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Abstract—The use of fluorescence microscopy has catalyzed new insights into
biological function, and spurred the development of quantitative models from
rich biomedical image datasets. While image processing in some capacity is
commonplace for extracting and modeling quantitative knowledge from biologi-
cal systems at varying scales, general-purpose approaches for more advanced
modeling are few. In particular, diffuse organellar morphologies, such as mi-
tochondria or actin microtubules, have few if any established spatiotemporal
modeling strategies, all but discarding critically important sources of signal from
a biological system. Here, we discuss initial work into building spatiotemporal
models of diffuse subcellular morphologies, using mitochondrial protein patterns
of cervical epithelial (HeLa) cells. We leverage principles of graph theory and
consider the diffuse mitochondrial patterns as a social network: a collection
of vertices interconnected by weighted and directed edges, indicating spatial
relationships. By studying the changing topology of the social networks over
time, we gain a mechanistic understanding of the types of stresses imposed on
the mitochondria by external stimuli, and can relate these effects in terms of
graph theoretic quantities such as centrality, connectivity, and flow. We demon-
strate how the mitochondrial pattern can be faithfully represented parametrically
using a learned mixture of Gaussians, which is then perturbed to match the
spatiotemporal evolution of the mitochondrial patterns over time. The learned
Gaussian components can then be converted to graph Laplacians, formally
defining a network, and the changes in the topology of the Laplacians can
yield biologically-meaningful interpretations of the evolving morphology. We
hope to leverage these preliminary results to implement a bioimaging toolbox,
using existing open source packages in the scientific Python ecosystem (SciPy,
NumPy, scikit-image, OpenCV), which builds dynamic social network models
from time series fluorescence images of diffuse subcellular protein patterns. This
will enable a direct quantitative comparison of network structure over time and
between cells exposed to different conditions.

Index Terms—Biomedical Imaging, Graph Theory, Social Networks

Introduction

Given the recent rise of fluorescence microscopy, and the subse-
quent proliferation of biomedical imaging data, live cell imaging
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has become much more accessible. However, the growth in quan-
tification and modeling of biological and biomedical phenomena
has been uneven; "solid" morphologies such as cells and nuclei
are much easier to automatically segment, track, and quantify than
diffuse patterns induced by mitochondria or actin. There is a need
for methodologies and software capable of autonomous tracking,
segmentation, and quantification of spatiotemporal changes in
these structures.

Understanding the spatiotemporal evolution of subcellular
organelles in response to external stimuli and modeling this
behavior is critical to understanding the effects of the stimuli
on the internal state and configuration of the cell. This can
have downstream implications in the development of targeted
therapies. Recently, spatial covariance has been used to quantify
gene expression correlation in image like matrices representing
sequenced RNA [STS17]. Other recent work demonstrates the
benefits of measuring covariance between subcellular structures
to observe how coherent portions of the cells respond in tan-
dem to external stimuli [VCL™17]. While this work used hand-
crafted pixel-level thresholds and manual labeling of pixels into
organelle groupings, it nonetheless represents the spirit of our
work: developing quantifiable, data-driven spatiotemporal models
of subcellular structures.

Our work focuses on both spatial and temporal covariance to
better model and understand the response of subcellular structures
to stimuli. To do this, we draw on graph theory and cast the
punctate subcellular morphologies as instances of a social net-
work. A recent study of brain activity used networks to create
a quantitative measure of correlated activity in functional MRI
(fMRI) images which could then easily be clustered [DGD " 16].
There are many advantages of using a social network model for
representing diffuse structures. It captures not only the overall
spatial morphology and distribution of the protein pattern, but
also intrinsically captures relationships between different spatial
components of the pattern. Finally, by permitting the network to
evolve over time, the changing properties of the social network
can be interpreted biologically to describe different observed
phenomena: just as "traditional" social networks evolve through
the addition and deletion of connections between individuals,
so do such events describe precisely how the morphology, both
locally in one part of the cell, and globally across multiple cells,
changes in response to stimuli.

We have begun by modeling the subcellular patterns of mi-
tochondria in cervical epithelial (HeLa) cells. Mitochondria are
dynamic organelles, which undergo continual rounds of fission
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and fusion. These fission and fusion events are important for
maintaining proper function and overall mitochondrial health
[ZILN13] [WL16]. Mitochondrial fission allows for the turnover
of damaged and the protection of healthy organelles. Addition-
ally, mitochondrial fusion leads to the mixing of internal con-
tents, which is important for responding to environmental needs
[ZLN13] [KPSBWO0S].

The dynamics between fission and fusion creates a spectrum
of mitochondrial morphologies. Imbalances between fission and
fusion events generate phenotypes associated with mitochondrial
dysfunction [ZLN13]. An excess of fission or dearth of fusion
events results in fragmented mitochondria; in this phenotype, the
mitochondrial network is fractured, and individual mitochondria
exist in small spheres. Conversely, an overabundance of fusion
or a lack of fission events generate hyperfused mitochondria; in
this phenotype, the mitochondrial network is overconnected, and
composed of long interconnected tubules [CSCIT08]. Recently,
several bacterial species have been shown to cause mitochon-
drial perturbations during infection [SBS*11][FCGQR15]. Such
unique morphologies should be detectable at a quantitative level
using social network modeling.

Through social network modeling, we hope to build a more
rapid and efficient method for identifying changes in size, shape,
and distribution of mitochondria as well as other diffuse or-
ganelles. In this work, we present a proof-of-concept pipeline
which segments cells with fluorescent stains on the mitochondria
for individual analysis. Once the cells are segmented, we use
a Gaussian Mixture Model (GMM) to parameterize the spatial
distribution of the mitochondrial protein patterns at evenly-spaced
time intervals, and allow the GMM parameters to update smoothly
from the previous time point to the next. Finally, we demonstrate
how the learned parameters of the GMM can be used to construct
social networks for representing the mitochondria. The complete
pipeline can be seen in Fig. 1.

Data

We have constructed a library of live confocal imaging videos
that display the full spectrum of mitochondrial morphologies in
HeLa cells, from fragmented to hyperfused. To visualize the
mitochondria, HeLa cells were stably transfected with DsRed?2-
Mito-7 (DsRed2-HeLa), which fluorescently labels mitochondria
with red emission spectra (a gift from Michael Davidson, Addgene
plasmid #55838). All of our videos were taken using a Nikon A1R
Confocal. Cells were kept in an imaging chamber that maintained
37 degrees C and 5% CO2 for the duration of imaging. The
resonant scanning head was used to capture an image every ten
seconds for the length of the video. The resulting time series
videos have more than 20,000 frames per video. Each frame is
of dimensions of 512x512 pixels (Fig. 2).

Wild type mitochondrial morphology was captured by imaging
DsRed2-HeLa cells in typical growth medium (DMEM plus 10 %
fetal bovine serum) (Fig. 2, center). To generate the fragmented
phenotype, cells were exposed to the pore-forming toxin listeri-
olysin O (LLO) at a final concentration of 6 nM (Fig. 2, left).
Mitochondrial hyperfusion was induced through the addition of
mitochondria division inhibitor-1 (mdivi-1) at a final concentration
of 50uM (Fig. 2, right). These subsets with different known
qualitative phenotypes serve as bases upon which to condition
our quantitative analyses.
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Fig. 1: An abstract representation of our proposed pipeline. The first
frame represents the raw unsegmented image of mitochondria in three
cells. The second frame demonstrates simultaneous segmentation, as a
border is drawn around each cell. The third frame represents a single
cell being extracted for analysis using the determined segmentation.
The fourth frame shows a characteristic set of nodes determined by
applying a mixture model to the distribution of fluorescent mitochon-
dria. The final frame shows edges added to the nodes to complete
the network structure. At this point in the pipeline, network analysis
can be applied to the induced graph. These steps are applied to each
frame of video allowing for fully temporal analysis. .

Segmentation Pipeline

In order to avoid systemic bias in our downstream analysis
pipeline as a result of different videos containing a varied and
unbounded number of cells, we chose to study each cell individ-
ually. This required segmenting each individual cell and studying
its spatiotemporal dynamics in isolation from the others. While
segmentation of cells from fluorescence or histology images is
becoming very common, segmenting diffuse protein patterns--
such as mitochondria--is much more challenging. We leveraged
the fact that, given the small interval (10s) between frames of
a video, overall movement between a given pair of subsequent
frames would be minimal. We used deformable contours with
slight updates from the previous frame to build out segmenta-
tion masks. However, the diffuse structure combined with the
near overlap of cells in frames necessitated a "priming" of the
segmentation pipeline with a hand-drawn mask at time 0. We used
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Fig. 2: Sample frames from each of the subsets of data. (Left)
LLO induced mitochondrial fragmentation (Center) Wild type HeLa
mitochondrial morphology (Right) Mdivi-1 induced mitochondrial
hyperfusion

Fig. 3: Diagram of the cell segmentation process. (Top Left) Hand
drawn masks of the first frame in VIK format were used to "seed"
the deformable contours. (Top Right) A series of frames from a
single video with autonomously drawn contours. (Middle) Stack of
frames from a single video converted to separate videos for each cell.
(Bottom) single cell video unraveled as grayscale image for frame by
[frame network modeling.

the ITK-SNAP software [YPCH "06] to label each cell manually
in the first frame of each video, generating a VTK file with the
segmentation maps (Fig. 3, top left).

Our segmentation process used these maps as "seeds", up-
dating the maps at each frame of the video using deformable
contours: iterative dilation, thresholding, and contour detection
process over the entire video, resulting in a set of masks for each
frame and each cell in the frame. These masks could then be used
to pull out individual cells over the course of the video (Fig. 3).

While this process was very effective at following the cells,
occasionally the model would lose small areas of mitochondrial
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Fig. 4: (Left) a 2D probability representation of the intensity of a
sample cell. (Top Right) the Intensity map of the image in a 3D
representation. (Bottom Right) the 3D contour of the same cell.

mass which was sufficiently far away from the more contiguous
structure. To compensate, we added a final process of iterative
dilation to prevent loss and give a more generous contour. With
these adjustments, we ran into a rare problem of cell contact or
overlap. In response, we continued the iterative dilation with more
iterations and smaller dilations checking for overlap with another
map each iteration. In the case of an overlap, which would only be
a few pixels with the small dilation kernel, we used a simple XOR
to remove the few overlapping pixels while still allowing the mask
to expand in areas unclaimed by other cells. With this case being
rare, we found the process mostly followed any visible boundary
of the adjacent cell.

The output of this step was the individual cell masks, one for
each cell at each frame, providing a complete segmentation of
each cell.

Social Network Engineering

To induce a network structure over the mitochondrial patterns
of the segmented cells, we used a Gaussian Mixture Model
(GMM). The means and covariances of the model components
would represent two critical features of a social network: the
individual nodes (means), and the nodes’ relationships to each
other (covariances). An independent model would be trained for
each individual cell, and the model parameters would be permitted
to evolve over the course of the videos to capture the changing
underlying morphologies.

We first applied a Gaussian smoothing filter to minimize
or eliminate artifacts in the video images. We then converted
the frames of the video to a discrete probability distribution by
normalizing the grayscale pixel intensities to sum to 1 (Fig. 4).
Following the conversion to a probability density, we counted local
pixel maxima and used these points--both the number of maxima
found, and their spatial locations--as the initial components our
GMM. These components were fed into the GMM fit() procedure
in scikit-learn (Fig. 5). The learned GMM components would
minimize the disparity between the joint probability density of the
GMM, and the original empirical probability density of the image,
parameterizing the structure of the mitochondrial pattern. Using
the learned components as nodes in the final network allow for
the network structure to be learned purely from the mitochondrial
topology.



The code for converting a single image frame to a discrete
probability density function and learn the initial GMM compo-
nents are as follows:

def img_to_px(image) :
o
Converts the image to a probability
distribution amenable to GMM.

Parameters
image array, shape (H, W)
8-bit grayscale image.

Returns

X : array, shape (N, 2)

The data.

mnn

# We need the actual 2D coordinates of the
#pixels.

#The following is fairly standard practice for
#generating a grid

#of indices, often to evaluate some function on
#a discrete surface.

X = np.arange (image.shape[1l]

y = np.arange (image.shape[0]

xx, yy = np.meshgrid(x, y)

# Now we unroll the indices and stack them into
#2D (i, j) coordinates.

z = np.vstack ([yy.flatten(), xx.flatten()]).T
inally, we repeat each index by the number
mes of its pixel value.

is our X—--consider each pixel an

"event", and its value is the
# number of times that event is observed.
X = np.repeat (z, image.flatten(), axis = 0)
return X
def skl_gmm(vid, vizual = False, skipframes = 10,
threshold_abs = 6, min_distance = 10):

mmwn

Runs a warm-start GMM over evenly-spaced
frames of the video.

Parameters

vid array, shape (f, x, y)
Video, with f frames and spatial
dimensions x by y.

vizual boolean
True will show images and nodes
(default: False).

skipframes integer
Number of frames to skip (downsampling
constant) .

Returns

covars array, shape (f, k, 2, 2)

The k covariance matrices (each 2x2)
for each of f frames.

means array, shape (f, k, 2)

The k 2D means for each of f frames.

img = vid[0]

if(vizual) :
plt.imshow (img)
plt.show ()

X = image.img_to_px (img)

PI, MU, CV = params.image_init (img,
min_distance = min_distance,
threshold_abs = threshold_abs)

PR = np.array(list (map(sla.inv, CV)))

k = None,
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weights_init = PI, means_init = MU,
precisions_init = PR)
gmmodel. fit (X)
if (vizual):
viz.plot_results (gmmodel.means_,
gmmodel.covariances_, 0, img.shape[l], O,
img.shape[0], 0, 'this")

covars = [gmmodel.covariances_]
means = [gmmodel.means_]
#set

warm start to true to use previous parameters
gmmodel .warm_start = True

for i in range(l+skipframes,
img = vid[i]
if (vizual) :
plt.imshow (img)
plt.show ()

vid.shape[0],

X = image.img_to_px (img)
gmmodel. fit (X)
covars = np.append(covars,
[gmmodel .covariances_],
means = np.append(means,
[gmmodel .means_],axis = 0)
if (vizual) :
viz.plot_results (gmmodel.means_,
gmmodel.covariances_,0, img.shape[l],
0, img.shape[0], 0, 'this")

axis = 0)

return means, covars

O
o °

Fig. 5: A cell (Left) and the nodes (Right) as generated by a gaussian
mixture model for the first (Rop) and last (Rottom) frames of a video
showing a cell fragmented by LLO

For connecting the nodes with weighted edges, we explored
multiple approaches that balanced realistically encapsulating the
underlying biology (i.e., did not create connections between
uncorrelated objects) and computational tractability. Initially, we
chose a manual distance threshold and used this as the "neighbor-
hood size" for the radial-basis function, a common connection-
weighting metric that varies smoothly from O (not connected) to
1 (fully connected), and is a function of the Euclidean distance
between the two nodes, weighted by the neighborhood size. A
second attempt to make this process more data-driven was to
replace the manually-crafted neighborhood size with the Gaussian
covariance in the direction of the node to be connected (6, mid).

gmmodel = GaussianMixture (n_components = CV.shape[0ln both cases, to avoid fully-connected graphs and induce some

skipframes) :
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Fig. 6: (Left) A partially connected network with binary connections.
(Center) A single node’s weighted connection within a fully connected
graph. (Right) A the strongest connection of each node as determined
by our current affinity function

sparsity, we set a hard threshold on the maximum distance between
nodes to connect (6, left).

While these produced networks with desirable properties, they
did not fully reflect the underlying biology. Critically, the latter
produced networks with connectivity levels that varied wildly even
between subsequent frames of the same video. We interpreted this
"thrashing" as noise: while we expect some systemic changes in
the topology of the network through the formation and destruction
of connections between nodes, we observed considerable shifts in
this topology even in the control (wild-type) videos. Therefore,
we sought a method for computing edge weights between nodes
that was more robust to minor fluctuations in the underlying
mitochondrial protein pattern. We also desired a similarity metric
less dependent on Euclidean distance: this distance measure was
entirely dependent on the magnification level of the microscope,
an undesirable dependency and potential source of artifacts should
the method be applied on data gathered from a variety of imaging
modalities.

To address these shortcomings with determining network con-
nectivity, we instead evaluated the Gaussian components directly
and used that probability as the edge weight. This not only ac-
counted for the anisotropy in the covariance of the Gaussian com-
ponents, but also captured the asymmetry between components: by
decoupling the direct link to Euclidean distance, the connections
could instead be weighted by how probable the location of the
node under consideration was (6, right). While this did result
in an asymmetric graph matrix, it more accurately reflected the
dynamics of the underlying biology, captured the relationships
between nodes in a more intuitive metric, and was entirely data-
driven with no hand-crafted thresholds.

Many popular social networks have asymmetric connections
between users. For example, Twitter and Instagram permit users
to follow another without being followed back. Even Facebook,
which has a symmetric "friend" connection, has asymmetric
underlying weights in terms of how friends interact over the
network. Biologically speaking, there is little evidence to prefer
a directed graph structure over an undirected one. However, with
a cell’s general Brownian behavior, the undirected structure seem
more analogous and flexible; we would anticipate an empirical
convergence to an undirected graph if the behavior warrants. This
element of the our graph structure will be more cemented as we
analyze the networks created.

To calculate our network structure in terms of the Gaussian
components, we use the following functions (normpdf includes
an implementation of a multivariate Gaussian probability density
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function due to discrepancies with the scipy.stats.norm implemen-
tation):
def normpdf (X, mu,

Evaluates the PDF under the current GMM
parameters.

sigma) :

Parameters
X : array, shape (N, d)
The data.
mu : array, shape (d,)
Mean of the Gaussian.
sigma array, shape (d, d)
Gaussian covariance.

Returns
px : array, shape (N,)
The probability density of each data point,

given the parameters.
wn

d =1 if len(X.shape) == 1 else X.shape[l]
if d == 1:
n=1/ ((2 » np.pl * sigma) *x 0.5)
e = np.exp(— (((X — mu) ** 2) /
(2 » sigma)))
PX = n x e
else:
det = sla.det (sigma)
inv = sla.inv(sigma)
p = np.einsum('ni, ji,ni->n', X - mu,
inv, X - mu)
n=1/ ((((2 » np.pi) »+ d) = det)
*x 0.5)

px = np.exp(-0.5
return px

* pP) * n

def aff_by_eval (means,

mmmn

covars) :

finds an affinity table for a set of
means and covariances representing nodes

Parameters
means array, shape (k, 2)

the list of means with k nodes
covars array, shape (k, 2, 2)

the list of covars with k nodes

Returns

aff _Table array, shape (k, k)

mnn

aff_Table = np.empty ([means.shape[0], 0])

for i, (mean, covar) in enumerate (zip (means,
covars)) :
p_mus_Kx = normpdf (means, mean, covar)

aff_Table = np.append(aff_Table,
np.transpose ([p_mus_Kx]), axis=1)
return aff_Table

def get_all_aff_tables (means,covars) :

mnn

finds all affinity table for a set of Frames
each with lists of means and covariances

Parameters

means array, shape (f, k, 2)
the list of lists of means with f frames and
k nodes

covars array, shape (k, 2, 2)
the list of lists of covars with f frames
with k nodes



Returns

: array, shape (k, k)

mnn

aff_Tables = [aff_by_eval (means[0],
for i in range(l, means.shape[0]):
aff_Tables = np.append(aff_Tables,
[aff_by_eval (means[i], covars[i])],
return aff_Tables

covars[0])]

axi

Current Insights and Future Work Discussion

After building networks using the described GMM method for
each cell under varying conditions (control/wildtype, LLO, mdivi),
we have qualitatively observed systemic differences in the learned
model parameters that would separate these conditions. Inter-
estingly, as the mitochondria fragment (i.e., LLO), the GMM
components become more strongly connected, not less (7). We
attribute this to a misinformed intuition: as the mitochondria
fragment and the underlying probability density function becomes
more uniform, the GMM components will likewise become more
uniform, resulting in a more uniformly connected network. The
overall number of connections also increases, as the cells tend to
collapse at the same time as mitochondrial fragmentation, result-
ing in the same number of GMM components spatially colocating
in a much smaller space, effectively "forcing" connections by
virtue of proximity. By comparison, the control cell shows much
less variation in the distribution of network connectivity and edge
weights over time; this reflects a relatively stable social network,
unperturbed by external stimuli.

The next step, then, is to develop a temporal model of the
GMM component evolution in terms of the social network. This
would take the form of a series of graph Laplacians and observing
how the Laplacians change, likely as a function of Laplacian
gradients. This would highlight specific portions of the social
networks that covary over space and time; in other words, it would
provide insight into the coordinated fragmentation or hyperfusion
of the mitochondria in response to the provided stimulus. These
features could then be incorporated into a broader supervised
learning pipeline to distinguish patterns and discern the effects of
an unknown stimulant (e.g., drug discovery), or an unsupervised
learning pipeline to identify all observed mitochondrial pheno-
types.

Additional methods of analyzing the graph structure of the so-
cial network would help to determine specific phenotypic changes
induced by certain stimuli. In particular, classic graph metrics
such as connectivity, cliques, and eigenvector centrality would
help to precisely measure the global effects of certain stimuli on
the mitochondria. Other algorithms, such as spectral clustering
or PageRank for global network analysis from local phenomena
would provide intuition into the local changes in mitochondrial
phenotype responsible for inducing the global structure. These
features would be invaluable for characterizing certain specific
cell-wide or even organism-wide conditions.

We also aim to improve the process through which the social
network is constructed in the first place. The incorporation of a
single uniform component into the overall GMM would provide a
robust method of accounting for background noise in the form
of a learned, data-driven threshold. Additional refinements of
the affinity function that determines the existence of connections
between nodes, and their weight and direction, will be pursued:
the Kullback-Leibler (KL) divergence is a popular method for
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measuring the difference between two probability distributions,
and would be a natural fit for evaluating how similar two GMM
components are.

In this paper, we have presented a proof-of-concept for
parameterizing and modeling spatiotemporal changes in diffuse
subcellular protein patterns using GMMs. We have presented how

s —othe learned parameters of the GMM can be updated to account for

changing biological phenotypes, and how these parameters can
then be used to induce a social network of interacting nodes.
Finally, we show how the properties of the social network can
be interpreted to provide biological insights, in particular how the
underlying system may be responding to some kind of stimulus.
This has potential implications in fundamental biology and trans-
lational biomedicine; we aim to complete our analysis package
and release it as open source for the research community to use in
the near future.
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Fig. 7: A series of distribution plots of the negative log of values found in six affinity tables developed using the model learned at an early,
middle, and late video frame. (Top) The tables generated from a control cell which show little variation in distribution. (Bottom) The tables
generated from the LLO cell which shows a drastic increase in connectivity over time as the cell fragments.
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