94

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Blaze: Building A Foundation for Array-Oriented
Computing in Python

Mark Wiebe**, Matthew Rocklin*, TJ Alumbaugh*, Andy Terrel*

http://www.youtube.com/watch?v=9HPR-1PdzUk

Abstract—We present the motivation and architecture of Blaze, a library for
cross-backend data-oriented computation. Blaze provides a standard interface
to connect users familiar with NumPy and Pandas to other data analytics
libraries like SQLAIchemy and Spark. We motivate the use of these projects
through Blaze and discuss the benefits of standard interfaces on top of an
increasingly varied software ecosystem. We give an overview of the Blaze
architecture and then demonstrate its use on a typical problem. We use the
abstract nature of Blaze to quickly benchmark and compare the performance of
a variety of backends on a standard problem.

Index Terms—array programming, big data, numpy, scipy, pandas

Introduction
Standard Interfaces

Software and user communities around data analysis have changed
remarkably in the last few years. The growth in this ecosystem
come both from new computational systems and also from an
increasing breadth of users. On the software side we see activity
in different languages like Python [Pyt14], R [RLal4], and Julia
[Jul12], and also in distributed systems like the projects surround-
ing the Hadoop File System (HDFS) [Bor(O7]. On the user side we
see increased adoption both from physical sciencists, with a strong
tradition of computation, and also from social scientists and policy
makers with less rigorous training. While these upward trends are
encouraging, they also place significant strain on the programming
ecosystem. Keeping novice users adapted to quickly changing
programming paradigms and operational systems is challenging.

Standard interfaces facilitate interactions between layers of
complex and changing systems. For example, NumPy fancy
indexing syntax has become a standard interface among array
programming systems within the Python ecosystem. Projects with
very different implementations (e.g. NumPy [Van11], SciPy.sparse
[JonO1], Theano [Ber10]), SciDB [Brol0]) all provide the same
indexing interface despite operating very differently.

Standard interfaces help users to adapt to changing tech-
nologies without learning new programming paradigms. Standard
interfaces help project developers by bootstrapping a well trained
community of users. Uniformity smoothes adoption and allows the

x Corresponding author: mwiebe @ continuum.io
# Continuum Analytics

Copyright © 2014 Mark Wiebe et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

*

ecosystem to evolve rapidly without the drag of everyone having
to constantly learn new technologies.

Interactive Arrays and Tables

Analysis libraries like NumPy and Pandas demonstrate the value
of interactive array and table objects. Projects such as these
connect a broad base of users to efficient low-level operations
through a high-level interface. This approach has given rise to
large and productive software ecosystems within numeric Python
(e.g. SciPy, Scikits, etc.) However, both NumPy and Pandas are
largely restricted to an in-memory computational model, limiting
problem sizes to a certain scale.

Concurrently developed data analytic ecosystems in other
languages like R and Julia provide similar styles of functionality
with different application foci. The Hadoop File System (HDFS)
has accrued a menagerie of powerful distributed computing sys-
tems such as Hadoop, Spark, and Impala. The broader scientific
computing community has produced projects like Elemental and
SciDB for distributed array computing in various contexts. Finally,
traditional SQL databases such as MySQL and Postgres remain
both popular and very powerful.

As problem sizes increase and applications become more
interdisciplinary, analysts increasingly require interaction with
projects outside of the NumPy/Pandas ecosystem. Unfortunately,
these foreign projects rarely feel as comfortable or as usable as
the Pandas DataFrame.

What is Blaze

Blaze provides a familiar interface around computation on a
diverse set of computational systems, or backends. It provides
extensible mechanisms to connect this interface to new compu-
tational backends. Backends which the Blaze project explicitly
provides hooks to include Python, Pandas, SQLAlchemy, and
Spark.

This abstract connection to a variety of projects has the
following virtues:

« Novice users gain access to relatively exotic technologies
Users can trivially shift computational backends within a
single workflow

Projects can trivially shift backends as technologies change
New technologies are provided with a stable interface and

a trained set of users

Blaze doesn’t do any computation itself. Instead it depends
heavily on existing projects to perform computations. Currently


http://www.youtube.com/watch?v=9HPR-1PdZUk
mailto:mwiebe@continuum.io

BLAZE: BUILDING A FOUNDATION FOR ARRAY-ORIENTED COMPUTING IN PYTHON

Blaze covers tabular computations as might fit into the SQL or
Pandas model of computation. We intend to extend this model
to arrays and other highly-regular computational models in the
future.

Related Work

We separate related work into two categories:

1) Computational backends useful to Blaze
2)  Similar efforts in uniform interfaces

Computational backends on which Blaze currently relies in-
clude Pandas, SQLAlchemy, PyToolz, Spark, PyTables, NumPy,
and DyND. Pandas [McK10] provides an efficient in-memory
table object. SQLAlchemy [sqlal] handles connection to a variety
of SQL dialects like SQLite and Postgres. PyToolz [Roc13] pro-
vides tuned functions for streaming computation on core Python
data structures. NumPy [Vanl1] and DyND [Wiel3] serve as in-
memory arrays and common data interchange formats. PyTables
[Alt03] provides efficient sequential computations on out-of-core
HDFS5 files.

Uniform symbolic interfaces on varied computational re-
sources are also common. SQLAlchemy provides a uniform
interface onto various SQL implementations. Theano [Berl0]
maps array operations onto Python/NumPy, C, or CUDA code
generation. While computer algebra projects like SymPy [SymO08]
often have expression trees they also commonly include some
form of code generation to low-level languages like C, Fortran
but also to languages like LaTeX and DOT for visualization.

Blaze Architecture

Blaze separates data analytics into three isolated components:

« Data access: access data efficiently across different storage
systems,
e.g. CSV, HDF'5, HDF'S, ....

« Symbolic Expression: reason symbolically about the de-
sired result,
e.g. Join, Sum, Split—-Apply—-Combine, ...

« Backend Computation: execute computations on a variety
of backends,
e.g. SQL, Pandas, Spark, ...

We isolate these elements to enable experts to create well
crafted solutions in each domain without needing to understand
the others, e.g., a Pandas expert can contribute without knowing
Spark and vice versa. Blaze provides abstraction layers between
these components to enable them to work together cleanly.

The assembly of these components creates in a multi-format,
multi-backend computational engine capable of common data
analytics operations in a variety of contexts.

Blaze Data

Blaze Data Descriptors are a family of Python objects that provide
uniform access to a variety of common data formats. They provide
standard iteration, insertion, and NumPy-like fancy indexing over
on-disk files in common formats like CSV, JSON, and HDF5
in memory data strutures like core Python data structures and
NumPy arrays as well as more sophisticated data stores like SQL
databases. The data descriptor interface is analogous to the Python
buffer interface described in PEP 3118 [Oli06], but with a more
flexible APIL.

95

Over the course of this article we’ll refer to the following
simple accounts. csv file:

id, name, balance
Alice, 100
Bob, -200
Charlie, 300
Denis, 400
Edith, -500

g W N
~ S S S~

>>> from blaze import =

>>> csv = CSV('accounts.csv') # Create data object

Iteration: Data descriptors expose the __iter__ method,
which provides an iterator over the outermost dimension of the
data. This iterator yields vanilla Python objects by default.

>>> list (csv)

[(1L, u'Alice', 100L),
2L, u'Bob', -200L),
3L, u'Charlie', 300L),
4L, u'Denis', 400L),
5L, u'kEdith', -500L)]

Data descriptors also expose a chunks method, which also
iterates over the outermost dimension but instead of yielding
single rows of Python objects instead yields larger chunks of
compactly stored data. These chunks emerge as DyND arrays that
are more efficient for bulk processing and data transfer. DyND
arrays support the _ _array__ interface and so can be easily
converted to NumPy arrays.

>>> next (csv.chunks())

nd.array([[1l, "Alice", 1007,
[2, "Bob", -2001],
[3, "Charlie", 3001,
[4, "Denis", 400],
[5, "Edith", -50011,
type="5 x {id : int64, name string, balance inte4d}™)

Insertion: Analagously to __iter__ and chunks, the
methods extend and extend_chunks allow for insertion of
data into the data descriptor. These methods take iterators of
Python objects and DyND arrays respectively. The data is coerced
into whatever form is native for the storage medium, e.g. text for
CSV, or INSERT statements for SQL.

>>> csv = CSV('accounts.csv', mode='a')
>>> csv.extend([ (6, 'Frank', 600),
(7, 'Georgina', 700)1)

Migration: The combination of uniform iteration and
insertion along with robust type coercion enables trivial data
migration between storage systems.

>>> sqgl = SQL('postgresqgl://user:pass@host/',
'accounts', schema=csv.schema)
>>> sqgl.extend(iter (csv)) # Migrate csv file to DB

Indexing: Data descriptors also support fancy indexing. As
with iteration, this supports either Python objects or DyND arrays

through the .py[...] and .dynd[...] interfaces.
>>> list(csv.pyl::2, ['name', 'balance'll)
[(u'Alice', 100L),

(u'Charlie', 300L),

(u'Edith', -500L),

(u'Georgina', 700L)]
>>> csv.dynd[::2, ['name', 'balance']]

nd.array ([["Alice", 100],



96

["Charlie",
["Edith",
we

Georgina",
type="var * {name

3007,
-500],
70011,

string, balance int64}")

Performance of this approach varies depending on the underlying
storage system. For file-based storage systems like CSV and
JSON, it is necessary to seek through the file to find the right
line (see [iopro]), but don’t incur needless deserialization costs
(i.e. converting text into floats, ints, etc.) which tend to dominate
ingest times. Some storage systems, like HDFS5, support random
access natively.

Cohesion: Different storage techniques manage data dif-
ferently. Cohesion between these disparate systems is accom-
plished with the two projects datashape, which specifies the
intended meaning of the data, and DyND, which manages efficient
type coercions and serves as an efficient intermediate representa-
tion.

Blaze Expr

To be able to run analytics on a wide variety of computational
backends, it’s important to have a way to represent them inde-
pendent of any particular backend. Blaze uses abstract expression
trees for this, including convenient syntax for creating them and
a pluggable multiple dispatch mechanism for lowering them to
a computation backend. Once an analytics computation is repre-
sented in this form, there is an opportunity to do analysis and
transformation on it prior to handing it off to a backend, both for
optimization purposes and to give heuristic feedback to the user
about the expected performance.

To illustrate how Blaze expression trees work, we will build up
an expression on a table from the bottom , showing the structure
of the trees along the way. Let’s start with a single table, for which
we’ll create an expression node

>>> accts TableSymbol ('accounts',

'{id: int, name: string, balance: int}')
to represent a abstract table of accounts. By defining operations
on expression nodes which construct new abstract expression
trees, we can provide a familiar interface closely matching that
of NumPy and of Pandas. For example, in structured arrays and
dataframes you can access fields as accts [ 'name'].
Extracting fields from the table gives us Column objects, to
which we can now apply operations. For example, we can select

all accounts with a negative balance.

>>> deadbeats acctslaccts['balance'] < 0]['name']

or apply the split-apply-combine pattern to get the highest grade
in each class

>>> By (accts, accts['name'], accts['balance'].sum())

In each of these cases we get an abstract expression tree rep-
resenting the analytics operation we have performed, in a form
independent of any particular backend.

By
/ | \
accts Column Sum
/ \ |
accts 'name’ Column
/ \
accts 'balance’

PROC. OF THE 13th PYTHON IN SCIENCE CONF. (SCIPY 2014)

Blaze Compute

Once an analytics expression is represented as a Blaze expression
tree, it needs to be mapped onto a backend. This is done by walk-
ing the tree using the multiple dispatch compute function, which
defines how an abstract Blaze operation maps to an operation in
the target backend.

To see how this works, let’s consider how to map the By node
from the previous section into a Pandas backend. The code that
handles this is an overload of compute which takes a By node
and a DataFrame object. First, each of the child nodes must
be computed, so compute gets called on the three child nodes.
This validates the provided dataframe against the accts schema
and extracts the 'name’ and ’balance’ columns from it. Then,
the pandas groupby call is used to group the *balance’ column
according to the name’ column, and apply the sum operation.

Each backend can map the common analytics patterns sup-
ported by Blaze to its way of dealing with it, either by computing
it on the fly as the Pandas backend does, or by building up an
expression in the target system such as an SQL statement or an
RDD map and groupByKey in Spark.

Multiple dispatch provides a pluggable mechanism to connect
new back ends, and handle interactions between different back-
ends.

Example

We demonstrate the pieces of Blaze in a small toy example.
Recall our accounts dataset

>>> L = [(1l, 'Alice', 100),
(2, '"Bob', -200),
(3, 'Charlie', 300),
(4, 'Denis', 400),
(5, 'Edith', -500)]

And our computation for names of account holders with negative
balances

>>> deadbeats = accts[accts['balance'] < 0]['name']

We compose the abstract expression, deadbeats with the data
L using the function compute.

>>> list (compute (deadbeats,
['Bob', 'Edith']

L))

Note that the correct answer was returned as a list.

If we now store our same data 1. into a Pandas DataFrame and
then run the exact same deadbeats computation against it, we
find the same semantic answer.

>>> df=DataFrame (L, columns=['id',
>>> compute (deadbeats, df)

1 Bob
4 Edith
Name: name,

'name', 'balance'l])

dtype: object
Similarly against Spark

>>> sc = pyspark.SparkContext ('local',
>>> rdd sc.parallelize (L)

'Spark-app')

>>> compute (deadbeats,
PythonRDD[1]

rdd)
at RDD at PythonRDD.scala:37

>>> _ .collect ()
['Bob', 'Edith']

# Distributed DataStructure



BLAZE: BUILDING A FOUNDATION FOR ARRAY-ORIENTED COMPUTING IN PYTHON

In each case of calling compute (deadbeats, ...) against
a different data source, Blaze orchestrates the right computational
backend to execute the desired query. The result is given in the
form received and computation is done either with streaming
Python, in memory Pandas, or distributed memory Spark. The
user experience is identical in all cases.

Blaze Interface

The separation of expressions and backend computation provides a
powerful multi-backend experience. Unfortunately, this separation
may also be confusing for a novice programmer. To this end
we provide an interactive object that feels much like a Pandas
DataFrame, but in fact can be driving any of our backends.

>>> sqgl = SQL('postgresqgl://postgres@localhost',

. 'accounts')

>>> t = Table(sql)

S>>t
id name balance

0 1 Alice 100

1 2 Bob -200

2 3 Charlie 300

3 4 Denis 400

4 5 Edith =500

>>> t[t['balance'] < 0]['name']
name

0 Bob

1 Edith

The astute reader will note the use of Pandas-like user experience
and output. Note however, that these outputs are the result of
computations on a Postgres database.

Discussion

Blaze provides both the ability to migrate data between data
formats and to rapidly prototype common analytics operations
against a wide variety of computational backends. It allows one
to easily compare options and choose the best for a particular
setting. As that setting changes, for example when data size grows
considerably, our implementation can transition easily to a more
suitable backend.

This paper gave an introduction to the benefits of separating
expression of a computation from its computation. We expect
future work to focus on integrating new backends, extending to
array computations, and composing Blaze operations to transform
existing in-memory backends like Pandas and DyND into an out-
of-core and distributed setting.

REFERENCES

[Zah10] Zaharia, Matei, et al. "Spark: cluster computing with working sets."
Proceedings of the 2nd USENIX conference on Hot topics in cloud
computing. 2010.

[McK10] Wes McKinney. Data Structures for Statistical Computing in
Python, Proceedings of the 9th Python in Science Conference, 51-
56 (2010)

[sqlal]  http://www.sqlalchemy.org/

[iopro] http://docs.continuum.io/iopro/index.html

[Roc13] Rocklin, Matthew and Welch, Erik and Jacobsen, John. Toolz Docu-
mentation, 2014 http://toolz.readthedocs.org/

[Wiel3] Wiebe, Mark. LibDyND https://github.com/ContinuumIO/libdynd

[Sym08] SymPy Development Team. "SymPy: Python library for symbolic
mathematics." (2008).

[Ber10] Bergstra, James, et al. "Theano: a CPU and GPU math compiler in
Python." Proc. 9th Python in Science Conf. 2010.

[Bor07] Borthakur, Dhruba. "The hadoop distributed file system: Architecture
and design." Hadoop Project Website 11 (2007): 21.

[Alt03]

[Vanl1]

[O1i06]
[Pyt14]

[RLal4]

[Jull2]

[JonO1]

[Bro10]

97

Alted, Francesc, and Mercedes Fernandez-Alonso. "PyTables: pro-

cessing and analyzing extremely large amounts of data in Python."

PyCon 2003 (2003).

Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The

NumPy Array: A Structure for Efficient Numerical Computation,

Computing in Science & Engineering, 13, 22-30 (2011),

Oliphant, Travis and Banks, Carl. http://legacy.python.org/dev/peps/

pep-3118/

G. Van Rossum. The Python Language Reference Manual.

Network Theory Ltd., September 2003.

R Core Team (2014). R: A language and environment for statistical

computing. R Foundation for Statistical Computing, Vienna, Austria.

URL http://www.R-project.org/.

J.  Bezanson, S. Karpinski, V. B. Shah, and A. Edelman. Julia:

A fast dynamic language for technical computing. CoRR,
abs/1209.5145, 2012.

Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific

Tools for Python, 2001-, http://www.scipy.org/ [Online; accessed

2014-09-25].

Paul G. Brown, Overview of sciDB: large scale array storage,

processing and analysis, Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data, June 06-10, 2010,

Indianapolis, Indiana, USA


http://www.sqlalchemy.org/
http://docs.continuum.io/iopro/index.html
http://toolz.readthedocs.org/
https://github.com/ContinuumIO/libdynd
http://legacy.python.org/dev/peps/pep-3118/
http://legacy.python.org/dev/peps/pep-3118/
http://www.R-project.org/
http://www.scipy.org/

	Introduction
	Standard Interfaces
	Interactive Arrays and Tables
	What is Blaze
	Related Work

	Blaze Architecture
	Blaze Data
	Blaze Expr
	Blaze Compute
	Example
	Blaze Interface
	Discussion

	References

