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Abstract—Adjacency and neighbor structures play an essential role in many
spatial analytical tasks. The computation of adjacenecy structures is non-trivial
and can form a significant processing bottleneck as the total number of observa-
tions increases. We quantify the performance of synthetic and real world binary,
first-order, adjacency algorithms and offer a solution that leverages Python’s
high performance containers. A comparison of this algorithm with a traditional
spatial decomposition shows that the former outperforms the latter as a function
of the geometric complexity, i.e the number of vertices and edges.

Index Terms—adjacency, spatial analysis, spatial weights

Introduction

Within the context of spatial analysis and spatial econometrics
the topology of irregularly shaped and distributed observational
units plays an essential role in modeling underlying processes
[Anselin1988]. First and higher order spatial adjacency is lever-
aged across a range of spatial analysis techniques to answer
the question - who are my neighbors? In answering this simple
question, more complex models can be formulated to leverage
the spatial distribution of the process under study. Three example
applications are: spatial regionalization, spatial regression models,
and tests for global spatial autocorrelation’.

Spatial regionalization algorithms seek to aggregate :math: n
polygon units into :math: r regions (:math: r < n) under some
set of constraints, e.g., minimization of some attribute variance
within a region [Duque2012]. A key constraint shared across
spatial regionalization algorithms is that of contiguity as regions
are required to be conterminous. One common application of
spatial regionalization is political redistricting, where large scale
census units, are aggregated into political districts with a conti-
guity constraint and one or more additional constrains, e.g. equal
population. In this context, the generation of a representation of
the spatial adjacency can become prohibitively expensive.

At its most basic, spatial regression [Ward2007] seeks to
formulate a traditional regression model with an added structure
to capture the spatially definable interaction between observations
when spatial autocorrelation (or spatial heterogeneity) is present.
The addition of a spatial component to the model requires the
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generation of some measure of the interaction between neighbors.
First and higher order spatial adjacency fulfills that requirement.
An example application could be the formulation of a model
where the dependent variable is home value and the independent
variables are income and crime. Making the assumption that the
data is spatially autocorrelated, a spatial regression model can be
leveraged.

Moran’s I [Anselin1996a] concurrently measures some at-
tribute value and its spatial distribution to identify spatially clus-
tered (positively autocorrelated), random, or dispersed (negatively
autocorrelated) data. Therefore, a spatial adjacency structure is
an essential input. Measures of global spatial autocorrelation
find a large range of applications including the identification
of SIDs deaths [Anselin2005] and the identification of cancer
clusters [OSullivan2010]. As the total number of observations
becomes large, the cost to generate that data structure can become
prohibitive.

The computation of a spatial adjacency structure is most
frequently a precursor to more complex process models, i.e. a pre-
processing step. This processing step occurs dynamically, i.e. the
data is not loaded into a spatial database where efficient indexing
structures can be pre-generated. Therefore, the computational cost
of generating these data structures is often overlooked in the
assessment of global algorithmic performance.

Within the spatial analysis domain, ever increasing data sizes
due to improved data collection and digitization efforts, render
many spatial analyticial intractable in a Big Data environment
due to unoptimized, serial algorithm implementations [ Yang2008].
Therefore, improved serial and distributed algorithms are required
to avoid the application of data reduction techniques or model
simplification. Binary spatial adjacency is one example of an
algorithm that does not scale to large observation counts due
to the complexity of the underlying algorithm. For example, a
key requirement of Exploratory Spatial Data Analysis (ESDA)
[Anselin1996b] is the rapid computation and visualization of
some spatially defined measures, e.g. Local Moran’s 1. Within
the Python Spatial Analysis Library (PySAL), the computation
of a local indicator of spatial autocorrelation utilizes binary
adjacency in computing Local Moran’s I as a means to identify
the cardinality of each observation. In a small data environment
(n < 3000) a naive implementation is sufficiently performant, but
as the resolution of the observational unit increases (a move from
U.S. counties or county equivalents® to census tracts’) computate
time increases non-linearily. When combined with the compute
cost to perform the primary analytical technique, and potential
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network transmition costs in a Web based environment, ESDA at
medium to large data sizes is infeasible.

Scaling to even larger observation counts where longer run-
times are expected, heursitically solved regionalization models,
e.g., Max-P-Regions [Duque2012], require that a spatial contiguity
constraint be enforced. In large data setting, where a high number
of concurrent heuristic searches are to be performed, the computa-
tion of adjacency can be a serial processing bottleneck?. Improved
adjacency metrics are required within this domain for two reasons.
First, in a distributed environment with shared resources, reduction
of pre-processing directly correlates with time available for anal-
ysis. Using heuristic search methods this translates to additional
time available to search a solution space and potential identify
a maxima. Second, the scale at which regionalization is initiated
is an essential decision in research design as underlying attribute
data or processes may only manifest at some limited scale range.
Therefore, a significant bottleneck in adjaceny computation can
render the primary analytical task infeasible.

This work targets one processing step in larger analytical
workflows with the goal supporting increased data sizes and
reducing the total compute time. The application of an improved
adjacency algorithm solves one limitation in the application of
ESDA to Big Data and reduces the overall pre-processing time
required for spatial regionalization problems.

Spatial Weights Object

A spatial weights object or weights matrix, W, is an adjacency
matrix that represents potential interaction between each i, j within
a given study area of n spatial units. This interaction model yields
W a, typically sparse, n X n adjacency matrix. Within the context
of spatial analysis, the interaction between observational units
is generally defined as either binary, w; ; = 0,1, depending on
whether or not i and j are considered neighbors, or a continuous
value reflecting some general distance relationship, e.g. inverse
distance weighted, between observations i and ;.

In the context of this work, we focus on binary weights where
the adjacency criteria requires either a shared vertex (Queen case)
or a shared edge (Rook case). Using regular lattice data, Figure
(1) illustrates these two adjacency criteria. In the Queen case
implementation is in line with expectations, i.e. a single shared
vertex is sufficient to assign adjacency. The Rook case, adjacency
is more complex and two shared vertices are not sufficient to
assert adjacency, i.e. a queen case implementation with a counter
for the number of shared vertices. Full geometry edges must be
compared as it is feasible that two shared vertices do not indicate
a shared edge. For example, a crescent geometry can share two
vertices with another geometry but fail to share an edge is another,
interceding geometry is present.

PySAL

This work is cited and implemented within the larger PySAL
(Python Spatial Analysis Library) project. PySAL is an open-
source, pure Python library that provides a broad array of spatial
computational methods [Rey2010]. This library has been selected
for three reasons. First, PySAL provides data structure, i.e. in-
frastructure for reading common spatial formats and rendering
spatial weights matrices, as a W class instance. This existing
functionality facilitated rapid development that could focus on al-
gorithm implementation and testing. Second, PySAL implements
two spatial adjacency algorithms that serve as benchmarks and
validation tools: (1) spatial decomposition through binning and (2)
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r-tree generation and search. Finally, PySAL is a mature, open-
source project with a wide user base providing exposure of this
implementation to the community for further development and
testing.

Algorithms
Problem Definition

The population of an adjacency list, A, or adjacency matrix must
identify all polygon geometries which are conterminous. The
definition of adjacent is dependent upon the type of adjacency
matrix to be generated. Each adjacency algorithm requires a
list of polygon geometries, L, composed of sublists of vertices,
L = [p1,p2,...,pu. Traditionally, the vertices composing each
polygon, p;, are stored in a fixed winding order (clockwise or
counter-clockwise) and share a common origin-termination vertex,
pi = [v1,v2,V3,...,v1]. This latter constrain facilitates differentia-
tion between a polygon and polyline.

Below we review three adjacency computation algorithms:
a naive approach, a binning approach, and an r-tree approach.
We then introduce an improved adjacency algorithm using high
performance containers.

Naive Approach

The naive approach to compute spatial adjacency requires that
each vertex, in the case of rook contiguity, or edge, in the case
of queen contiguity, be compared to each other vertex or edge,
respectively. This is accomplished by iterating over a list or
array of input geometries, popping the first geometry from the
list, and then comparing all vertices or edges to all remaining
geometries within L. This approach leverages the fact that an
adjacency matrix, and by extension an adjacency list is diagonally
symmetrical, i.e. the upper right and lower left triangles are
identical. This algorithm is 0(%) as each input vertex or edge
is compared against each remaining, unchecked vertex or edge. A
minor modification to this approach allows the algorithm to break
once adjacency has been confirmed, thereby avoiding duplicate
checks on known neighbors.

Spatial Binning

Binning seeks to leverage the spatial distribution of L to reduce
the total number of vertex or edge checks. Binning approaches can
be static, whereby the size of each bin is computed a priori and
without consideration for the underlying data density or adaptive,
whereby the size of each bin is a function of the number of
geometries contained within. A quad-tree approach is a classic
example of the latter technique. Using a static binning approach
as an example, a regular grid or lattice can be overlaid with L and
the intersection of all p into a specific grid cell, g; ; computed.
Using binning, polygons may span one or more grid cells. Once
the global dataset has been decomposed into a number discrete
gird cells, all geometries which intersect a given cell are tested
for adjacency. This test can be performed by storing either a
dictionary (hash) of cell identifiers to member polygon identifiers
or a dictionary of geometries identifiers to cell identifiers. The end
result is identical, a subset of the global geometries that may be
conterminous.

The primary advantage of this approach over the naive algo-
rithm is the reduction in the total number of edge or vertex checks
to be performed. Those polygons which do not intersect the same
grid cell will never be checked and the spatial distribution of the
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Fig. 1: Rook (shared edge) and Queen (shared vertex) adjacency on a regular 3 by 3 lattice.

data is leveraged. The application of a quad-tree decomposition
also accounts for variation density. These advantages are not
without cost; the time to compute the initial decomposition can
exceed the benefits attained.

Parallel Spatial Binning

One approach to improve the performance of the binning algo-
rithm would be to utilize multiple processing cores (workers).
In this implementation binning is performed in serial and then
each bin is mapped to an available processing core for processing.
Therefore, the expensive O(%) computation can be performed
concurrently, up to the number of available processing cores. An
implementation of this type requires three processing steps, with
only the second step being performed concurrently. First, derive
a domain decomposition and assign each geometry to one or
more bins®. Second, concurrently apply the naive algorithm to
all geometries within a bin. This requires that the full geometries
be communicated from the mother process to the worker process
or that the geometries be stored in a globally accessible shared
memory space. Finally, aggregate the results from each worker.
Boundary crossing geometries will be processed by more than one
worker that does not have knowledge of adjacent bins. Therefore,
this step is required to remove redundant adjacencies and generate
a single adjacency list.

Like the binning approach, decomposition is a non-trivial
compute cost. Additionally, the cost to communicate native python
data structures is high in parallel environment. Representation in
efficient arrays requires the generation of those arrays, another
upfront processing cost.

R-Tree

Like the binning approach, the r-tree seeks to leverage the spatial
distribution of the geometries to reduce the total number of 0(%)
computations that must be performed. An r-tree is composed of
multiple levels composed of multiple, ideally balanced nodes,
that store aggregated groups of geometry Minimum Bounding
Rectangles (MBR). At the most coarse, the MBR associated
with each geometry is a leaf in the tree. Each step up a branch
aggregates leaves into multi-geometry MBRs or multi-geometry
MBRs into larger MBRs. When generating an r-tree two key
considerations are the maximum size of each node and the method
used to split a node into sub-nodes®. An r-tree query uses a depth
first search to traverse the tree and identify those MBRs which
intersect the provided MBR. For example, assume that geometry
A has an MBR of Appg. An r-tree query begins at level 0 and
steps down only those branches which could contain or intersect
AMBR-

The primary disadvantage to the r-tree is the cost of generation.
In addition to computing the MBR for each input geometry,
it is necessary to recursively populate the tree structure using
some bulk loading technique. These techniques seek to ensure
high query performance, but add significantly to the cost. The
implementation tested here utilizes a k-means clustering algorithm
to split full nodes and is shown by [Gutman1984] to outperform
the standard r-tree and compete with the R*-tree. Even with
this improved performance, generation of the data structure is
computationally expensive as a function of total compute time.
Additionally, scaling to large data sets in memory constrained
environments can introduce memory constraints. This is a sig-
nificantly less common disadvantage, but should nonetheless be
addressed.

High Performance Containers and Set Operations

Each of the preceding algorithms, save the naive approach,
leverage a decomposition strategy to improve performance. Even
with decomposition, the inter-cell or inter-MBR computation is
still O(%) Combined with the cost to generate intermediary
data structures required to capture the decomposition, it is pos-
sible to leverage a higher number of lower cost operations and
robust error checking to significantly improve performance. At
the heart of our approach is the hashtable (dictionary), that
provides average case O(1) lookup by key, the set that provides
O(length(set,) + length(set;)) set unions and lookup tables that
facilitate O(1) list (array) access by element. By minimizing data
allocation time and set unions, it is therefore possible to develop
an implementation where the majority of computation is, average
case, O(1).

In implementation, Algorithm (), the algorithm utilizes a
defaultdict where the key is the vertex coordinate and the value is
a set of those polygon identifiers which contain that vertex (Queen
case). Stepping over an input shapefile, line 9, this data structure
is iteratively populated. In line 10, we slice the vertex list such that
the final vertex is ignored, knowing that it is a duplicate of the first
vertex. The inner for loop, line 11, iterates over the list of vertices
for a given geometry and adds them to the vertices default dict,
line 8. Once this data structure is generated, the algorithm creates
another dictionary of sets where the key is a polygon identifier and
the value is a set of those polygons which are adjacent. Stepping
over the previous dictionary, line 15, the algorithm iterates over
the value, a set of neighbors, and populates a new dictionary
of sets which are keyed to the polygon identifiers. This yields
a dictionary with keys that are polygon ids and values which are
sets of neighbors. We define this as a two step algorithm due to
the two outer for loops.
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def twostep (fname) :

1
2 shpFileObject = fname

3 if shpFileObject.type != ps.cg.Polygon:
4 return

5 numPoly = len (shpFileObject)

6

7 vertices = collections.defaultdict (set)
8 for i, s in enumerate (shpFileObject) :

9 newvertices = s.vertices[:-1]

10 for v in newvertices:

11 vertices|[v].add (1)

13 w = collections.defaultdict (set)

14 for neighbors in vertices.itervalues():

15 for neighbor in neighbors:

16 w[neighbor] = w[neighbor] | neighbors
17

18 return w

Two step algorithm using higher performance containers for the
Queen case.

The Rook case is largely identical with the initial vertex
dictionary being keyed by shared edges (pairs of vertices) instead
of single vertices.

Experiment
Hardware

All tests were performed on a 3.1 Ghz, dual core Intel i3-2100
machine with 4GB of RAM running Ubuntu 64-bit 14.04 LTS.
The IPython [Perez2007] notebook environment was used to
initiate and analyse all tests. All other non-system processes were
terminated.

Experiments

We perform two sets of experiments, one using synthetically
generated data and one using U.S. Census data. These tests were
performed to quantify the performance of the list based contiguity
algorithm as compared to r-tree and binning implementations with
the goal of testing three hypothesis. First, we hypothesize that
the list based algorithm will be faster than r-tree and binning
algorithms across all datasets due to the reduced asymptotic cost.
Second, we expect the list based algorithm to scale as a function of
the total number of neighbors and the average number of vertices
(or edges in the Rook case) per geometry. We anticipate that this
scaling remains linear. Third, we hypothesize that the algorithm
should not scale significantly worse within the memory domain
than either the r-tree or binning approaches due to the reduced
number of data structures.

To test these hypotheses we generate both regularly tessellating
and randomly distributed synthetic data ranging in size from 1024
geometries to 262,144 geometries’. We utilize triangles, squares
and hexagons as evenly tessellating geometries with easily con-
trolled vertex count, edge count, and average neighbor cardinality.
We also densify the 4096 hexagon lattice to test the impact of
increased vertex count as the number of edges remains static. To
assess algorithm performance with real world data we utilize U.S.
census block group data.

Results

Across all synthetic data tests we report that the r-tree implemen-
tation was 7 to 84 times slower than the binning implementation
and 22 to 1400 times slower than the list based contiguity measure.
Additionally, we see that the r-tree implementation required sig-
nificant quantities of RAM to store the tree structure. We therefore

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

illustrate only the binning and list based approach in subsequent
figures.

Figure (2)(a - d) illustrate the results of four experiments
designed to compare the performance of the list based and binning
approaches as a function of total geometry count, total vertex
count (and by extension edge count), average neighbor cardi-
nality, and data distribution. Figure (2)(a) illustrates the scaling
performance of the list and binning algorithms. The former scales
linearly as the total number of polygons is increased and the latter
scales quadratically. As anticipated, the Rook contiguity measures
require slightly more processing time than the associated Queen
contiguity measures. In Figure (2)(b), the algorithm exhibits in-
creased computational cost as a function of geometric complexity,
e.g. the number of vertices, number of edges, and mean number
of neighbors. This is illustrated by the general trend of compute
times with the triangular tessellation requiring the least time and
the hexagon tessellation requiring the most. Densification of the
4096 hexagon polygon with between 6 and 300 additional vertices
per edge highlights an inversion point, where binning regains
dominance over the list based approach, Figure (2)(c). Finally,
in Figure (2)(d) the total compute time using randomly distributed
polygon datasets are shown. Again, we report quadratic scaling for
the existing binning approach and linear scaling for the list based
approach.

To test algorithm performance with real world data, we utilize
four, increasingly large subsets of the global U.S. census block
dataset, Figure (3). We report that neither binning nor our list
based solution are dominant in all use cases. We report that,
as a function of the total geometry count, it appears that a
threshold exhists around n = 32500 (lower x-axis). Utilizing the
upper x-axis, the previous assertion appear erroneous; overall
algorithm scaling is a function of the total count, but comparative
performance is a function of the geometric complexity with parity
existing around n = 275 and dominance of the list based method
being lost between 275 < n < 575.

Discussion

Our list based adjacency algorithm significantly outperforms the
current r-tree implementation within the PySAL library. We be-
lieve that this is a function of the increased overhead required
to generate a the tree structure. Across all synthetic data tests,
save the vertex densification, we see the list based approach
performs well. As anticipated, this method scales with the number
of vertices.

Utilizing real world data, the selection of algorithm becomes
significantly more challenging as the list based approach does
not behave in a linear manner. We suggest that the constant time
set operations become large as a function of total compute time.
Having gained this insight, we ran additional tests with a read
threshold. In this implementation a subset of the input dataset
is read, processed, and written to an in-memory W object. This
process iterates until the entire dataset is read. Using this method,
we see that the list based approach, in the Queen case, can
be as performant as the binning approach as a function of the
mean number of vertices. Since this information is not available
via the binary shapefile header, we suggest that the list based
approach may be performant enough across all use cases, i.e.
the performance does not significantly degrade at extremely high
vertex counts. The list based approach still dominates the binned
approach in the Rook case.
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Fig. 2: Spatial binning and list based performance comparison showing: (a) scaling a total synthetic data size increases, (b) list based scaling
using synthetic data, (c) scaling performance as the total number of vertices is increased, and (d) randomly distirbuted data with varying

neighbor cardinality and vertex counts.

Utilizing real world data, the binning approach is also able
to leverage an essential break function, where known neighbors
are no longer checked. This is not, to our knowledge, feasible
using the list based approach and two neighors with n shared
vertices must be compared n times. The introduction of a break, if
feasible, should continue to improve performance of the list based
approach.

Finally, in profiling both the binning and list based approaches,
we see that reading the input shapefile requires at least one
third of the processing time. Therefore, I/O is the largest current
processing bottleneck for which parallelization maybe a solution.

Next Steps

As described above, the r-tree implementation was significantly
slower than anticipated. To that end, we intend to profile and
potentially optimize the PySAL r-tree implementation with the
goal of identifying whether poor performance is a function of the
implementation or a product of the necessary overhead required to
generate the tree structure.

The improved adjacency algorithm provides multiple avenues
for future work. First, we have identified file i/o as the current
processing bottleneck and have shown that the algorithm can
leverage concurrent streams of geometries. Therefore, parallel
i/o and a map reduce style architecture may provide significant
performance improvements without major algorithm alterations.

This could be realized in a Hadoop style environment or with
a cluster computing environment. Second, we believe that error
and accuracy of spatial data products remain an essential research
topic and suggest that the integration of a *fuzzy’ checker whereby
some tolerance value can be used to determine adjacency is an
important algorithm addition. Finally, we will continue integration
into PySAL of these methods into more complex spatial analytical
methods so that total algorithm processing time is improved, not
just the more complex analytical components.
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