
PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020) 107

Having your cake and eating it: Exploiting Python for
programmer productivity and performance on

micro-core architectures using ePython

Maurice Jamieson‡∗, Nick Brown‡, Sihang Liu‡

F

Abstract—Micro-core architectures combine many simple, low memory, low
power computing cores together in a single package. These can be used as
a co-processor or standalone but due to limited on-chip memory and eso-
teric nature of the hardware, writing efficient parallel codes for these chips is
challenging. In this paper we discuss our very low memory implementation of
Python, ePython, supporting the rapid development of parallel Python codes for
these co-processors. An offload abstraction is introduced, where programmers
decorate specific functions in their Python code, running under any Python
interpreter on the host CPU, with the underlying technology then taking care of
the low level data movement, scheduling and ePython execution on the micro-
core co-processor. A benchmark solving Laplace’s equation for diffusion via
Jacobi iteration is used to explore the performance of ePython on three different
micro-core architectures, and introduces work around native compilation for
micro-cores and the performance advantages that this can provide.

Index Terms—ePython, micro-cores, RISC-V, MicroBlaze, PicoRV32, Epiphany

Introduction

Micro-core architectures combine many simple, low power, cores
on a single processor package. These micro-core architectures,
providing significant parallelism and performance for low power
but a major limitation is programmer productivity, where typically
developers must write code in C, linked to low level libraries.
Furthermore they must possess a deep understanding of the
technology and address esoteric aspects including ensuring con-
sistency with a (sometimes very) weak memory model, aligning
data to word boundaries correctly, and the lack of basic features
such as IO. As such, even the few experts who are able to program
these chips struggle when it comes to obtaining good performance.

It was our hypothesis that Python can significantly help here
and this is the reason why we developed ePython, an implemen-
tation of Python designed specially for micro-core architectures.
Providing execution via both an interpreter (at around 24KB in
size) and native compilation of code, ePython enables Python
programmers to easily offload specific kernels in their code onto
the micro-cores. This involves the seamless transfer of code and
data to the device, as well as the copying back of results from the

* Corresponding author: maurice.jamieson@ed.ac.uk
‡ EPCC at the University of Edinburgh

Copyright © 2020 Maurice Jamieson et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

device. With very small memory spaces, of around between 32KB
to 64KB per core, in order to support usable datasets then the
underlying technology must also be capable of taking advantage
of slower by larger external memories, and abstract the low-level
details involved in moving data between these areas from the
programmer.

In this paper we describe the use of ePython to program micro-
cores from the perspective of supporting the offload of specific
functions from an existing Python application, and then exe-
cute these kernels on the micro-cores. This technology currently
supports a variety of micro-core architectures which include the
Adapteva Epiphany, Xilinx MicroBlaze, and RISC-V PicoRV32,
these three being the targets explored in this paper. The paper
is organised as follows; in the next section we explore the
background to micro-cores in more detail, some of the Python
frameworks used to program accelerators and embedded technolo-
gies, and describe ePython. The section which follows introduces
our abstractions for offloading kernels in application code which
can be running via any Python interpreter on the host, onto the
micro-cores and how these might be used most effectively. This
is then followed by a description of the lower level details of
ePython, discussing some of the architectural decisions that have
been made in order to support easy porting between architectures
and to fit into the limited memory spaces available. We then
explore the performance of ePython on our three architectures of
interest, initially focussing on the interpretation approach, which
is currently most mature, before comparing and contrasting this
against native code generation. Lastly we draw some conclusions
and discuss further work.

Background and related work

There are numerous micro-core architectures including the PEZY-
SC2 [pezy-sc] which powered the top Green 500 machine until it
was decommissioned in March 2019, the Kalray Boston [kalray]
and, the Celerity [ajayi2017celerity]. The work and experiments
described in this paper focuses on three distinct types of micro-
core; the Epiphany [epiphany], MicroBlaze [microblaze], and
PicoRV32 [picorv32]. Developed by Adapteva and packaged as
a single physical chip, the Epiphany is still arguably one of
the most ubiquitous consumer-grade micro-cores, even thought
it was developed a few years ago. On the Epiphany version
3 (Epiphany-III) each of these cores consists of a RISC-based

mailto:maurice.jamieson@ed.ac.uk

108 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

CPU, 32KB of high bandwidth on-core local memory (SRAM),
two DMA engines and a network interface. The Epiphany is a
physical chip, and whilst this is common place with consumer
grade CPUs, it is expensive (approx. $1 million) to tape out a
physical design. As such, soft-cores are also commonplace, where
reconfigurable logic chips (such as FPGAs) are configured to
behave like a specific CPU design. These is the case with the
other two micro-cores that we target in this paper, the MicroBlaze
and PicoRV32, and from the end programmer’s perspective this
chip looks exactly like a physical CPU. Crucially this approach is
much cheaper than fabricating physical cores, although typically
the reconfigurable nature of the fabric imposes a reduced clock
frequency compared to a physical core. Irrespective of whether
the chip is physical or soft, they contain many cores, each with
very limited amounts of memory, and the reason for picking these
specific three technologies here is both their ubiquity, and also
representation of a wider class of micro-cores. The micro-core
architecture is applicable to a wide range of problem domains,
and performance levels close to 2 GFLOPs per core have been
demonstrated [epiphany-specifications] in the field of signal pro-
cessing on the Epiphany. A major advantage to this technology is
around power efficiency, for instance even though it was designed
in 2013, the 16 core Epiphany-III, draws a maximum of 2 Watts
and delivers 16 GFLOPs/Watt which is very impressive even by
today’s standards.

In addition to the micro-core CPU, one also requires a board
to mount this chip and connect it to the outside world. Adapteva,
who developed the Epiphany, also manufactured the Parallella
[parallella] which is a single board computer (SBC). The Parallella
combines a host dual core ARM A9 CPU, with 1 GB of DRAM
and the 16 core Epiphany-III. The theoretical off-chip bandwidth
of the Epiphany is 600 MB/s, however in practice the maximum
obtainable is around 150 MB/s. For our two soft-cores we use the
same base-board, a Pynq-II SBC, and a Xilinx Zynx-7020 recon-
figurable FPGA. The Zynq-7020 chip is especially interesting, as
in a single physical package not only is there the reconfigurable
fabric which we can use to represent our micro-cores of interest,
but furthermore a dual core ARM A9 CPU which runs Linux.
Therefore in a single chip we have the combination of a dual-
core host CPU on the one-hand, and logic configured as multiple
micro-core CPUs on the other. The board also contains 512 MB
RAM with an off-chip bandwidth of 131.25 MB/s. This specific
FPGA contains 53,200 programmable Look-Up Tables (LUTs),
and around 627 KBs of block RAM (BRAM). In fact it is this
BRAM, effectively the amount of local memory per core, which
is the limiting factor here and we can fit a maximum of eight 64
KB MicroBlaze or PicoRV32 CPUs and supporting infrastructure
onto the Zynq, which is the configuration used throughout this
paper.

Whilst we have picked these micro-core technologies due to
their availability and popularity, in our opinion the MicroBlaze and
PicoRV32 are the more interesting targets. The MicroBlaze is de-
veloped by Xilinx, a large multi-national corporation who also de-
velop the underlying FPGAs and there is significant commitment
by Xilinx to the technology. On the other-hand, the PicoRV32
is an implementation of the RISC-V Instruction Set Architecture
(ISA). RISC-V is an open standard ISA and, first introduced in
2010, one of the major reasons for its popularity has been the fact
that it is provided under open source licenses that do not require
fees. This means that anyone is free to download the specification
and develop their own implementation of the ISA, which indeed

the PicoRV32 project have done. Furthermore, because all these
CPUs share the same ISA, then the software eco-system can often
be trivially ported between CPUs. This includes complex tooling
such as compilers, debuggers, and profilers, which in themselves
require significant development effort. Enabling developers of a
new RISC-V based CPU to take the existing RISC-V software eco-
system, and run this with little or no modifications on their chip,
significantly reduces the effort required in developing such new
CPUs. With a large community, who are mixture of commercial
and academic contributors, RISC-V is currently a very topical and
active area of research and commercial exploitation.

Whilst we have aimed to provide the reader some glimpse
into the richness and diversity that makes up this area of CPU
architectures, there is one specific characteristic that they all share.
Namely, irrespective of whether one’s micro-core is a physical
Epiphany or soft-core such as the MicroBlaze, the programming
of these technologies is technically challenging. Based on the
severe limitations of the hardware, it will be of no surprise to
the reader that they run bare metal (i.e. without an OS), and whilst
some approaches beyond using C with the low level hardware
specific library, such as OpenCL [opencl] and OpenMP [openmp]
have been developed, these are at different levels of maturity and
still require the programmer to explicitly program the chip using
C at a very low level. Indeed, Xilinx’s Pynq-II board has been
designed around ease of use, loading up a default configuration of
three MicroBlaze cores, and presenting a Python interface via the
Jupyter notebook. However, Python only runs on the host ARM
CPU of the Pynq-II and the programmer must still write C code,
albeit embedded within the Jupyter notebook, to execute directly
on each MicroBlaze and interface with them appropriately using
host side code.

This programmability challenge is made more severe when one
considers the tiny amount of memory per core, for instance 32KB
on the Epiphany and 64KB on the MicroBlaze and PicoRV32.
Whilst a portion of the board’s main DRAM memory is often
directly addressable by the micro-cores, there is a significant
performance penalty when going off chip and using this in com-
parison with the on-core RAM. Therefore to achieve reasonable
performance programmers have to either keep their code and data
within the limits of the on-core memory, or design their codes to
explicitly cache and pre-fetch. Regardless, this adds considerable
additional complexity to any non-trivial codes and, it is our
firm belief that this should be abstracted by the programming
technology. Potentially this is where the programmer productivity
gains of Python can be of significant benefit to micro-cores, and
it has already been seen that without an easy to use environment,
then the adoption of this technology will be necessarily narrowed.

There are some other Python-based technologies in a some-
what similar space and arguably the most ubiquitous of these
is MicroPython [micropython]. MicroPython is an implementa-
tion of Python for micro-controllers and is designed to be both
lightweight and also to enable programmers to execute Python
codes easily, as well as exploring the lower level details of the
machines. Similarly to ePython, it can run bare metal on a variety
of controllers or run on more mainstream machines such as Unix
or Windows OSes. Whilst MicroPython is very interesting, it is
fundamentally different from ePython in a number of respects.
Firstly memory size, where MicroPython requires 256KB of code
space and 16KB of RAM [micropython-website], and whilst this
is small in comparison to more mainstream Python interpreters
such as CPython, it is still significantly above the limitations of

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON109

micro-core architectures such as the Epiphany. In addition to the
RAM, embedded controllers often contain dedicated Read Only
Memory (ROM) too which can be flashed with the MicroPython
code. This is the case with the pyboard, which is the official
MicroPython microcontroller board, as it contains both 1MB of
ROM and 192KB of RAM, and as such provides plenty of space
for MicroPython. In contrast, micro-cores are CPUs and tend not
to have such ROM associated with them, and therefore ePython
has a much more limited memory space within which it can work.
The ePython interpreter and runtime code size is 24KB on the
Epiphany (compared against MicroPython’s 256KB), and because
it must fit into the very limited CPU’s RAM, was architected from
day one to achieve this by adopting specific design decisions.
The other big difference between MicroPython and ePython is
that of parallelism because, whilst there is multi-threading support
in MicroPython, parallelism is not the first class concern of this
technology and there is more limited support for writing parallel
codes to run over a multiple cores concurrently. We had to
provide this in ePython because the vast majority of micro-core
architectures contain multiple cores that must interoperate.

Numba [numba] is an annotation driven approach to acceler-
ating and offloading Python kernels, where the programmer dec-
orates specific functions in their code and these will be compiled
into native machine code for execution. For instance the @jit
decorator indicates that a specific function should be just-in-time
(JIT) compiled and the native code executed rather than the Python
code. Their approach has been extended to GPUs, where functions
can be decorated with @cuda.jit which will execute them on the
GPU and perform all data movement necessary. The management
of data on the device is also possible via in-built functions such
as cuda.to_device to copy specific data to the GPU. The machine
code for kernels that this technology generates is larger than the
memory spaces available in micro-core architectures, so it is not
applicable directly for our target architecture, however Numba’s
use of annotations is a very convenient way of marking which
functions should be offloaded. Their approach is currently tightly
coupled to GPUs, for instance when one launches a kernel they
must explicitly specify some GPU specific concerns such as the
number of GPU threads per block and number of blocks per grid,
but the general idea of annotating functions in this manner could
be applied more generally to micro-cores.

ePython

ePython, which was first introduced in [epython], is an imple-
mentation of a subset of Python for micro-core architectures and
is designed to be portable across numerous technologies. The
primary purpose of ePython was initially educational, and also as
a research vehicle for understanding how best to program these
architectures and prototyping applications upon them. ePython
was initially created with the aim of allows a novice to go from
zero to hero, i.e. with no prior experience write a simple parallel
hello world example that runs on the micro-cores, in less than a
minute. Due to the memory limitations of these architectures, the
ePython virtual machine (which is the part that actually runs on the
micro-core architectures) is around 24KB on the Epiphany, with
the remaining 8KB of on-core memory used for user byte code,
the stack, heap and communications. It is possible for byte code,
the stack and heap to overflow into shared memory transparently,
but there is a performance impact when doing so. ePython also
supports a rich set of message passing primitives such as point to
point messages, reductions and broadcasts between the cores, and

it is also possible to run virtual cores where the host CPU behaves
like micro-cores and can pass messages between themselves as
normal. The code listing below illustrates a simple example which
is executed directly on the micro-cores and launched from the
host command line such as issuing epython example.py. In this
example, each micro-core will generate a random integer between
0 and 100 and then perform a collective message passing reduction
to determine the maximum random number (due to the "max"
operator) which is then displayed by each core.
1 from parallel import reduce
2 from random import randint
3

4 a = reduce(randint(0,100), "max")
5 print "The highest random number is " + str(a)

This approach was initially developed with the objective of
running rather simple examples on the micro-cores directly and
exposing programmers to the fundamental ideas behind paral-
lelism in a convenient programming language. As such, ePython
implements a subset of Python 2.7, and was initially focussed
around the imperative aspects of the code with features such as
garbage collection, and has been extended to include other aspects
of the Python language as time has progressed, although does not
provide a complete implementation due to memory space limits.
However, going beyond the work of [epython], we realised that
there was potential for ePython to support real-world applications
on micro-cores, but to do so a more powerful approach to pro-
grammer interaction was required. This is because not all parts of
an application are necessarily suited for offloading to micro-cores,
so an approach where specific functions can be selected for offload
conveniently was required to extend the technology, which is the
focus of the next section.

Offloading application kernels

We have extended ePython to couple it with existing Python codes
running in any Python interpreter on the host CPU. As illustrated
in Figure 1, ePython is comprised of three main components:

• A module which programmers import into their applica-
tion Python code, running under any Python interpreter on
the host, which provides abstractions and underlying sup-
port for handling the offloading of select code fragments
to the micro-cores

• An ePython support host process which performs code
preparation (such as lexing and parsing) as well as some
general management functionality such as the marshalling
and control of the micro-cores

• An execution engine on each of the micro-cores. This con-
tains an architecture specific runtime, paired with either the
ePython interpreter or execution of native code which has
been generated from the programmer’s offloaded Python
kernels.

The first component is connected to the second via POSIX
shared memory, and the method by which the second component
connects to the third is architecturally specific depending upon
the micro-cores in question. The targets considered in this paper
all connect with the host via memory mapped regions, where
specific portions of the memory space are visible to both host
and micro-cores, although these tend to be mapped at different ab-
solute addresses between the host and micro-core. The underlying
mechanism for achieving this communication is abstracted as a set
of services in the host’s monitor, and the micro-core’s architecture

110 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

specific runtime. Therefore we have been able to support ePython
on other architectures which connect using different mechanisms,
such as RS232 via a daughter board, by providing alternative
implementations of the services.

In this section we explore the first of these components, and
more specifically the abstractions provided which enable Python
programmers to direct what aspects of their code should run on
the micro-cores.

Similar to the approach taken by Numba, the programmer
annotates kernel functions to be offloaded to the micro-cores
with a specific decorator, @offload. When the CPU Python code
executes a call to functions marked with this decorator it will,
behind the scenes, run that function using ePython on the micro-
cores, passing any input values and sending back return values.
The code listing below provides an illustration of this, where the
mykernel function has been marked with @offload, so the call
to mykernel at line 7 will launch this kernel on each micro-core,
passing the argument 22 to each function execution and obtain,
as a list, the return value from the kernel (in this case the integer
value 10 from each core). In this example the only modification
required to standard Python code for offloading is importing the
epython module and decorating the function. Function arguments
are pass by reference, so it is only a reference to the data
which is passed to the micro-cores upon kernel invocation, with
ePython transparently transferring data as it is requiring during the
execution of the kernel.

1 from epython import offload
2 @offload
3 def mykernel(a):
4 print "Hello with " + str(a)
5 return 10
6

7 print mykernel(22)

Behind the scenes to implement this offload functionality, upon
initialisation the epython module will parse the full Python code
and search for functions that might need to be executed on
the micro-cores, such as the kernels and functions that they
call into. These are extracted out into a separate Python file
which is passed to ePython, which itself is then executed as
a subprocess. Launched on each micro-core, low level message
passing communications pass between the micro-cores and Python
interpreter on the host via the ePython support host process.
Upon the initialisation of a user’s Python code on the CPU, the
imported epython module interrogates ePython about the byte code
location of all remotely executable functions, which is then stored.
Subsequently, to execute a specific function on the micro-cores
the host sends the stored byte code location of the function to the
target core(s) in combination with an execution token. All output
from the ePython subprocess is forwarded to standard output, so
the programmer can still perform IO and view error messages
raised by their offloaded kernels. If a programmer wishes to import
specific modules in their kernels, then they can utilise either the
import or use statements at the top of the function body.

Kernel execution options

The semantics of the offload is that, by default, the kernel will be
executed on all available micro-cores and the caller will block until
these have been executed. It is possible to override these defaults to
further control the behaviour of kernel launch and execution. This
is achieved by either providing explicit arguments to the decorator
such as @offload(async=True) which will apply the option to

all executions of the kernel, or alternatively the programmer can
provide options as a named argument to the function call. An
example of the later is mykernel(22, async=True), which will
override the arguments of the decorator for this specific kernel
invocation. There are a number of possible options which can be
used to control kernel behaviour:

Asynchronous execution
By providing the argument async=True the execu-
tion of the kernel will proceed in a non-blocking
manner where the function call will return a handler
of type KernelExecutionHandler immediately. This
object represents the state of the kernel execution
over one or more micro-cores, and provides meth-
ods for testing kernel completion, waiting on kernel
completion on all cores (and obtaining the results)
and waiting for kernel completion on any core (and
obtaining results.)

Auto
The argument auto=n, where n is an integer repre-
senting the number of cores to execute the kernel
over. This signifies that the programmer does not care
which cores are used, but instead to run the kernel on
n free micro-cores whenever these are available.

All
The argument all=True will collectively execute the
kernel on all available micro-cores.

Target
The argument target=n, where n is either an integer
core id or list of core ids, will guarantee to execute the
kernel on those specific cores only. This can be useful
if there is some distinct state or data held by core(s)
which the programmer wants to utilise in their kernel.

Device
The argument device=d, where d is the specifier of
a type of micro-core architecture or a list of these
and will execute the kernel on those types of specific
micro-cores only. This is for programming heteroge-
neous micro-core systems which contain a number
of micro-cores CPUs of different types, with device
types defined for each available micro-core.

These options, specifically the placement options of target,
auto and all can conflict if used together. Hence an order of prece-
dence is defined and this is based upon the order in which they
were introduced above. For instance if the programmer provides
both auto and target then because auto has higher precedence it
will be honoured and the target specifier ignored.

Scheduler

Using some of the options described previously can result in a
situation where kernels are scheduled for execution, but the target
cores are busy executing previous kernels. The epython module,
imported by the entire Python application, implements a scheduler
running inside a thread to handle this situation. The module keeps
track of what cores are currently idle and which are active, as
well as maintaining a list of outstanding kernel launches which
are awaiting a free micro-core. Any kernel execution that can not
be honoured is packaged up with additional information such as
where to run the code and any arguments before being stored
in a list. The scheduler will then scan through these waiting
kernels and check whether the corresponding core can be used

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON111

Fig. 1: ePython architecture, connecting the programmer’s Python code in any Python interpreter on the host, to execution on the micro-cores.

to execute this kernel yet, and if so then the kernel is launched
automatically. To ensure correctness a strict ordering, based upon
the scheduling order, is maintained for kernel launches. Therefore,
if kernel A is scheduled to run on core 0 and then kernel B is
scheduled to run on the same core, ePython guarantees that A will
execute on this core before B. Much of this is abstracted inside
the KernelExecutionHandler class, object instances of which are
returned as handlers from asynchronous kernel launches, and the
class also contains methods for obtaining the general scheduling
state such as how many kernel executions are currently running,
and how many are scheduled and waiting to be run.

Working with arbitrarily large data-sets

It might seem apparent to the reader that one of the limitations
of the approach thus described is the size of data that can be
manipulated on the micro-cores. More specifically, very small
data-sets can be copied into the micro-core local RAM which will
provide optimal performance, but the majority of data sizes will
instead need to be located in shared on-board but off-chip DRAM
memory which is significantly slower. Using the abstractions
described so far, the programmer would have to make a choice
between the placement of their data and to manually copy in
segments that they may wish to place in on-core memory for
performance. The hierarchy of memories available to the micro-
cores, and thus the Python programmer’s kernels, is illustrated in
Figure 2 for the Epiphany. From this diagram it can be seen that the
problem is even more severe, as only a fraction of the host’s 1GB
DRAM is directly addressable by the micro-cores on the Epiphany
(by default the shared segment is only 32MB in size). As such this
significantly limits the data sizes that can be processed, as any data
larger than this limit will not be able to reside in a location which
is, by default, visible to the micro-cores.

This is in fact why the semantics of kernel arguments are
pass by reference, rather than pass by value. Following a similar
approach to CUDA’s Unified Virtual Addressing (UVA) although,
due to the simplicity of the micro-cores, achieving this entirely
at the software level rather than hardware level, means that upon
kernel invocation a simple reference is passed for each argument
and it is this that the kernel works with. When the data is read
from, or written to, by the micro-core then the ePython runtime

Fig. 2: Illustration of memory hierarchy for the Epiphany.

will, based upon this reference, perform the associated data
movement operation with respect to the data’s source location.
Whilst it might appear that having to perform this data movement
each time, potentially to or from a source location held far away
in the memory hierarchy, is expensive, there are some further
abstractions which can assist. Namely pre-fetching is supported
which will utilise the micro-core’s memory like a cache and copy
in chunks ahead of time, then evicting them later on if necessary.
On the Epiphany this is especially beneficial due to the two DMA
engines per core, which can perform data transfers in a non-
blocking manner and-so the cores can continue to work with data
previously fetched whilst subsequent memory operations are in
progress.

In combination with pass by reference and possible pre-
fetching, it is also desirable for the programmer to be able to
direct where in the memory hierarchy their data resides. This is
supported via memory kinds. The code listing below illustrates a
sketch of this, where the programmer uses the memkind class of
the ePython module to allocate data. This enables them to direct
where abouts in the memory hierarchy the data belongs and also
the amount to allocate. Numerous memory kinds are provided
and in this manner the programmer can easily direct what data
belongs where, and then subsequently modify this if required
without having to worry about any of the low-level nitty gritty
details. It is still perfectly acceptable to declare variables normal
Python style, without using memory kinds, and in such cases the
variable belongs to the level of memory hierarchy that is currently
in scope.

112 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

1 from epython import offload, memkind
2 import random
3

4 nums1 = memkind.Host(types.int, 1000)
5 nums2 = memkind.Host(types.int, 1000)
6

7
8

9 @offload
10 def mykernel(a, b):
11
12

13 print mykernel(nums1, nums2)

It is this same mechanism that enables device resident data, via the
Device memory kind, to allocate the variables within the on-core
memory of the micro-cores. ePython delegates to the memory kind
the determination of the mapping between the requested index and
the actual physical data region. Therefore, the memory kind can
enable operations on memory spaces that are not directly visible
to the micro-cores and, for instance, this is how we make visible
the top level of the memory hierarchy of Figure 2 to the Epiphany
and overcome the 32MB memory limit. In fact there is no inherent
reason why the memory kinds must represent memory spaces at
all, and in future could represent other facets including files or
network connected resources.

Memory model

Python does not specify a standard memory model, with individual
implementations being free to adopt whichever memory model
they wish. In contrast to many other Python implementations,
ePython adopts a rather weak memory model, which the program-
mer should be aware of.

Whenever a micro-core attempts to access a scalar variable or
the index of an array, held elsewhere in the memory hierarchy,
preference is given to any local copy held on that micro-core
(cached). If there is no local copy, then a data transfer will be
performed from where the data is physically located, effectively
copying it to the micro-core and then caching it. The cache policy
is write-through, where the locally held copy will then be used
for all the reads, and writes are performed on both the local copy
of data and also written back to the variable’s location elsewhere
in the hierarchy. Locally held cache copies of data are evicted
automatically by the ePython runtime as required, such that the
memory space can then be reused for subsequent data. Access to
any data, whether it be a scalar or array element, held in memory
locations outside the core will always first check whether there is
a copy held locally, and if not perform the explicit data movement
required. At the time of writing, by default the runtime waits until
the data is required and then moves it, with the disadvantage of
this approach is that it stalls execution until the memory operation
completes. As such the programmer can, via decorating their
code, instruct the data movement to be done ahead of time via
non-blocking pre-fetching, thus not stalling the micro-cores on
data access, and in the future this will likely become the default
approach.

From the perspective of a single micro-core, updates to data
are in-order and atomic. However between cores the model is
weaker for performance reasons and to enable the reuse of data
held locally rather than having to explicitly fetch it each time (for
instance in situations where the same data element is used many
times over by a kernel). This provides a simple and consistent
model, and a big benefit within the context of simple micro-
cores is that it requires limited support from the hardware and

runtime software. However, the programmer should be aware of
this because, if two or more kernels are working concurrently
with the same data and both reading and writing to this, then
ePython only imposes the atomicity of these updates. There is no
guarantee around the order in which accesses from different cores
will complete, or when kernels will see the data written by kernels
on other cores. This is a somewhat different than that adopted by
many multi-core CPUs, which are typically write-back and hence
tend to only write data on cache flush, but do support a stronger
memory model, often via directory based cache coherence.

ePython - a portable engine for parallel Python code execution

As illustrated in Figure 1, in addition to the epython module,
there is also host side support code which runs as a separate
process and an execution engine running on the target micro-
cores. The later executes the programmer’s code either via an
interpreter or by natively compiling it. Both the ePython execution
engine and and host-based support code are written in C and
designed to be portable between architectures. Due to the very
limited amount of memory available on these architectures, for
the code running on the micro-cores it is not possible to link
against the standard C library, or any other libraries for that
matter. Instead, all the support functionality required, which in
many cases is also architecture specific, is located in the ePython
runtime. The idea is that the interpreter is entirely standard C99
code, and will call out to support functions in the runtime, thus
meaning that to go from one architecture to another only a new
runtime need be written. As such a version of the runtime must
be provided for each architecture, and the API calls which must
be implemented range from memory management and garbage
collection, to communication between micro-cores and the host.
The target architecture must provide at a minimum a C compiler,
which itself is very common. We adopted this design as it provides
both maximum portability and also considerable flexibility which
is important for architecture specific optimisations.

When compiled the exact size of ePython depends upon
the architecture being targeted. For instance with the Epiphany,
where the ISA has been designed to result in small binaries,
our compiled runtime is around 14KB and the interpreter 10KB.
However on the PicoRV32 the binary size is around 40KB which is
because the RISC-V ISA tends to result in more verbose machine
code than the Epiphany’s ISA. Furthermore, the Epiphany and
MicroBlaze provide a Floating Point Unit (FPU) which supports
(single precision) floating point arithmetic in hardware, whereas
the PicoRV32 does not, and as such explicit floating point software
support must also be included at the runtime level which increases
the size of ePython. As the micro-cores are running bare-metal,
ePython determines its own memory map, and whilst there is a
standard ePython memory map that we defined in [epython], the
exact location of where the separation between different memory
areas lies, and the sizes of these areas, is flexible and abstracted
by the architecture specific runtime. This is all abstracted by the
runtime, and has no impact on the other parts of the code and
therefore does not hinder portability.

The monitor of Figure 1 is directed by the micro-cores to
perform certain activities, and runs via a thread on the host, polling
for commands and data. It is through this mechanism that the
micro-cores can see the programmer’s host Python execution as an
additional core, interacting with this via the sending or receiving
of messages, which ultimately end up in the ePython module,

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON113

Description Runtime (s) Compared to Epiphany

Epiphany 18.20 N/a
MicroBlaze 129.08 7.1 times slower
PicoRV32 1014.96 55.76 times slower

TABLE 1: Runtime of Jacobi benchmark on the three micro-core
architectures using the ePython interpreter.

and are used to marshall control and communicate data. These
messages, instead of being sent to another micro-core, are sent to
the monitor on the host which forwards them via POSIX shared
memory to the host Python interpreter process. To achieve this, the
same mechanism for passing messages between micro-cores can
be used directly, without significant increases to size of ePython.
The majority of support for marshalling control on the micro-cores
is at the Python code level, where pre-written Python module code
runs on the micro-cores to interpret the messages arriving from
the host and then decoding these to determine which kernels to
run or other actions to perform. This is important because, based
upon the foundational concepts of message passing and task based
parallelism, it meant that very limited modifications were required
to the ePython execution engine on the micro-cores to support our
offload approach, which is critical because memory is at so much
of a premium.

Performance of the ePython interpreter

In this section we explore the performance of ePython on the three
micro-core architectures that have been described in this paper, the
Epiphany-III, the MicroBlaze, and PicoRV32. Due to the larger
compiled size on the MicroBlaze and PicoRV32, in comparison to
the Epiphany, these two architectures required 64KB of memory
to run the full ePython stack. As discussed previously, the main
limitation of the Zynq-7020 for hosting these soft-cores is the
amount of memory available on the FPGA, and as such the
maximum number of 64KB cores that can fit is eight. In order
to provide a fair comparison, we also limit ourselves to eight
Epiphany micro-cores in our experiments.

We chose a benchmark code for solving Laplace’s equation for
diffusion via Jacobi iteration. Jacobi iteration is a classic compu-
tational method for solving PDEs, and in this case we decompose
our domain in one dimension across the micro-cores. Effectively
in each iteration, every grid point is averaging across neighbouring
values, and after each iteration a halo-swap is performed between
pairs of micro-cores, to communicates the data on the exterior that
is required for the next iteration. Furthermore, after each iteration
the code calculates the relative residual, which is used to determine
how far from the desired level of accuracy the current solution
currently is. This involves each micro-core calculating its own
local residual and then performing a reduction across the micro-
cores to determine the overall global sum. All grid point numbers
are single precision floating point, and we consider this benchmark
interesting because it combines both floating point computation
and communications. The runs described in this section are using
the ePython interpreter, and Table 1 illustrates the runtime in
seconds of each micro-core technology when our benchmark was
executed upon it.

It can be seen in Table 1 that the Epiphany is by the far the
most performant micro-core of the three that we are benchmarking
in this section. This is potentially not surprising given the fact that

it is a physical chip, and as such can run at a much higher clock
frequency (600Mhz) compared to the two soft-cores (100Mhz).
However, clearly from the results a six times difference in clock
frequency is not the only reason for the performance gap, and
other architectural differences play a role too. If we normalise
for clock frequency, floating point operations on the PicoRV32
are still approximately 9 times slower than on the Epiphany, and
this is because the Epiphany contains a hardware FPU which
is superscalar, providing the capability of processing up to two
floating point operations concurrently. By contrast, the PicoRV32
does not contain an FPU and as such all floating point arithmetic
must be performed in software. Again normalising for clock
frequency, array accesses are around 9.5 times slower on the
PicoRV32 than on the Epiphany, and this is because on the
Epiphany and MicroBlaze the cost of a memory load in cycle
per instruction (CPI) is 1 cycle, whereas on the PicoRV32 it is 5
cycles. The Epiphany provides a variable length pipeline of up to
eight stages and the MicroBlaze a five stage pipeline, by contrast
the PicoRV32 is not pipelined and this results in an average CPI
of 4 instructions, with the next instruction not being able to begin
until the proceeding one has completed.

Cooking on gas - performance of native compilation

The performance limitations of the ePython interpreter become
apparent when we compare against a version of the benchmark
written in C and compiled on the host CPU. For instance, running
on the Parallella’s ARM Cortex-A9, a C version of the benchmark
executes in 0.23 seconds which is around 80 times faster than the
ePython version on eight cores of the Epiphany! This performance
issue was one of the major facts that motivated us to explore
native compilation of the programmers’s Python code, such that
it can execute directly on the micro-cores without the need for
an interpreter. As per the architectural diagram of Figure 1,
the natively compiled code can still take advantage of all the
ePython runtime support, but crucially as both the runtime and
the programmer’s code are executed directly on bare metal, we
believed that this would provide significant performance benefits.
The ePython native code generator uses ahead-of-time (AOT)
compilation, where the Python source code is compiled on the
host machine to a native binary for execution on the micro-
cores. Similarly to Micropython’s Viper code emitter, the ePython
native code generator uses machine word sizes (e.g. 32 bit on the
Epiphany) and this is all transparent to the Python programmer,
with their code matching the behaviour that would have been
provided by the ePython interpreter. Like Micropython, but unlike
Numba AOT compilation, the ePython code generation does not
require the programmer to add type signatures to their offloaded
kernels.

Unlike the Micropython just-in-time (JIT) and Numba com-
pilers, the native code is not generated from existing Python
bytecode, but instead from C source code generated from the
abstract syntax tree (AST) created just after parsing and lexing the
programmer’s Python code. The resultant C source code is not a
simple transliteration of Python to C, but instead the generation
of optimal source code that supports the dynamic features of
Python, whilst optimising memory access and arithmetic opera-
tions. We felt that this would be good approach because, unlike the
bytecode-based approach, the ePython model is able to leverage
the C compiler’s extensive code optimisation routines at a higher
level over a greater amount of source code, resulting in signifi-
cantly faster code. To enable portability between architectures, the

114 PROC. OF THE 19th PYTHON IN SCIENCE CONF. (SCIPY 2020)

Description Runtime (s)

ePython native on Epiphany 0.031
C code on Epiphany 0.029
ePython native on AMD64
CPU

0.019

C code on AMD64 CPU 0.015

TABLE 2: Runtime of natively compiled Python code via ePython,
against bespoke C code, on both the Epiphany and AMD64 x86 CPU.

generated C code is standard C99, and similarly to the interpreter
calls into the runtime for anything which is architecturally specific.

Table 2 illustrates the runtime in seconds across different
technologies when natively compiled. It can be seen that this
is significantly faster, over 500 times, than using the ePython
interpreter on the Epiphany. For comparison we have developed
a C version of the benchmark specifically for the Epiphany and
this represents the alternative of writing a bespoke implementation
for the architecture. Developing such code in C is a significant
undertaking, as the programmer must deal with numerous ar-
chitecture specific complexities and low level concerns. Whilst
it is this programming complexity that we believe Python has
significant potential to overcome for micro-cores, we nevertheless
felt it was interesting to include a C version as a comparison in
a performance study such as this. We also ran a version of this
benchmark on an AMD64 CPU (as both the ePython interpreter
and native code generation support x86), which are ubiquitous in
HPC and consumer grade computing.

This is currently the least mature part of ePython, and from
Table 2 the reader can see that there is a small performance
difference of around 10% on the Epiphany between ePython
natively compiled code, and that written in C directly. The reason
for this is the additional complexity that we have added into the
natively compiled code to address the small memory spaces. We
realised that a potential problem would be in natively compiling
large Python kernels because it is very possible that these would
result in an executable which is larger than the on-core memory or
even the shared DRAM memory space. As such, the programmer’s
Python must be compiled in such a way that codes of an arbitrarily
large size can be supported. Therefore, our approach adopts a
dynamic loading approach, where a very small (approximately
1.5KB) bootloader is placed onto the micro-cores and this then
pulls in the first function to execute. This bootloader intercepts
all function calls, and upon a call it will check to see whether
that function is currently held in on-core memory or not. If so
then it will jump to that, or otherwise it will fetch the associated
native code that comprises the function from the host, perform
any required connections, and then execute it. Currently functions
are flushed from the on-core memory upon completion of their
execution, which is likely what accounts for the performance
difference between the ePython native code and compiled C code,
and in future this will be modified to be smarter, potentially with
a garbage collection approach adopted instead.

Conclusions and further work

Micro-cores is a classification that covers a wide variety of
processor technologies, and this is a thriving area which contains a
number of vibrant communities. Whilst these are very interesting
for a number of different reasons, a major challenge is around

programmer productivity. We firmly believe that Python has a sig-
nificant role to play here, but the peculiarities of the architectures,
and more specifically the simplicity of the cores themselves and
tiny amounts of associated memory, result in numerous challenges
when looking to support a Python programming environment. As
such, we initially realised that there is an important role for an
implementation of Python which is very compact and can easily
fit within the memory with space to spare for user code and data.

In this paper we have described ePython, an implementation
of Python which is aimed to both support execution on micro-core
CPUs, but also be highly portable between technologies. We have
explored both the low-level aspects of how ePython is constructed,
and also the abstractions provided to Python programmers such
that they can easily offload specific parts of their application
code onto the micro-cores. Being able to drive this offload by
decorating functions within in existing applications is a very
simple yet powerful way of interaction with the micro-cores, and
the technology has also driven other aspects of the design, such as
pass by reference.

The reader can clearly see that the performance obtained by
ePython is very architecture specific, which is not surprising given
the diversity of the different types of micro-cores and associated
level of complexity. Whilst we expected a performance overhead
associated with the ePython interpreter, the magnitude of this
when compared to native code compilation surprised us. By con-
trast, one can see that the performance overhead of ePython can in
large be ameliorated by using native code compilation to run the
Python code directly on the micro-cores, without the need for an
interpreter to be present. Therefore our present focus is in maturing
the native code generation as we think this has demonstrated some
worthwhile early results. In addition to exploring opportunities
for further performance improvements, currently the architecture
specific runtime library is not included in this dynamic loading, so
the minimum code size is around 15KB (runtime and bootloader
together). If we were to extend the dynamic loading approach to
the runtime too, then the minimum size will be around 1.5KB plus
the size of the largest function. This will open up the possibility
of running over a number of additional micro-core architectures
which contain tiny amounts of memory per core (only around
2KB or 3KB). Furthermore, our dynamic loading approach to
native code compilation can be extended to fetch parts of third-
party libraries, such as Numpy or Sklearn. This will require some
thought, as we will need to split apart the ELF into its constituent
components, but it would be of significant benefit to the micro-
core software ecosystem if such a rich set of existing numerical
frameworks could be supported by ePython.

ePython is currently focussed around version 2.7 of the lan-
guage, and this reached end-of-life in January 2020. Therefore an
important activity will be to upgrade ePython to support version
3 of the language, and we believe that the work done around
the native code compilation is a key enabler. The reason for
this is that implementing version 3 of the Python standard will
require a number of extensions to the ePython interpreter which
will push it beyond the current 24KB size. However this size
issue is not present with the ePython native code compilation,
not least because of our dynamic loading approach, and therefore
it is our plan for the next ePython version to deprecate the
interpreter and support Python version three based around native
code compilation only.

HAVING YOUR CAKE AND EATING IT: EXPLOITING PYTHON FOR PROGRAMMER PRODUCTIVITY AND PERFORMANCE ON MICRO-CORE ARCHITECTURES USING EPYTHON115

REFERENCES

[picorv32] C. Wolf. PicoRV32 - A Size-Optimized RISC-V
CPU, On Github, https://github.com/cliffordwolf/
picorv32/, Last accessed June 2020

[pezy-sc] T. Ishii. Introduction to PEZY-SC http://accc.riken.
jp/wp-content/uploads/2015/09/ishii.pdf, Last ac-
cessed June 2020

[kalray] B.D de Dinechin. Kalray MPPA: Massively parallel
processor array: Revisiting DSP acceleration with
the Kalray MPPA Manycore processor Hot Chips
27 Symposium (HCS), 2015 IEEE, pages 1--27

[ajayi2017celerity] S. Davidson et al. Celerity: An Open-Source RISC-
V Tiered Accelerator Fabric IEEE Micro, Volume:
38, Issue: 2, March/April 2018, Pages 30 - 41

[epiphany] A. Olofsson. Kickstarting high-performance
energy-efficient manycore architectures with
epiphany 48th Asilomar Conference on Signals,
Systems and Computers, 2014

[parallella] Adapteva. Parallella-1.x Reference Manual http:
//www.parallella.org/docs/parallella_manual.pdf,
Rev 09, 2014

[microblaze] Xilinx. MicroBlaze Processor Reference Guide
https://www.xilinx.com/support/documentation/
sw_manuals/xilinx2018_2/ug984-vivado-
microblaze-ref.pdf, 2018

[epiphany-specifications] Adapteva. Epiphany Architecture Reference http:
//www.adapteva.com/docs/epiphany_arch_ref.pdf,
Rev 14, 2013

[opencl] J.E. Stone. D. Gohara. G. Shi. OpenCL: A parallel
programming standard for heterogeneous comput-
ing systems Computing in science and engineering,
Volume: 12, Issue: 3, May-June 2010, Pages 66 - 73

[openmp] OpenMP Architecture Review Board.
OpenMP Application Program Interface
Version 4.0 http://www.openmp.org/mp-
documents/OpenMP4.0.0.pdf, 2013

[micropython] D. P. George. The MicroPython language
http://docs.micropython.org/en/latest/pyboard/
reference/index.html, Last accessed June 2020

[micropython-website] MicroPython community. MicroPython https://
micropython.org/, Last accessed June 2020

[numba] S.K. Lam. A. Pitrou. S. Seibert. Numba: A LLVM-
based Python JIT Compiler Proceedings of the
Second Workshop on the LLVM Compiler Infras-
tructure in HPC, 2015

[epython] N. Brown. ePython: An Implementation of Python
for the Many-core Epiphany Coprocessor Proceed-
ings of the 6th Workshop on Python for High-
Performance and Scientific Computing, 2017

https://github.com/cliffordwolf/picorv32/
https://github.com/cliffordwolf/picorv32/
http://accc.riken.jp/wp-content/uploads/2015/09/ishii.pdf
http://accc.riken.jp/wp-content/uploads/2015/09/ishii.pdf
http://www.parallella.org/docs/parallella_manual.pdf
http://www.parallella.org/docs/parallella_manual.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.adapteva.com/docs/epiphany_arch_ref.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
http://docs.micropython.org/en/latest/pyboard/reference/index.html
http://docs.micropython.org/en/latest/pyboard/reference/index.html
https://micropython.org/
https://micropython.org/

	Introduction
	Background and related work
	ePython

	Offloading application kernels
	Kernel execution options
	Scheduler
	Working with arbitrarily large data-sets
	Memory model

	ePython - a portable engine for parallel Python code execution
	Performance of the ePython interpreter
	Cooking on gas - performance of native compilation
	Conclusions and further work
	References

