PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

59

Python for research and teaching economics

David R. Pugh**

http://www.youtube.com/watch?v=xHkGW115X8k

Abstract—Together with theory and experimentation, computational modeling
and simulation has become a “third pillar” of scientific inquiry. | am developing a
curriculum for a three part, graduate level course on computational methods
designed to increase the exposure of graduate students and researchers in
the School of Economics at the University of Edinburgh to basic techniques
used in computational modeling and simulation using the Python programming
language. My course requires no prior knowledge or experience with computer
programming or software development and all current and future course materi-
als will be made freely available on-line via GitHub.

Index Terms—python, computational economics, dynamic economic models,
numerical methods

Introduction

Together with theory and experimentation, computational model-
ing and simulation has become a “third pillar” of scientific inquiry.
In this paper, I discuss the goals, objectives, and pedagogical
choices that I made in designing and teaching a Python-based
course on computational modeling and simulation to first-year
graduate students in the Scottish Graduate Programme in Eco-
nomics (SGPE) at the University of Edinburgh. My course requires
no prior knowledge or experience with computer programming or
software development and all current and future course materials
will be made freely available on-line.!

Like many first-year PhD students, I began my research career
with great faith in the analytic methods that I learned as an
undergraduate and graduate student. While I was aware that
economic models without closed-form solutions did exist, at no
time during my undergraduate or graduate studies was I presented
with an example of an important economic result that could not
be analytically derived. While these analytic results were often ob-
tained by making seemingly restrictive assumptions, the manner in
which these assumptions were often justified gives the impression
that such assumptions did not substantially impact the economic
content of the result. As such, I started work as a PhD student
under the impression that most all "interesting" economic research

x Corresponding author: pugh@maths.ox.ac.uk

1 School of Economics, University of Edinburgh; Institute for New Economic
Thinking at the Oxford Martin School and Oxford Mathematical Institute,
University of Oxford

Copyright © 2014 David R. Pugh. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. This course would not have been possible without generous funding and
support from the Scottish Graduate Programme in Economics (SGPE), the
Scottish Institute for Research in Economics (SIRE), the School of Economics
at the University of Edinburgh, and the Challenge Investment Fund (CIF).

<+

questions could, and perhaps even should, be tackled analytically.
Given that both of the leading graduate-level micro and macro-
economics textbooks, [mas-colell1995] and [romer2011], fail to
mention that computational methods are needed to fully solve even
basic economic models, I do not believe that I was alone in my
ignorance of the import of these methods in economics.

Fortunately (or unfortunately?) I was rudely awakened to
the reality of modern economics research during my first year
as a PhD student. Most economic models, particularly dynamic
economic models, exhibit essential non-linearities or binding
constraints that render them analytically intractable. Faced with
reality I was confronted with two options: give up my original
PhD research agenda, which evidently required computational
methods, in favor of a modified research program that I could
pursue with analytic techniques; or teach myself the necessary
numerical techniques to pursue my original research proposal. I
ended up spending the better part of two (out of my alloted three!)
years of my PhD teaching myself computational modeling and
simulation methods. The fact that I spent two-thirds of my PhD
learning the techniques necessary to pursue my original research
agenda indicated, to me at least, that there was a substantial gap
in the graduate economics training at the University of Edinburgh.
In order to fill this gap, I decided to develop a three-part course
on computational modeling and simulation.

The first part of my course is a suite of Python-based, interac-
tive laboratory sessions designed to expose students to the basics
of scientific programming in Python. The second part of the course
is a week-long intensive computational methods “boot camp.” The
boot camp curriculum focuses on deepening students’ computer
programming skills using the Python programming language and
teaching important software design principles that are crucial
for generating high-quality, reproducible scientific research using
computational methods. The final part of the course, which is very
much under development, will be an advanced training course
targeted at PhD students and will focus on applying more cutting
edge computational science techniques to economic problems via
a series of interactive lectures and tutorials.

Why Python?

Python is a modern, object-oriented programming language
widely used in academia and private industry, whose clean, yet
expressive syntax, makes it an easy programming language to
learn while still remaining powerful enough for serious scientific
computing.” Python’s syntax was designed from the start with
the human reader in mind and generates code that is easy to
understand and debug which shortens development time relative to

http://www.youtube.com/watch?v=xHkGW1l5X8k
https://github.com/davidrpugh/numerical-methods
mailto:pugh@maths.ox.ac.uk

60

low-level, compiled languages such as Fortran and C++. Among
the high-level, general purpose languages, Python has the largest
number of Matlab-style library modules (both installed in the stan-
dard library and through additional downloads) which meaning
that one can quickly construct sophisticated scientific applications.
While the Python programming language has found widespread
use in private industry and many fields within academia, the
capabilities of Python as a research tool remain relatively unknown
within the economics research community. Notable exceptions are
[stachurski2009] and [sargent2014].

Python is completely free and platform independent, making
it a very attractive option as a teaching platform relative to other
high-level scripting languages, particularly Matlab. Python is also
open-source, making it equally attractive as a research tool for
scientists interested in generating computational results that are
more easily reproducible.’ Finally, Python comes with a powerful
interactive interpreter that allows real-time code development and
live experimentation. The functionality of the basic Python inter-
preter can be greatly increased by using the Interactive Python (or
IPython) interpreter. Working via the Python or IPython interpreter
eliminates the time-consuming (and productivity-destroying) com-
pilation step required when working with low-level languages at
the expense of slower execution speed. In many cases, it may be
possible to achieve the best of both worlds using "mixed language"
programming as Python can be easily extended by wrapping
compiled code written in Fortran, C, or C++ using libraries such
as f2Py, Cython, or swig. See [oliphant2007], [peterson2009],
[behnel2011], [van2011] and references therein for more details.

Motivating the use of numerical methods in economics

The typical economics student enters graduate school with great
faith in the analytical mathematical tools that he or she was
taught as an undergraduate. In particular this student is under
the impression that virtually all economic models have closed-
form solutions. At worst the typical student believes that if he
or she were to encounter an economic model without a close-
form solution, then simplifying assumptions could be made that
would render the model analytically tractable without sacrificing
important economic content.

The typical economics student is, of course, wrong about
general existence of closed-form solutions to economic models.
In fact the opposite is true: most economic models, particular
dynamic, non-linear models with meaningful constraints (i.e.,
most any interesting model) will fail to have an analytic solution.
In order to demonstrate this fact and thereby motivate the use
of numerical methods in economics, I begin my course with
a laboratory session on the Solow model of economic growth
[solow1956].

Economics graduate student are very familiar with the Solow
growth model. For many students, the Solow model will have

2. A non-exhaustive list of organizations currently using Python for scien-
tific research and teaching: MIT’s legendary Introduction to Computer Science
and Programming, CS 6.00, is taught using Python; Python is the in-house
programming language at Google; NASA, CERN, Los Alamos National Labs
(LANL), Lawrence Livermore National Labs (LLNL), and Industrial Light and
Magic (ILM) all rely heavily on Python.

3. The Python Software Foundation License (PSFL) is a BSD-style license
that allows a developer to sell, use, or distribute his Python-based application in
anyway he sees fit. In addition, the source code for the entire Python scientific
computing stack is available on GitHub making it possible to directly examine
the code for any specific algorithm in order to better understand exactly how a
result has been obtained.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

been one of the first macroeconomic models taught to them as
undergraduates. Indeed, the dominant macroeconomics textbook
for first and second year undergraduates, [mankiw2010], devotes
two full chapters to motivating and deriving the Solow model. The
first few chapters of [romer2011], one of the most widely used
final year undergraduate and first-year graduate macroeconomics
textbook, are also devoted to the Solow growth model and its
descendants.

The Solow growth model

The Solow model boils down to a single non-linear differential
equation and associated initial condition describing the time evo-
lution of capital stock per effective worker, k(7).

k(r) = sf (k(t)) — (n+g + 8)k(r), k(r) = ko

The parameter 0 < s < 1 is the fraction of output invested and the
parameters n, g, 0 are the rates of population growth, technological
progress, and depreciation of physical capital. The intensive form
of the production function f is assumed to be to be strictly concave
with

F(0)=0, lim_,o ' = oo, lim_yeo ' =0.

A common choice for the function f which satisfies the above
conditions is known as the Cobb-Douglas production function.

fk) =k*

Assuming a Cobb-Douglas functional form for f also makes the
model analytically tractable (and thus contributes to the typical
economics student’s belief that all such models "must" have an
analytic solution). [sato1963] showed that the solution to the
model under the assumption of Cobb-Douglas production is

(;) (1 76—(n+g+8)(1—oc)t> +
n+g+0o

1
T—a
k(l)ae(n+g+5)(la)t:|)

k() =

A notable property of the Solow model with Cobb-Douglas
production is that the model predicts that the shares of real income
going to capital and labor should be constant. Denoting capital’s
share of income as ok (k), the model predicts that
_ (k)

b =" =
Unfortunately, from figure 1 it is clear that the prediction of
constant factor shares is strongly at odds with the empirical data
for most countries. Fortunately, there is a simple generalization
of the Cobb-Douglas production function, known as the constant
elasticity of substitution (CES) function, that is capable of gener-
ating the variable factor shares observed in the data.

1

Flk) = {ak” +(1 —a)} ’

where —co < p < 1 is the elasticity of substitution between capital
and effective labor in production. Note that

lim f(k) = k*
p—0

and thus the CES production function nests the Cobb-Douglas
functional form as a special case. To see that the CES production
function also generates variable factor shares note that
dlnf(k okP
o (k) =) _
dlnk okP +(1—-a)

PYTHON FOR RESEARCH AND TEACHING ECONOMICS

which varies with k.

This seemingly simple generalization of the Cobb-Douglas
production function, which is necessary in order for the Solow
model generate variable factor share, an economically important
feature of the post-war growth experience in most countries, ren-
ders the Solow model analytically intractable. To make progress
solving a Solow growth model with CES production one needs to
resort to computational methods.

Numerically solving the Solow model

A computational solution to the Solow model allows me to
demonstrate a number of numerical techniques that students will
find generally useful in their own research.

First and foremost, solving the model requires efficiently and
accurately approximating the solution to a non-linear ordinary
differential equation (ODE) with a given initial condition (i.e.,
an non-linear initial value problem). Finite-difference methods are
commonly employed to solve such problems. Typical input to
such algorithms is the Jacobian matrix of partial derivatives of
the system of ODEs. Solving the Solow growth model allows me
to demonstrate the use of finite difference methods as well as how
to compute Jacobian matrices of non-linear systems of ODEs.

Much of the empirical work based on the Solow model focuses
on the model’s predictions concerning the long-run or steady state
equilibrium of the model. Solving for the steady state of the
Solow growth model requires solving for the roots of a non-linear
equation. Root finding problems, which are equivalent to solving
systems of typically non-linear equations, are one of the most
widely encountered computational problems in economic appli-
cations. Typical input to root-finding algorithms is the Jacobian
matrix of partial derivatives of the system of non-linear equations.
Solving for the steady state of the Solow growth model allows
me to demonstrate the use of various root finding algorithms as
well as how to compute Jacobian matrices of non-linear systems
of equations.

Finally, given some data, estimation of the model’s structural
parameters (i.e., g, n, s, @, O, p) using either as maximum
likelihood or non-linear least squares requires solving a non-
linear, constrained optimization problem. Typical inputs to algo-
rithms for solving such non-linear programs are the Jacobian and
Hessian of the objective function with respect to the parameters
being estimated.* Thus structural estimation also allows me to
demonstrate the symbolic and numerical differentiation techniques
needed to compute the Jacobian and Hessian matrices.

Course outline

Having motivated the need for computational methods in eco-
nomics, in this section I outline the three major components of my
computational methods course: laboratory sessions, an intensive
week-long Python boot camp, and an advanced PhD training
course. The first two components are already up and running
(thanks to funding support from the SGPE, SIRE, and the CIF).
I am still looking to secure funding to develop the advanced PhD
training course component.

Laboratory sessions

The first part of the course is a suite of Python-based laboratory
sessions that run concurrently as part of the core macroeconomics

4. The Hessian matrix is also used for computing standard errors of param-
eter estimates.

61

sequence. There are 8 labs in total: two introductory sessions,
three labs covering computational methods for solving models
that students are taught in macroeconomics I (fall term), three
labs covering computational methods for solving models taught in
macroeconomics II (winter term). The overall objective of these
laboratory sessions is to expose students to the basics of scientific
computing using Python in a way that reinforces the economic
models covered in the lectures. All of the laboratory sessions make
use of the excellent IPython notebooks.

The material for the two introductory labs draws heavily from
part I and part II of Quantitative Economics by Thomas Sargent
and John Stachurski. In the first lab, I introduce and motivate
the use of the Python programming language and cover the
bare essentials of Python: data types, imports, file I/O, iteration,
functions, comparisons and logical operators, conditional logic,
and Python coding style. During the second lab, I attempt to
provide a quick overview of the Python scientific computing
stack (i.e., IPython, Matplotlib, NumPy, Pandas, and SymPy) with
a particular focus on those pieces that students will encounter
repeatedly in economic applications.

The material for the remaining 6 labs is designed to comple-
ment the core macroeconomic sequence of the SGPE and thus
varies a bit from year to year. During the 2013-2014 academic
year I covered the following material:

o Initial value problems: Using the [solow1956] model of
economic growth as the motivating example, I demonstrate
finite-difference methods for efficiently and accurately
solving initial value problems of the type typically encoun-
tered in economics.

o Boundary value problems: Using the neo-classical op-
timal growth model of [ramsey1928], [cass1965], and
[koopmans1965] as the motivating example, I demonstrate
basic techniques for efficiently and accurately solving
two-point boundary value problems of the type typically
encountered in economics using finite-difference methods
(specifically forward, reverse, and multiple shooting).

e Numerical dynamic programming: I demonstrate basic
techniques for solving discrete-time, stochastic dynamic
programming problems using a stochastic version of the
neo-classical optimal growth model as the motivating
example.

o Real business cycle models: I extend the stochastic op-
timal growth model to incorporate a household labor
supply decision and demonstrate how to approximate the
model solution using dynare++, a C++ library specializing
in computing k-order Taylor approximations of dynamic
stochastic general equilibrium (DSGE) models.

In future versions of the course I hope to include laboratory
sessions on DSGE monetary policy models, DSGE models with
financial frictions, and models of unemployment with search
frictions. These additional labs are likely to be based around
dissertations being written by current MSc students.

Python boot camp

Whilst the laboratory sessions expose students to some of the
basics of programming in Python as well as numerous applications
of computational methods in economics, these lab sessions are
inadequate preparation for those students wishing to apply such
methods as part of their MSc dissertations or PhD theses.

http://quant-econ.net/learning_python
http://quant-econ.net/scientific_python
http://quant-econ.net
http://nbviewer.ipython.org/urls/raw.github.com/davidrpugh/numerical-methods/master/labs/lab-1/lab-1.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/davidrpugh/numerical-methods/master/labs/lab-2/lab-2.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/davidrpugh/numerical-methods/master/labs/lab-3/lab-3.ipynb)
http://nbviewer.ipython.org/urls/raw.github.com/davidrpugh/numerical-methods/master/labs/lab-4/lab-4.ipynb)

62

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Labor's share of real GDP

[LX] —

0.6

1-ag (k)

0.4f

CHN

GBR

IND

JPN |
KOR

USA
World avg.

0.2}

0.0, L L
1950 1960 1970

1980 1990 2000 2010

Year, t

Fig. 1: Labor’s share of real GDP has been declining, on average, for much of the post-war period. For many countries, such as India, China,

and South Korea, the fall in labor’s share has been dramatic.

In order to provide interested students with the skills needed
to apply computational methods in their own research 1 have
developed a week-long intensive computational methods "boot
camp." The boot camp requires no prior knowledge or experience
with computer programming or software development and all
current and future course materials are made freely available on-
line.

Each day of the boot camp is split into morning and afternoon
sessions. The morning sessions are designed to develop attendees
Python programming skills while teaching important software
design principles that are crucial for generating high-quality,
reproducible scientific research using computational methods. The
syllabus for the morning sessions closely follows Think Python by
Allen Downey.

In teaching Python programming during the boot camp I
subscribe to the principle of "learning by doing." As such my
primary objective on day one of the Python boot camp is to get
attendees up and coding as soon as possible. The goal for the first
morning session is to cover the first four chapters of Think Python.

o Chapter 1: The way of the program;

o Chapter 2: Variables, expressions, and statements;
o Chapter 3: Functions;

o Chapter 4: Case study on interface design.

The material in these introductory chapters is clearly presented
and historically students have generally had no trouble interac-
tively working through the all four chapters before the lunch
break. Most attendees break for lunch on the first day feeling
quite good about themselves. Not only have they covered a lot
of material, they have managed to write some basic computer
programs. Maintaining student confidence is important: as long as
students are confident and feel like they are progressing, they will
remain focused on continuing to build their skills. If students get
discouraged, perhaps because they are unable to solve a certain
exercise or decipher a cryptic error traceback, they will lose their
focus and fall behind.

The second morning session covers the next three chapters of
Think Python:

o Chapter 5: Conditionals and recursion;

o Chapter 6: Fruitful functions;
o Chapter 7: Iteration.

At the start of the session I make a point to emphasize that
the material being covered in chapters 5-7 is substantially more
difficult than the introductory material covered in the previous
morning session and that I do not expect many students to make
it through the all of material before lunch. The idea is to manage
student expectations by continually reminding them that the course
is designed in order that they can learn at their own pace

The objective of for the third morning session is the morning
session of day three the stated objective is for students to work
through the material in chapters 8-10 of Think Python.

o Chapter 8: Strings;
o Chapter 9: A case study on word play;
o Chapter 10: Lists.

The material covered in chapter 8 and chapter 10 is particularly
important as these chapters cover two commonly used Python
data types: strings and lists. As a way of drawing attention to
the importance of chapters 8 and 10, I encourage students to work
through both of these chapters before returning to chapter 9.

The fourth morning session covers the next four chapters of
Think Python:

o Chapter 11: Dictionaries;

o Chapter 12: Tuples;

o Chapter 13: Case study on data structure selection;
o Chapter 14: Files.

The morning session of day four is probably the most demand-
ing. Indeed many students take two full session to work through
this material. Chapters 11 and 12 cover two more commonly
encountered and important Python data types: dictionaries and
tuples. Chapter 13 is an important case study that demonstrates the
importance of thinking about data structures when writing library
code.

The final morning session is designed to cover the remaining
five chapters of Think Python on object-oriented programming
(OOP):

http://www.greenteapress.com/thinkpython
http://www.greenteapress.com/thinkpython/html/thinkpython002.html
http://www.greenteapress.com/thinkpython/html/thinkpython003.html
http://www.greenteapress.com/thinkpython/html/thinkpython004.html
http://www.greenteapress.com/thinkpython/html/thinkpython005.html
http://www.greenteapress.com/thinkpython/html/thinkpython006.html
http://www.greenteapress.com/thinkpython/html/thinkpython007.html
http://www.greenteapress.com/thinkpython/html/thinkpython008.html
http://www.greenteapress.com/thinkpython
http://www.greenteapress.com/thinkpython/html/thinkpython009.html
http://www.greenteapress.com/thinkpython/html/thinkpython010.html
http://www.greenteapress.com/thinkpython/html/thinkpython011.html
http://www.greenteapress.com/thinkpython/html/thinkpython009.html
http://www.greenteapress.com/thinkpython/html/thinkpython011.html
http://www.greenteapress.com/thinkpython/html/thinkpython010.html
http://www.greenteapress.com/thinkpython/html/thinkpython012.html
http://www.greenteapress.com/thinkpython/html/thinkpython013.html
http://www.greenteapress.com/thinkpython/html/thinkpython014.html
http://www.greenteapress.com/thinkpython/html/thinkpython015.html
http://www.greenteapress.com/thinkpython/html/thinkpython014.html
http://www.greenteapress.com/thinkpython

PYTHON FOR RESEARCH AND TEACHING ECONOMICS

o Chapter 15: Classes and Objects;

¢ Chapter 16: Classes and Functions;
¢ Chapter 17: Classes and Methods;
o Chapter 18: Inheritance;

o Chapter 19: Case Study on Tkinter.

While this year a few students managed to get through at
least some of the OOP chapters, the majority of students managed
only to get through chapter 13 over the course of the five, three-
hour morning sessions. Those students who did manage to reach
the OOP chapters in general failed to grasp the point of OOP
and did not see how they might apply OOP ideas in their own
research. I see this as a major failing of my teaching as I have
found OOP concepts to be incredibly useful in my own research.
[stachurski2009], and [sargent2014] also make heavy use of OOP
techniques.

While the morning sessions focus on building the foundations
of the Python programming language, the afternoon sessions are
devoted to demonstrating the use of Python in scientific computing
by exploring in greater detail the Python scientific computing
stack. During the afternoon session on day one I motivate the
use of Python in scientific computing and spend considerable time
getting students set up with a suitable Python environment and
demonstrating the basic scientific work flow.

I provide a quick tutorial of the Enthought Canopy distribution.
I then discuss the importance of working with a high quality
text editor, such as Sublime, and make sure that students have
installed both Sublime as well as the relevant Sublime plug-ins
(i.e., SublimeGit and LatexTools for Git and LaTex integration,
respectively; SublimeLinter for code linting, etc). I make sure
that students can install Git and stress the importance of using
distributed version control software in scientific computing and
collaboration. Finally I cover the various flavors of the IPython
interpreter: the basic IPython terminal, IPython QTconsole, and
the IPython notebook.

The afternoon curriculum for days two through five is built
around the Scientific Programming in Python lecture series and
supplemented with specific use cases from my own research. My
goal is to cover all of the material in lectures 1.3, 1.4, and 1.5
covering NumPy, Matplotlib and SciPy, respectively. In practice I
am only able to cover a small subset of this material during the
afternoon sessions.

Advanced PhD training course

The final part of the course (for which I am still seeking funding
to develop!) is a six week PhD advanced training course that fo-
cuses on applying cutting edge computational science techniques
to economic problems via a series of interactive lectures and
tutorials. The curriculum for this part of the course will derive
primarily from [judd1998], [stachurski2009], and parts III and IV
of [sargent2014]. In particular, I would like to cover the following
material.

o Linear equations and iterative methods: Gaussian elimi-
nation, LU decomposition, sparse matrix methods, error
analysis, iterative methods, matrix inverse, ergodic distri-
butions over-identified systems.

e Optimization: 1D minimization, multi-dimensional mini-
mization using comparative methods, Newton’s method for
multi-dimensional minimization, directed set methods for
multi-dimensional minimization, non-linear least squares,
linear programming, constrained non-linear optimization.

63

o Non-linear equations: 1D root-finding, simple methods
for multi-dimensional root-finding, Newton’s method for
multi-dimensional root-finding, homotopy continuation
methods.

o Approximation methods: local approximation methods,
regression as approximation, orthogonal polynomials,
least-squares orthogonal polynomial approximation, uni-
form approximation, interpolation, piece-wise polyno-
mial interpolation, splines, shape-preserving approxima-
tion, multi-dimensional approximation, finite-element ap-
proximations.

o Economic applications: finite-state Markov chains, linear
state space models, the Kalman filter, dynamic program-
ming, linear-quadratic control problems, continuous-state
Markov chains, robust control problems, linear stochastic
models.

Conclusion

In this paper I have outlined the three major components of my
computational methods course: laboratory sessions, an intensive
week-long Python boot camp, and an advanced PhD training
course. The first two components are already up and running
(thanks to funding support from the SGPE, SIRE, and the CIF).
I am still looking to secure funding to develop the advanced PhD
training course component.

I have been pleasantly surprised at the eagerness of eco-
nomics graduate students both to learn computational modeling
and simulation methods and to apply these techniques to the
analytically intractable problems that they are encountering in
their own research. Their eagerness to learn is, perhaps, a di-
rect response to market forces. Both within academia, industry,
and the public sector there is an increasing demand for both
applied and theoretical economists interested in inter-disciplinary
collaboration. The key to developing and building the capacity
for inter-disciplinary research is effective communication using a
common language. Historically that common language has been
mathematics. Increasingly, however, this language is becoming
computation. It is my hope that the course outlined in this paper
might served as a prototype for other Python-based computational
methods courses for economists and other social scientists.

REFERENCES

[behnel2011] S. Behnel, et al. Cython: The best of both worlds,
Computing in Science and Engineering, 13(2):31-
39, 2011.

[cass1965] D. Cass. Optimum growth in an aggregative model of
capital accumulation, Review of Economic Stud-
ies, 32, 233-240.

[judd1998] K. Judd. Numerical Methods for Economists, MIT

Press, 1998.

Koopmans. On the concept of optimal economic

growth, Econometric Approach to Development

Planning, 225-87. North-Holland, 1965.

N.G. Mankiw. Intermediate Macroeconomics, 7th edition,

Worth Publishers, 2010.

[mas-colell1995] A.Mas-Colell,et al. Microeconomic Theory, 7th ediition,
Oxford University Press, 1995.

[oliphant2007] T. Oliphant. Python for scientific computing, Comput-

ing in Science and Engineering, 9(3):10-20, 2007.

Peterson. F2PY: a tool for connecting Fortran and

Python programs, International Journal of Com-

putational Science and Engineering, 4(4):296-305,

2009.

Ramsey. A mathematical theory of saving, Eco-

nomic Journal, 38(152), 543-559.

[koopmans1965] T.

[mankiw2010]

[peterson2009] P.

[ramsey1928] F.

http://www.greenteapress.com/thinkpython/html/thinkpython016.html
http://www.greenteapress.com/thinkpython/html/thinkpython017.html
http://www.greenteapress.com/thinkpython/html/thinkpython018.html
http://www.greenteapress.com/thinkpython/html/thinkpython019.html
http://www.greenteapress.com/thinkpython/html/thinkpython020.html
http://scipy-lectures.github.io
http://scipy-lectures.github.io/intro/numpy/index.html
http://scipy-lectures.github.io/intro/matplotlib/matplotlib.html
http://scipy-lectures.github.io/intro/scipy.html
http://quant-econ.net/introductory_applications.html
http://quant-econ.net/main_applications.html

64
[romer2011]
[sargent2014]

[sato1963]

[solow1956]

[stachurski2009]

[van2011]

Romer. Advanced Macroeconomics, 4th edition,
MacGraw Hill, 2011.

Sargent and J. Stachurski. Quantitative Economics,
2014.

Sato. Fiscal policy in a neo-classical growth
model: An analysis of time required for equili-
brating adjustment, Review of Economic Studies,
30(1):16-23, 1963.

Solow. A contribution to the theory of economic
growth, Quarterly Journal of Economics, 70(1):64-
95, 1956.

Stachurski. Economic dynamics: theory and com-
putation, MIT Press, 2009.

Van Der Walt, et al. The NumPy array: a structure
for efficient numerical computation, Computing in
Science and Engineering, 13(2):31-39, 2011.

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

	Introduction
	Why Python?
	Motivating the use of numerical methods in economics
	The Solow growth model
	Numerically solving the Solow model

	Course outline
	Laboratory sessions
	Python boot camp
	Advanced PhD training course

	Conclusion
	References

