in another language, it is important to give students a solid
foundation in Python at the beginning of the course. In the
graduate courses I teach, I find that most students have previously
programmed in MATLAB and are easily able to adapt to the
similar syntax of Numpy. However, some aspects of Python syntax
are much less intuitive. Fortunately, a number of excellent Python
tutorials geared toward scientific users are available. I find that
a 1-2 hour laboratory session at the beginning of the course is
sufficient to acquaint students with the necessary basics; further
details can be introduced as needed later in the course. Students
should be strongly encouraged to work together in developing their
programming skills. For examples of such an introduction, see this
notebook or this one.

Lab sessions

At the beginning of each lab session, the students open a new
notebook that contains some explanations and exercises. Generally
they have already been introduced to the algorithm in question, and
the notebook simply provides a short review. Early in the course,
most of the code is provided to the students already; the exercises
consist mainly of extending or modifying the provided code. As
the course progresses and students develop their programming
skills, they are eventually asked to implement some algorithms
or subroutines from scratch (or by starting from codes they have
written previously). Furthermore, the specificity of the instructions
is gradually decreased as students develop the ability to fill in the
intermediate steps.

It is essential that students arrive to the lab session already
prepared, through completing assigned readings or recordings.
This doesn’t mean that they already know everything contained
in the notebook for that day’s session; on the contrary, class time
should be an opportunity for guided discovery. I have found it very
useful to administer a quiz at the beginning of class to provide
extra motivation. Quizzes can also be administered just before
students begin a programming exercise, in order to check that
they have a good plan for completing it, or just after, to see how
successful they were.

The main advantage of having students program in class
(rather than at home on their own) is that they can talk to the
instructor and to other students as they go. Most students are
extremely reluctant to do this at first, and it is helpful to require
them to explain to one another what their code does (or is intended

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

to do). This can be accomplished by having them program in
pairs (alternating, with one programming while the other makes
comments and suggestions). Another option is to have them
compare and discuss their code after completing an exercise.
When assisting students during the lab sessions, it is important
not to give too much help. When the code fails, don’t immediately
explain what is wrong or how to fix it. Ask questions. Help them
learn to effectively read a traceback and diagnose their code. Let
them struggle a bit to figure out why the solution blows up. Even if
they seem to grasp things immediately, it’s worthwhile to discuss
their code and help them develop good programming style.
Typically, in an 80-minute class session the students spend
50-60 minutes working (thinking and programming) and 20-30
minutes listening to explanations, proposing ideas, discussing
their solutions, and taking quizzes. During the working time, the
instructor should assess and help students one-on-one as needed.

Designing effective notebooks

Prescribing how to structure the notebooks themselves is like
stipulating the style of a textbook or lecture notes. Each instructor
will have his or her own preferences. So I will share some
principles I have found to be effective.

Make sure that they type code from the start

This goes without saying, but it’s especially important early in
the course. It’s possible to write notebooks where all the code
involved is already completely provided. That’s fine if students
only need to understand the output of the code, but not if they need
to understand the code itself (which they generally do). The plain
truth is that nobody reads code provided to them unless they have
to, and when they do they understand only a fraction of it. Typing
code, like writing equations, dramatically increases the degree to
which we internalize it. At the very beginning of the course, it
may be helpful to have students work in an IPython session and
type code from a notebook into the IPython prompt.

Help students to discover concepts on their own

This is the central principle of inquiry-based learning. Students are
more motivated, gain more understanding, and retain knowledge
better when they discover things through their own effort and
after mentally engaging on a deep level. In a numerical methods
course, the traditional approach is to lecture about instability or
inaccuracy, perhaps showing an example of a method that behaves
poorly. In the flipped approach, you can instead allow the students
to implement and experiment in class with naive algorithms that
seem reasonable but may be inaccurate or unstable. Have them
discuss what they observe and what might be responsible for it.
Ask them how they think the method might be improved.

Teaching is tricky because you want the students to come up to
date on topics which have taken perhaps decades to develop. But
they gain the knowledge quickly without the discipline of having
struggled with issues. By letting them struggle and discover you
simulate the same circumstances which produced the knowledge
in the first place.

Tailor the difficulty to the students’ level

Students will lose interest or become frustrated if they are not
challenged or they find the first exercise insurmountable. It can
be difficult to accommodate the varying levels of experience and
skill presented by students in a course. For students who struggle

http://cloud.sagemath.org
http://wakari.io
http://nbviewer.ipython.org/urls/raw.github.com/ketch/HyperPython/master/Lesson_00_Python.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/ketch/HyperPython/master/Lesson_00_Python.ipynb
http://nbviewer.ipython.org/github/barbagroup/AeroPython/blob/master/lessons/00_Lesson00_QuickPythonIntro.ipynb

TEACHING NUMERICAL METHODS WITH IPYTHON NOTEBOOKS AND INQUIRY-BASED LEARNING 23

with programming, peer interaction in class is extremely helpful.
For students who advance quickly, the instructor can provide ad-
ditional, optional, more challenging questions. For instance, in my
HyperPython short course, some notebooks contain challenging
"extra credit" questions that only the more advanced students
attempt.

Gradually build up complexity

In mathematics, one learns to reason about highly abstract objects
by building up intuition with one layer of abstraction at a time.
Numerical algorithms should be developed and understood in
the same way, with the building blocks first coded and then
encapsulated as subroutines for later use. Let’s consider the
multigrid algorithm as an example. Multigrid is a method for
solving systems of linear equations that arise in modeling things
like the distribution of heat in a solid. The basic building block of
multigrid is some way of smoothing the solution; the key idea is
to apply that smoother successively on copmutational grids with
different levels of resolution.
I have students code things in the following sequence:

1) Jacobi’s method (a smoother that doesn’t quite work)

2) Under-relaxed Jacobi (a smoother that does work for high
frequencies)

3) A two-grid method (applying the smoother on two differ-
ent grids in succession)

4) The V-cycle (applying the smoother on a sequence of
grid)

5) Full multigrid (performing a sequence of V-cycles with
successively finer grids)

In each step, the code from the previous step becomes a
subroutine. In addition to being an aid to learning, this approach
teaches students how to design programs well. The multigrid
notebook from my course can be found (with some exercises
completed) here.

Use animations liberally

Solutions of time-dependent problems are naturally depicted as
animations. Printed texts must restrict themselves to waterfall
plots or snapshots, but electronic media can show solutions in
the natural way. Students learn more -- and have more fun -- when
they can visualize the results of their work in this way. I have
used Jake Vanderplas’ JSAnimation package [VdP13] to easily
create such animations. The latest release of IPython (version
2.1.0) natively includes interactive widgets that can be used to
animate simulation results.

Time-dependent solutions are not the only things you can ani-
mate. For iterative solvers, how does the solution change after each
algorithmic iteration? What effect does a given parameter have
on the results? Such questions can be answered most effectively
through the use of animation. One simple example of teaching a
concept with such an animation, shown in Figure 2, can be found
in this notebook on aliasing.

Drawbacks

The approach proposed here differs dramatically from a traditional
course in numerical methods. I have tried to highlight the advan-
tages of this approach, but of course there are also some potential
disadvantages.

Material covered

The most substantial drawback I have found relates to the course
coverage. Programming even simple algorithms takes a lot of time,
especially for students. Therefore, the amount of material that can
be covered in a semester-length course on numerical methods is
substantially less under the interactive or flipped model. This is
true for inquiry-based learning techniques in general, but even
more so for courses that involve programming. I believe that it is
better to show less material and have it fully absorbed and loved
than to quickly dispense knowledge that falls on deaf ears.

Scalability

While some people do advocate IBL even for larger classes, |
have found that this approach works best if there are no more
than twenty students in the course. With more students, it can be
difficult to fit everyone in a computer lab and nearly impossible
for the instructor to have meaningful interaction with individual
students.

Nonlinear notebook execution

Code cells in the notebook can be executed (and re-executed) in
any order, any number of times. This can lead to different results
than just executing all the cells in order, which can be confusing to
students. [haven’t found this to be a major problem, but students
should be aware of it.

Opening notebooks

Perhaps the biggest inconvenience of the notebook is that opening
one is not as simple as clicking on the file. Instead, one must open
a terminal, go to the appropriate directory, and launch the ipython
notebook. This is fine for users who are used to UNIX, but is non-
intuitive for some students. With IPython 2.0, one can also launch
the notebook from any higher-level directory and then navigate to
a notebook file within the browser.

It’s worth noting that on SMC one can simply click on a
notebook file to open it.

Lengthy programs and code reuse

Programming in the browser means you don’t have all the niceties
of your favorite text editor. This is no big deal for small bits
of code, but can impede development for larger programs. I also
worry that using the notebook too much may keep students from
learning to use a good text editor. Finally, running long programs
from the browser is problematic since you can’t detach the process.

Usually, Python programs for a numerical methods course can
be broken up into fairly short functions that each fit on a single
screen and run in a reasonable amount of time.

Placing code in notebooks also makes it harder to reuse code,
since functions from one notebook cannot be used in another with
copying. Furthermore, for the reasons already given, the notebook
is poorly suited to development of library code. Exclusive use
of the notebook for coding may thus encourage poor software
development practices. This can be partially countered by teaching
students to place reusable functions in files and then importing
them in the notebook.

Interactive plotting

In my teaching notebooks, I use Python’s most popular plotting
package, Matplotlib [Hun07]. It’s an extremely useful package,
whose interface is immediately familiar to MATLAB users, but

https://github.com/ketch/HyperPython
http://nbviewer.ipython.org/gist/ketch/78a2dd063655569c0e7f
http://nbviewer.ipython.org/gist/ketch/74cf44877c706325e524/

24

In [2]: from matplotlib import animation
import matplotlib.pyplot as plt
from clawpack.visclaw.JSAnimation import IPython display

fig = plt.figure()
ax = plt.axes(xlim=(0, 1), ylim=(-1.2, 1.2))

m=20
x=np.linspace(0,1,m+2); # grid
xf=np.linspace(0,1,1000) # fine grid

linel, = ax.plot([],[1, '-r', lw=2)
line2, = ax.plot([],[],'o-",1lw=2)

def fplot(p):
linel.set_data(xf, np.sin(p*np.pi*xf))
line2.set_data(x,np.sin(p*np.pi*x))
ax.set_title('p='+str(p))
return line2,

anim = animation.FuncAnimation(fig, fplot, frames=range(0,44))
IPython_display.display animation(anim, show_buttons=True)

out[2]:
ezl p=20

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

- FIIm =][]

Once @ Loop «, Reflect

Try to answer the questions below with pencil and paper; then check them by modifying the code above.

1. For a given number of grid points 7, which modes p will be aliased to the p = 0 mode?

2. What s the highest frequency mode that can be represented on a given grid?

Fig. 2: A short notebook on grid aliasing, including code, animation, and exercises.

it has a major drawback when used in the IPython notebook. [Tre00] L.
Specifically, plots that appear inline in the notebook are not Barld L
interactive -- for instance, they cannot be zoomed or panned. There [Barl4] ’
are a number of efforts to bring interactive plots to the notebook
(such as Bokeh and Plotly) and I expect this weakness will soon be
an area of strength for the IPython ecosystem. I plan to incorporate [Barl3] L.
one of these tools for plotting in the next course that I teach.
[Hal75] P.
More resources
Many people are advocating and using the [Python notebook as a [Ernl4a] D.
teaching tool, for many subjects. For instance, see:
o Teaching with the IPython Notebook by Matt Davis [Ern14b] D.
« How IPython Notebook and Github have changed the way
I teach Python by Eric Matthes [VdP14] 7.
o Using the IPython Notebook as a Teaching Tool by Greg
Wilson
. Teaghing with ipython notebooks -- a progress report by [VdP13] 7.
C. Titus Brown
. . . Per07 F.
To find course actual course materials (in many subjects!), [Per07]
the best place to start is this curated list: A gallery of interesting
IPython Notebooks. [Hun07] J.

Acknowledgments

I am grateful to Lorena Barba for helpful discussions (both online
and offline) of some of the ideas presented here. I thank Nathaniel
Collier, David Folch, and Pieter Holtzhausen for their comments
that significantly improved this paper. This work was supported
by the King Abdullah University of Science and Technology
(KAUST).

REFERENCES

[LeVO07] R. J. LeVeque. Finite Difference Methods for Ordinary
and Partial Differential Equations, Society for

Industrial and Applied Mathematics, 2007.

N. Trefethen. Spectral Methods in MATLAB, Society
for Industrial and Applied Mathematics, 2000.

A. Barba, 0. Mesnard. AeroPython,
10.6084/m9.figshare.1004727. Code repository,
Set of 11 lessons in classical Aerodynamics on
IPython Notebooks. April 2014.

A. Barba. CFD Python: 12 steps to Navier-
Stokes, http://lorenabarba.com/blog/cfd-python-
12-steps-to-navier-stokes/, 2013.

R. Halmos, E. E. Moise, and G. Piranian. The prob-
lem of learning how to teach, The American
Mathematical Monthly, 82(5):466--476, 1975.

Ernst. What the heck is IBL?, Math Ed Mat-
ters blog, http://maamathedmatters.blogspot.com/2013/
05/what-heck-is-ibl.html, May 2014

Ernst. What’s So Good about IBL Anyway?, Math Ed Mat-
ters blog, http://maamathedmatters.blogspot.com/2014/
01/whats-so-good-about-ibl-anyway.html, May 2014.
VanderPlas. = Why Python is Slow: Looking
Under the Hood, Pythonic Perambulations blog,
http://jakevdp.github.io/blog/2014/05/09/why-python-is-
slow/, May 2014.
VanderPlas. JSAnimation,
JSAnimation, 2013.

Pérez, B. E. Granger. IPython: A System for Interactive
Scientific Computing, Computing in Science and Engi-
neering, 9(3):21-29, 2007. http://ipython.org/

D. Hunter. Matplotlib: A 2D graphics environment,
Computing in Science and Engineering, 9(3):90-
-95, 2007. http://matplotlib.org/

https://github.com/jakevdp/

http://nbviewer.ipython.org/gist/jiffyclub/5165431
http://peak5390.wordpress.com/2013/09/22/how-ipython-notebook-and-github-have-changed-the-way-i-teach-python/
http://peak5390.wordpress.com/2013/09/22/how-ipython-notebook-and-github-have-changed-the-way-i-teach-python/
http://www.software-carpentry.org/blog/2013/03/using-notebook-as-a-teaching-tool.html
http://ivory.idyll.org/blog/teaching-with-ipynb-2.html
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
https://github.com/ipython/ipython/wiki/A-gallery-of-interesting-IPython-Notebooks
http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
http://lorenabarba.com/blog/cfd-python-12-steps-to-navier-stokes/
http://maamathedmatters.blogspot.com/2013/05/what-heck-is-ibl.html
http://maamathedmatters.blogspot.com/2013/05/what-heck-is-ibl.html
http://maamathedmatters.blogspot.com/2014/01/whats-so-good-about-ibl-anyway.html
http://maamathedmatters.blogspot.com/2014/01/whats-so-good-about-ibl-anyway.html
http://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
http://jakevdp.github.io/blog/2014/05/09/why-python-is-slow/
https://github.com/jakevdp/JSAnimation
https://github.com/jakevdp/JSAnimation
http://ipython.org/
http://matplotlib.org/

	Teaching numerical methods
	Inquiry-based learning
	The value of practice in computational mathematics

	Teaching with the IPython notebook
	Python and IPython
	The IPython notebook as a textbook medium

	Mechanics of an interactive, notebook-based course
	Getting students started with the notebook
	Local installation
	Cloud platforms
	Teaching Python
	Lab sessions

	Designing effective notebooks
	Make sure that they type code from the start
	Help students to discover concepts on their own
	Tailor the difficulty to the students' level
	Gradually build up complexity
	Use animations liberally

	Drawbacks
	Material covered
	Scalability
	Nonlinear notebook execution
	Opening notebooks
	Lengthy programs and code reuse
	Interactive plotting

	More resources
	Acknowledgments
	References

