
PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014) 25

Project-based introduction to scientific computing for
physics majors

Jennifer Klay‡∗

https://www.youtube.com/watch?v=eJhmMf6bHDU

F

Abstract—This paper presents an overview of a project-based course in com-
puting for physics majors using Python and the IPython Notebook that was
developed at Cal Poly San Luis Obispo. The course materials are made freely
available on GitHub as a project under the Computing4Physics [C4P] organiza-
tion.

Index Terms—physics, scientific computing, undergraduate education

Introduction

Computational tools and skills are as critical to the training of
physics majors as calculus and math, yet they receive much
less emphasis in the undergraduate curriculum. One-off courses
that introduce programming and basic numerical problem-solving
techniques with commercial software packages for topics that
appear in the traditional physics curriculum are insufficient to
prepare students for the computing demands of modern technical
careers. Yet tight budgets and rigid degree requirements constrain
the ability to expand computational course offerings for physics
majors.

This paper presents an overview of a recently revamped course
at California Polytechnic State University San Luis Obispo (Cal
Poly) that uses Python and associated scientific computing li-
braries to introduce the fundamentals of open-source tools, version
control systems, programming, numerical problem solving and
algorithmic thinking to undergraduate physics majors. The spirit
of the course is similar to the bootcamps organized by Software
Carpentry [SWC] for researchers in science but is offered as a ten-
week for-credit course. In addition to having a traditional in-class
component, students learn the basics of Python by completing
tutorials on Codecademy’s Python track [Codecademy] and prac-
tice their algorithmic thinking by tackling Project Euler problems
[PE]. This approach of incorporating online training may provide
a different way of thinking about the role of MOOCs in higher
education. The early part of the course focuses on skill-building,
while the second half is devoted to application of these skills
to an independent research-level computational physics project.
Examples of recent student projects and their results will be
presented.

* Corresponding author: jklay@calpoly.edu
‡ California Polytechnic State University San Luis Obispo

Copyright © 2014 Jennifer Klay. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Background

California Polytechnic State University San Luis Obispo (Cal
Poly) is one of the 23 campuses of the California State University
system. The university has a "learn by doing" emphasis for the
educational experience of its predominantly undergraduate popu-
lation of approximately 19,000 students, encapsulated in its motto
discere faciendo. Part of the university’s mission is to provide
students the opportunity to get directly involved in research at
the frontiers of knowledge through interaction with faculty. The
university is also committed to enhancing opportunities for under-
represented groups and is committed to fostering a diverse student
body.

The College of Engineering enrolls the largest fraction of
Cal Poly undergraduates (~28%). Due to the large number of
engineering undergraduates at Cal Poly, the distribution of male
(~54%) and female (~46%) students is opposite that of the national
average.

The Department of Physics, in the College of Science &
Mathematics, offers Bachelor of Science and Arts degrees in
Physics, and minors in astronomy and geology, with approxi-
mately 150 students enrolled. There are roughly 30 tenure-track
faculty, for a current student-to-faculty ratio of 1:5. In addition,
there are typically 5-10 full-time lecturers and fifteen part-time and
retired faculty teaching courses in physics and geology. A typical
introductory physics course for scientists and engineers has 48
students, in contrast to typical class sizes of over a hundred at large
public universities. The curriculum for physics majors includes a
Senior Project which is often the continuation of paid summer
internships undertaken with faculty members in the department
who have funding to support student assistants. Some internal
funding is made available to support these activities.

Cal Poly has one of the largest (in terms of degrees granted)
and most successful undergraduate physics programs in the United
States. Only about 5% of all physics programs in the United States
regularly award more than 15 degrees per year, and most of those
are at Ph.D. granting institutions. In 2013-2014, 28 B.S. and 1
B.A. degrees were awarded. The Cal Poly Physics Department is
uniquely successful among four-year colleges. As a result, Cal
Poly was one of 21 departments deemed to be "thriving" and
profiled in 2002 by the SPIN-UP study (Strategic Programs for
INnovation in Undergraduate Physics) sponsored by the American
Association of Physics Teachers, the American Physical Society,
and the American Institute of Physics [SPIN-UP]. The external
reviewers from SPIN-UP made special mention of the strong

https://www.youtube.com/watch?v=eJhmMf6bHDU
mailto:jklay@calpoly.edu


26 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

faculty-student interactions and of the success of the physics
lounge (known as "h-bar") at making students feel welcome and
at home in an intense academic environment. Cal Poly hosted the
SPIN-UP Western Regional Workshop in June 2010 where faculty
teams from 15 western colleges and universities came to learn how
to strengthen their undergraduate physics programs.

Computational physics at Cal Poly

The physics department has a strong record of preparing students
for advanced degrees in physics, often at top tier research institu-
tions. Between 2005 and 2009, at least 20% of Cal Poly physics
graduates entered Ph.D. programs in physics and related disci-
plines with another 10% seeking advanced degrees in engineering,
mathematics, law, and business.

The Cal Poly physics program provides a strong base in the-
oretical physics with the standard traditional sequence of courses
while providing excellent experimental training of students in the
laboratory, with a full year of upper division modern physics
experiments and several additional specialty lab courses offered
as advanced physics electives. Unfortunately, the department has
not yet developed as cohesive and comprehensive of a program in
computational physics. There has been one course "Physics on the
Computer" on computational methods required for physics majors
since 1996. The current catalog description of the course is

Introduction to using computers for solving prob-
lems in physics: differential equations, matrix manipula-
tions, simulations and numerical techniques, nonlinear
dynamics. 4 lectures.

Students are encouraged to take the course in the Spring of
their sophomore year, after completing their introductory physics
and math courses. The original pre-requisites for the course were
General Physics III: Electricity and Magnetism and Linear Analy-
sis I (MATH), although in 1998 concurrent enrollment for Linear
Analysis was allowed and in 2001 the phrase "and computer
literacy" was added to the pre-requisites, although it was dropped
when enforceable pre-requisites were introduced in 2011.

Despite the desire for students to come to this course with
some "computer literacy", no traditional computer science courses
have been required for physics majors (although they can be
counted as free technical electives in the degree requirements).
Each instructor selects the tools and methods used to implement
the course. Early on, many numerical topics were covered using
Excel because students typically had access and experience with
it. Interactive computer algebra systems such as Maple and in-
teractive computing environments such as MATLAB were also
employed, but no open-source standard high level programming
languages were used. Between 2007 and 2012 MATLAB was the
preferred framework, although some use of Excel for introductory
tasks was also included.

Although simple data analysis and graphing tasks are taught in
upper division laboratories, there is no concerted effort to include
computational or numerical techniques in upper division theory
courses. Instructors choose to include this material at their own
discretion. There is also currently no upper division computational
physics elective in the catalog.

When I joined the faculty of Cal Poly in 2007 I quickly
obtained external funding from the National Science Foundation
to involve Cal Poly physics undergraduates in research at the
CERN Large Hadron Collider with the ALICE experiment. My
background in particle and nuclear physics has been very software

intensive, owing to the enormous and complex datasets generated
in heavy nucleus collisions. I have served as software coordinator
for one of the ALICE detector sub-systems and I am the architect
and lead developer of the offline analysis framework for the Neu-
tron Induced Fission Fragment Tracking Experiment (NIFFTE).
Most of my scientific software is written in C/C++, although I
have experience with Pascal, Fortran, Java and shell scripting. I
found it extremely challenging to engage students in my research
because of the steep learning curve for these software tools and
languages.

In 2012 I became interested in learning Python and decided
to offer an independent study course called "Python 4 Physicists"
so students could learn it with me. Over 30 eager students signed
up for the course. We followed Allen Downey’s "Think Python"
book [Downey2002] for six weeks, largely on our own, but met
weekly for one hour to discuss issues and techniques. For the
second half of the course, the students were placed in groups of
3 and assigned one of two projects, either a cellular automaton
model of traffic flow or a 3-D particle tracking algorithm for
particle collision data reconstruction. All code and projects were
version controlled with git and uploaded to GitHub. Examples
can be found on GitHub [Traffic], [3DTracker]. At the end of the
quarter the groups presented their projects to the class.

Not all groups were able to successfully complete the projects
but this is likely due to competing priorities consuming their
available coding time given that this was only a 1-unit elective
course. Nevertheless, they were excited to work on a research-level
problem and to be able to use their newly acquired programming
skills to do so. Most of them gained basic programming profi-
ciency and some students reported that the course helped them
secure summer internships. It became clear to me that Python is
an effective and accessible language for teaching physics majors
how to program. When my opportunity to teach "Physics on the
Computer" came in 2013-14, I decided to make it a project-based
Python programming course that would teach best practices for
scientific software development, including version control and
creation of publication quality graphics, while giving a broad
survey of major topics in computational physics.

Course Organization

The complete set of materials used for this course are available
on GitHub under the Computing4Physics [C4P] organization and
can be viewed with the IPython Notebook Viewer [nbviewer]. The
learning objectives for the course are a subset of those developed
and adopted by the Cal Poly physics department in 2013 for
students completing a degree in physics:

• Use basic coding concepts such as loops, control state-
ments, variable types, arrays, array operations, and boolean
logic. (LO1)

• Write, run and debug programs in a high level language.
(LO2)

• Carry out basic operations (e.g. cd, ls, dir, mkdir, ssh) at
the command line. (LO3)

• Maintain a version controlled repository of your files and
programs. (LO4)

• Create publication/presentation quality graphics, equa-
tions. (LO5)

• Visualize symbolic analytic expressions - plot functions
and evaluate their behavior for varying parameters. (LO6)



PROJECT-BASED INTRODUCTION TO SCIENTIFIC COMPUTING FOR PHYSICS MAJORS 27

• Use numerical algorithms (e.g. ODE solvers, FFT, Monte
Carlo) and be able to identify their limitations. (LO7)

• Code numerical algorithms from scratch and compare with
existing implementations. (LO8)

• Read from and write to local or remote files. (LO9)
• Analyze data using curve fitting and optimization. (LO10)
• Create appropriate visualizations of data, e.g. multidimen-

sional plots, animations, etc. (LO11)

The course schedule and learning objective map are summa-
rized in Table 1. Class time was divided into two 2-hour meetings
on Tuesdays and Thursdays each week for ten weeks. For the first
two weeks the students followed the Python track at Codecademy
[Codecademy] to learn basic syntax and coding concepts such as
loops, control statements, variable types, arrays, array operations,
and boolean logic. In class, they were instructed about the com-
mand line, ssh, the UNIX shell and version control. Much of the
material for the early topics came from existing examples, such as
Software Carpentry [SWC] and Jake Vanderplas’s Astronomy 599
course online [Vanderplas599]. These topics were demonstrated
and discussed as instructor-led activities in which they entered
commands in their own terminals while following along with me.

The IPython Notebook was introduced in the second week and
their first programming exercise outside of Codecademy was to
pair-program a solution to Project Euler [PE] Problem 1. They
created their own GitHub repository for the course and were
guided through the workflow at the start and end of class for the
first several weeks to help them get acclimated. We built on their
foundations by taking the Battleship game program they wrote in
Codecademy and combining it with ipythonblocks [ipythonblocks]
to make it more visual. We revisited the Battleship code again in
week 4 when we learned about error handling and a subset of
the students used ipythonblocks as the basis for their final project
on the Schelling Model of segregation. The introduction, rein-
forcement and advanced application of programming techniques
was employed to help students build lasting competency with
fundamental coding concepts.

For each class session, the students were provided a "tour" of
a specific topic for which they were instructed to read and code
along in their own IPython Notebook. They were advised not to
copy/paste code, but to type their own code cells, thinking about
the commands as they went to develop a better understanding of
the material. After finishing a tour they worked on accompanying
exercises. I was available in class for consultations and questions
but there was very little lecturing beyond the first week. Class
time was activity-based rather than lecture-based. Along with the
homework exercises, they completed a Project Euler problem each
week to practice efficient basic programming and problem solving.

A single midterm exam was administered in the fifth week
to motivate the students to stay on top of their skill-building and
to assess their learning at the midway point. The questions on
the midterm were designed to be straightforward and completable
within the two-hour class time.

Assessment of learning

Figuring out how to efficiently grade students’ assignments is a
non-trivial task. Grading can be made more efficient by automatic
output checking but that doesn’t leave room for quality assessment
and feedback. To deal with the logistics of grading, a set of
UNIX shell scripts was created to automate the bookkeeping and
communication of grades. Individual assignments were assessed

Week Topics Learning Objectives
1 Programming

Bootcamp
LO1, LO2, LO3,
LO4

2 Programming
Bootcamp

LO1-4, LO11

3 Intro to NumPy/SciPy,
Data I/O

LO1-4, LO9, LO11

4 Graphics, Animation
and Error handling

LO1-4, LO5, LO6,
LO11

5 Midterm Exam,
Projects and Program
Design

LO1-4, LO5, LO6,
LO9

6 Interpolation and Dif-
ferentiation

LO1-4, LO5, LO6,
LO7, LO8, LO11

7 Numerical Integration,
Ordinary Differential
Equations (ODEs)

LO1-4, LO5, LO6,
LO7, LO8, LO11

8 Random Numbers and
Monte-Carlo Methods

LO1-4, LO5, LO6,
LO7, LO8, LO11

9 Linear Regression and
Optimization

LO1-11

10 Symbolic Analysis,
Project Hack-a-thon!

LO1-4, LO5, LO6,
LO11

Final Project Demos LO1-11

TABLE 1: Course schedule of topics and learning objectives

Points Description
5 Goes above and beyond. Extra neat, con-

cise, well-commented code, and explores
concepts in depth.

4 Complete and correct. Includes an analysis
of the problem, the program, verification
of at least one test case, and answers to
questions, including plots.

3 Contains a few minor errors.
2 Only partially complete or has major er-

rors.
1 Far from complete.
0 No attempt.

TABLE 2: Grading rubric for assigned exercises.

personally by me while a grader was employed to evaluate the
Project Euler questions. The basic grading rubric uses a 5-point
scale for each assigned question, outlined in Table 2. Comments
and numerical scores were recorded for each student and com-
municated to them through a script-generated email. Students’
final grades in the course were determined by weighting the var-
ious course elements accordingly: Project Euler (10%), Exercises
(30%), Midterm (20%), Project (30%), Demo (10%).

Projects

Following the midterm exam one class period was set aside
for presenting three project possibilities and assigning them.
Two of the projects came from Stanford’s NIFTY assignment
database [Nifty] - "Schelling’s Model of Segregration" by Frank
McCown [McCown2014] and "Estimating Avogadro’s Number
from Brownian Motion" by Kevin Wayne [Wayne2013]. The
Schelling Model project required students to use IPython wid-
gets and ipythonblocks to create a grid of colored blocks that
move according to a set of rules governing their interactions.
Several recent physics publications on the statistical properties



28 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

of Schelling Model simulations and their application to physi-
cal systems [Vinkovic2006], [Gauvin2009], [DallAsta2008] were
used to define research questions for the students to answer using
their programs. For estimating Avogadro’s number, the students
coded a particle identification and tracking algorithm that they
could apply to the frames of a movie showing Brownian motion
of particles suspended in fluid. The initial test data came from the
Nifty archive, but at the end of the quarter the students collected
their own data using a microscope in the biology department to
image milkfat globules suspended in water. The challenges of
adapting their code to the peculiarities of a different dataset were
part of the learning experience. They used code from a tour and
exercise they did early in the quarter, based on the MultiMedia
programming lesson on Software Carpentry, which had them filter
and count stars in a Hubble image.

The third project was to simulate galaxy mergers by solving
the restricted N-body problem. The project description was devel-
oped for this course and was based on a 1972 paper by Toomre
and Toomre [Toomre1972]. They used SciPy’s odeint to solve the
differential equations describing the motion of a set of massless
point particles (stars) orbiting a main galaxy core as a disrupting
galaxy core passed in a parabolic trajectory. The students were
not instructed on solving differential equations until week 7, so
they were advised to begin setting up the initial conditions and
visualization code until they had the knowledge and experience to
apply odeint.

The projects I selected for the course are ones that I have
not personally coded myself but for which I could easily outline
a clear algorithmic path to a complete solution. Each one could
form a basis for answering real research questions. There are
several reasons for this approach. First, I find it much more
interesting to learn something new through the students’ work.
I would likely be bored otherwise. Second, having the students
work on a novel project is similar to how I work with students in
research mentoring. My interactions with them are much more
like a real research environment. By not already having one
specific solution I am able to let them choose their own methods
and algorithms, providing guidance and suggestions rather than
answers to every problem or roadblock they encounter. This gives
them the chance to experience the culture of research before
they engage in it outside of the classroom. Finally, these projects
could easily be extended into senior projects or research internship
opportunities, giving the students the motivation to keep working
on their projects after the course is over. As a consequence of these
choices, the project assessment was built less on "correctness" than
on their formulation of the solution, documentation of the results,
and their attempt to answer the assigned "research question". The
rubric was set up so that they could earn most of the credit for
developing an organized, complete project with documentation,
even if their results turned out to be incorrect.

When this course was piloted in 2013, project demonstrations
were not included, as they had been for the 2012 independent
study course. I was disappointed in the effort showed by the
majority of students in the 2013 class, many of whom ultimately
gave up on the projects and turned in sub-standard work, even
though they were given additional time to complete them. For
2014, the scheduled final exam time was used for 5-7 minute
project demonstrations by each individual student. Since the class
was divided into three groups, each working on a common project,
individual students were assigned a personalized research question
to answer with their project code and present during their demo.

The students were advised that they needed to present something,
even if their code didn’t function as expected. Only one student
out of 42 did not make a presentation. (That student ultimately
failed the course for turning in less than 50% of assignments and
not completing the project.) The rest were impressive, even when
unpolished.

It was clear from the demos that the students were highly
invested in their work and were motivated to make a good im-
pression. The project demos were assessed using a peer evaluation
oral presentation rubric that scored the demos on organization,
media (graphics, animations, etc. appropriate for the project),
delivery, and content. Presenters were also asked to evaluate their
own presentations. Grades were assigned using the average score
from all peer evaluation sheets. The success of the project demos
strongly suggest that they are an essential part of the learning
experience for students. This is supported in the literature. See for
example, Joughin and Collom [Joughin2003].

Project Examples

The most impressive example from 2014 came from a student who
coded the Galaxy Merger project [Parry2014]. Figure 1 shows a
still shot from an animated video he created of the direct passage
of an equal mass diruptor after the interaction has begun. He also
uploaded Youtube videos of his assigned research question (direct
passage of an equal mass diruptor) from two perspectives, the
second of which he coded to follow his own curiosity - it was not
part of the assignment. The main galaxy perspective can be viewed
here: http://www.youtube.com/watch?v=vavfpLwmT0o and the
interaction from the perspective of the disrupting galaxy can be
viewed here: http://www.youtube.com/watch?v=iy7WvV5LUZg

Fig. 1: Direct passage of an equal mass disruptor galaxy shortly
after the disrupting galaxy passes the minimum distance of approach.
[Parry2014]

There were also two other good Youtube video examples
of the galaxy merger project, although the solutions exhibited
pathologies that this one did not.

The best examples from the Schelling Model either did an ex-
cellent analysis of their research question [Nelson2014] or created
the most complete and useful interactive model [Parker2014].

Highlights from 2013

Although no project demos were required in 2013, students who
submitted excellent projects were invited to collaborate together

http://www.youtube.com/watch?v=vavfpLwmT0o
http://www.youtube.com/watch?v=iy7WvV5LUZg


PROJECT-BASED INTRODUCTION TO SCIENTIFIC COMPUTING FOR PHYSICS MAJORS 29

on a group presentation of their work at the 2013 annual meeting
of the Far West Section of the American Physical Society held
at Sonoma State University Nov. 1-2, 2013 [Sonoma2013]. Two
talks were collaborations among four students each, one talk was
a pair collaboration, and one was given as a single author talk.

The single author talk came from the best project submitted
in 2013, an implementation of a 3-D particle tracking code
[VanAtta2013] for use with ionization chamber data from particle
collision experiments. Figure 2 shows an example of the output
from his tracker with the voxels associated with different trajec-
tories color coded. The notebook was complete and thorough, ad-
dressing all the questions and including references. Although the
code could be better organized to improve readability, the results
were impressive and the algorithm was subsequently adapted into
the NIFFTE reconstruction framework for use in real experiments.

Fig. 2: Matplotlib 3d plot of particle trajectories reconstructed from
ionization trails left by charged particles in a gaseous drift detector.
[VanAtta2013]

One of the students from the pair collaboration turned his
project from 2013 into a Cal Poly senior project recently submitted
[Rexrode2014]. He extended his initial work and created an open
library of code for modeling the geometry of nuclear collisions
with the Monte Carlo Glauber model. The project writeup and the
code can be found on GitHub under the [MCGlauber] organiza-
tion.

Pre- and Post- Assessment

In order to assess the course’s success at achieving the learning
objectives, both a pre-learner survey and course evaluations were
administered anonymously. The pre-learner survey, adapted from
a similar Software Carpentry example, was given on the first day
of class with 100% participation, while the course evaluation was
given in the last week. Some in class time was made available
for the evaluations but students were also able to complete it on
their own time. Course evaluations are conducted through the Cal
Poly "SAIL" (Student Assessment of Instruction and Learning)
online system. SAIL participation was 82%. Some questions were
common to both the pre and post assessment, for comparison.

Learning
Objective

Completely
or mostly

Neutral or
partially

Not met

LO1 33/36 3/36 0/36
LO2 31/36 5/36 0/36
LO3 33/36 2/36 0/36
LO4 31/36 5/36 0/36
LO5 32/36 4/36 0/36
LO6 31/35 4/35 0/35
LO7 25/35 10/35 0/35
LO8 27/35 7/35 1/35
LO9 30/35 5/35 0/35
LO10 26/35 9/35 0/35
LO11 30/35 5/35 0/35

TABLE 3: Student evaluation of how well the course met the learning
objectives.

Language Pre- Post-
Fortran 0/42 1/34
C 5/42 7/34
C++ 6/42 5/34
Perl 0/42 0/34
MATLAB 5/42 1/34
Python 3/42 31/34
R 1/42 1/34
Java 7/42 5/34
Others
(list)

7/42
Labview

1/34

None 20/42 2/34

TABLE 4: With which programming languages could you write a
program from scratch that reads a column of numbers from a text file
and calculates mean and standard deviation of that data? (Check all
that apply)

The first question on the post-assessment course evaluation
asked the students to rate how well the course met each of
the learning objectives. The statistics from this student-based
assessment are included in Table 3.

Students were also asked to rate the relevance of the learning
objectives for subsequent coursework at Cal Poly and for their
career goals beyond college. In both cases, a majority of students
rated the course as either "Extremely useful, essential to my
success" (21/34 and 20/34) or "Useful but not essential" (12/34
and 11/34) and all but one student out of 34 expected to use what
they learned beyond the course itself. Almost all students indicated
that they spent at least 5-6 hours per week outside of class doing
work for the course, with half (17/34) indicating they spent more
than 10 hours per week outside of class.

The four questions that were common to both the pre- and
post- evaluations and their corresponding responses are included
in Tables 4, 5, 6, and 7.

It is worth noting that the 7/42 students who indicated they
could complete the programming task with Labview at the begin-
ning of the course probably came directly from the introductory
electronics course for physics majors, which uses Labview heavily.

Of the free response comments in the post-evaluation, the most
common was that more lecturing by the instructor would have
enhanced their learning and/or helped them to better understand
some of the coding concepts. In future offerings, I might add



30 PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Answer Pre- Post-
I could not complete
this task.

19/42 3/34

I could complete the
task with documenta-
tion or search engine
help.

22/42 13/34

I could complete the
task with little or
no documentation or
search engine help.

1/42 18/34

TABLE 5: In the following scenario, please select the answer that best
applies to you. A tab-delimited file has two columns showing the date
and the highest temperature on that day. Write a program to produce
a graph showing the average highest temperature for each month.

Answer Pre- Post-
I could not complete
this task.

42/42 2/34

I could complete the
task with documenta-
tion or search engine
help.

0/42 17/34

I could complete the
task with little or
no documentation or
search engine help.

0/42 15/34

TABLE 6: In the following scenario, please select the answer that
best applies to you. Given the URL for a project’s version control
repository, check out a working copy of that project, add a file called
notes.txt, and commit the change.

a brief mini-lecture to the beginning of each class meeting to
introduce and discuss concepts but I will keep the focus on
student-centered active learning.

Conclusion

This paper presented an example of a project-based course in
scientific computing for undergraduate physics majors using the
Python programming language and the IPython Notebook. The
complete course materials are available on GitHub through the
Computing4Physics [C4P] organization. They are released under
a modified MIT license that grants permission to anyone the
right to use, copy, modify, merge, publish, distribute, etc. any of
the content. The goal of this project is to make computational
tools for training physics majors in best practices freely available.
Contributions and collaboration are welcome.

The Python programming language and the IPython Notebook
are effective open-source tools for teaching basic software skills.
Project-based learning gives students a sense of ownership of
their work, the chance to communicate their ideas in oral live
software demonstrations and a starting point for engaging in
physics research.

REFERENCES

[C4P] All course materials can be obtained directly from the Com-
puting4Physics organization on GitHub at https://github.
com/Computing4Physics/C4P

[SWC] "Software Carpentry: Teaching lab skills for scientific com-
puting", http://software-carpentry.org/, accessed 2 July 2014.

Answer Pre- Post-
I could not create this
list.

35/42 3/34

I would create this list
using "Find in Files" and
"copy and paste"

2/42 0/34

I would create this list
using basic command
line programs.

4/42 2/34

I would create this list
using a pipeline of com-
mand line programs.

1/42 2/34

I would create this list
using some Python code
and the ! escape.

N/A 19/34

I would create this list
with code using the
Python ’os’ and ’sys’ li-
braries.

N/A 8/34

TABLE 7: How would you solve this problem? A directory contains
1000 text files. Create a list of all files that contain the word
"Drosophila" and save the result to a file called results.txt. Note: the
last two options on this question were included in the post-survey only.

[Codecademy] "Codecademy: Learn to code interactively, for free.", http:
//www.codecademy.com/, accessed 2 July 2014.

[PE] "ProjectEuler.net: A website dedicated to the puzzling world
of mathematics and programming", https://projecteuler.net/,
accessed 2 July 2014.

[SPIN-UP] "American Association of Physics Teacher: Strategic Pro-
grams for Innovations in Undergraduate Physics", http:
//www.aapt.org/Programs/projects/spinup/, accessed 2 July
2014.

[Downey2002] Allen B. Downey, Jeffrey Elkner, and Chris Meyers,
"Think Python: How to Think Like a Computer Scientist",
Green Tea Press, 2002, ISBN 0971677506, http://www.
greenteapress.com/thinkpython/thinkpython.html

[Traffic] D.Townsend, J. Fernandes, R. Mullen, and A. Parker, GitHub
repository for the cellular automaton model of traffic flow
created for the Spring 2012 PHYS 200/400 course at
Cal Poly, https://github.com/townsenddw/discrete-graphic-
traffic, accessed 2 July 2014.

[3DTracker] R.Cribbs, K. Boucher, R. Campbell, K. Flatland, and B.
Norris, GitHub repository for the 3-D pattern recognition
tracker created for the Spring 2012 PHYS 200/400 course at
Cal Poly, https://github.com/Rolzroyz/3Dtracker, accessed 2
July 2014.

[nbviewer] "nbviewer: A simple way to share IPython Notebooks", http:
//nbviewer.ipython.org, accessed 2 July 2014.

[Vanderplas599] Jake Vanderplas, "Astronomy 599: Introduction to Sci-
entific Computing in Python", https://github.com/jakevdp/
2013_fall_ASTR599/, accessed 2 July 2014.

[ipythonblocks] "ipythonblocks: code + color", http://ipythonblocks.org/, ac-
cessed 2 July 2014.

[Nifty] "Nifty Assignments: The Nifty Assignments session at
the annual SIGCSE meeting is all about gathering and
distributing great assignment ideas and their materials.",
http://nifty.stanford.edu/, accessed 2 July 2014.

[McCown2014] Frank McCown, "Schelling’s Model of Segregation",
http://nifty.stanford.edu/2014/mccown-schelling-model-
segregation/, accessed 2 July 2014.

[Wayne2013] Kevin Wayne, "Estimating Avogadro’s Number", http://nifty.
stanford.edu/2013/wayne-avogadro.html, accessed 2 July
2014.

[Vinkovic2006] D.Vinkovic and A.Kirman, Proc.Nat.Acad.Sci., vol. 103 no.
51, 19261-19265 (2006). http://www.pnas.org/content/103/
51/19261.full

[Gauvin2009] L.Gauvin, J.Vannimenus, J.-P.Nadal, Eur.Phys.J. B, Vol.
70:2 (2009). http://link.springer.com/article/10.1140%
2Fepjb%2Fe2009-00234-0

https://github.com/Computing4Physics/C4P
https://github.com/Computing4Physics/C4P
http://software-carpentry.org/
http://www.codecademy.com/
http://www.codecademy.com/
https://projecteuler.net/
http://www.aapt.org/Programs/projects/spinup/
http://www.aapt.org/Programs/projects/spinup/
http://www.greenteapress.com/thinkpython/thinkpython.html
http://www.greenteapress.com/thinkpython/thinkpython.html
https://github.com/townsenddw/discrete-graphic-traffic
https://github.com/townsenddw/discrete-graphic-traffic
https://github.com/Rolzroyz/3Dtracker
http://nbviewer.ipython.org
http://nbviewer.ipython.org
https://github.com/jakevdp/2013_fall_ASTR599/
https://github.com/jakevdp/2013_fall_ASTR599/
http://ipythonblocks.org/
http://nifty.stanford.edu/
http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/
http://nifty.stanford.edu/2014/mccown-schelling-model-segregation/
http://nifty.stanford.edu/2013/wayne-avogadro.html
http://nifty.stanford.edu/2013/wayne-avogadro.html
http://www.pnas.org/content/103/51/19261.full
http://www.pnas.org/content/103/51/19261.full
http://link.springer.com/article/10.1140%2Fepjb%2Fe2009-00234-0
http://link.springer.com/article/10.1140%2Fepjb%2Fe2009-00234-0


PROJECT-BASED INTRODUCTION TO SCIENTIFIC COMPUTING FOR PHYSICS MAJORS 31

[DallAsta2008] L.Dall’Asta, C.Castellano, M.Marsili, J.Stat.Mech.
L07002 (2008). http://iopscience.iop.org/1742-
5468/2008/07/L07002/

[Toomre1972] A.Toomre and J.Toomre, Astrophysical Journal, 178:623-
666 (1972). http://adsabs.harvard.edu/abs/1972ApJ...178.
.623T

[Joughin2003] G.Joughin and G.Collom, "Oral Assessment. The Higher
Education Academy", (2003) http://www.heacademy.ac.uk/
resources/detail/resource_database/id433_oral_assessment,
retrieved 2 July 2014.

[Parry2014] B.W. Parry, "Galaxy Mergers: The Direct Passage Case",
http://nbviewer.ipython.org/github/bwparry202/PHYS202-
S14/blob/master/GalaxyMergers/GalaxyMergersFinal.
ipynb, accessed 2 July 2014.

[Nelson2014] P.C. Nelson, "Schelling Model", http://nbviewer.ipython.org/
github/pcnelson202/PHYS202-S14/blob/master/IPython/
SchellingModel.ipynb, accessed 2 July 2014.

[Parker2014] J.Parker, "Schelling Model", http://nbviewer.ipython.
org/github/jparke08/PHYS202-S14/blob/master/
SchellingModel.ipynb, accessed 2 July 2014.

[Sonoma2013] "2013 Annual Meeting of the American Physical Soci-
ety, California-Nevada Section", http://epo.sonoma.edu/aps/
index.html, accessed 2 July 2014.

[VanAtta2013] John Van Atta, "3-D Trajectory Generation in Hexago-
nal Geometry", http://nbviewer.ipython.org/github/jvanatta/
PHYS202-S13/blob/master/project/3dtracks.ipynb, accessed
2 July 2014.

[Rexrode2014] Chad Rexrode, "Monte-Carlo Glauber Model Simulations
of Nuclear Collisions", http://nbviewer.ipython.org/
github/crexrode/PHYS202-S13/blob/master/SeniorProject/
MCGlauber.ipynb, accessed 2 July 2014.

[MCGlauber] "MCGlauber: An Open-source IPython-based Monte Carlo
Glauber Model of Nuclear Collisions", https://github.com/
MCGlauber, accessed 2 July 2014.

http://iopscience.iop.org/1742-5468/2008/07/L07002/
http://iopscience.iop.org/1742-5468/2008/07/L07002/
http://adsabs.harvard.edu/abs/1972ApJ...178..623T
http://adsabs.harvard.edu/abs/1972ApJ...178..623T
http://www.heacademy.ac.uk/resources/detail/resource_database/id433_oral_assessment
http://www.heacademy.ac.uk/resources/detail/resource_database/id433_oral_assessment
http://nbviewer.ipython.org/github/bwparry202/PHYS202-S14/blob/master/GalaxyMergers/GalaxyMergersFinal.ipynb
http://nbviewer.ipython.org/github/bwparry202/PHYS202-S14/blob/master/GalaxyMergers/GalaxyMergersFinal.ipynb
http://nbviewer.ipython.org/github/bwparry202/PHYS202-S14/blob/master/GalaxyMergers/GalaxyMergersFinal.ipynb
http://nbviewer.ipython.org/github/pcnelson202/PHYS202-S14/blob/master/IPython/SchellingModel.ipynb
http://nbviewer.ipython.org/github/pcnelson202/PHYS202-S14/blob/master/IPython/SchellingModel.ipynb
http://nbviewer.ipython.org/github/pcnelson202/PHYS202-S14/blob/master/IPython/SchellingModel.ipynb
http://nbviewer.ipython.org/github/jparke08/PHYS202-S14/blob/master/SchellingModel.ipynb
http://nbviewer.ipython.org/github/jparke08/PHYS202-S14/blob/master/SchellingModel.ipynb
http://nbviewer.ipython.org/github/jparke08/PHYS202-S14/blob/master/SchellingModel.ipynb
http://epo.sonoma.edu/aps/index.html
http://epo.sonoma.edu/aps/index.html
http://nbviewer.ipython.org/github/jvanatta/PHYS202-S13/blob/master/project/3dtracks.ipynb
http://nbviewer.ipython.org/github/jvanatta/PHYS202-S13/blob/master/project/3dtracks.ipynb
http://nbviewer.ipython.org/github/crexrode/PHYS202-S13/blob/master/SeniorProject/MCGlauber.ipynb
http://nbviewer.ipython.org/github/crexrode/PHYS202-S13/blob/master/SeniorProject/MCGlauber.ipynb
http://nbviewer.ipython.org/github/crexrode/PHYS202-S13/blob/master/SeniorProject/MCGlauber.ipynb
https://github.com/MCGlauber
https://github.com/MCGlauber

	Introduction
	Background
	Computational physics at Cal Poly
	Course Organization
	Assessment of learning
	Projects
	Project Examples
	Highlights from 2013
	Pre- and Post- Assessment
	Conclusion
	References

