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Abstract—We introduce Cloudknot, a software library that simplifies cloud-
based distributed computing by programmatically executing user-defined func-
tions (UDFs) in AWS Batch. It takes as input a Python function, packages it
as a container, creates all the necessary AWS constituent resources to submit
jobs, monitors their execution and gathers the results, all from within the Python
environment. Cloudknot minimizes the cognitive load of learning a new API
by introducing only one new object and using the familiar map method. It
overcomes limitations of previous similar libraries, such as Pywren, that runs
UDFs on AWS Lambda, because most data science workloads exceed the
current limits of AWS Lambda on execution time, RAM, and local storage.

Index Terms—Cloud computing, Amazon Web Services, Distributed computing

Introduction

In the quest to minimize time-to-first-result, data scientists are
increasingly turning to cloud-based distributed computing with
commercial vendors like Amazon Web Services (AWS). Cloud
computing platforms have the advantage of linear scalability: users
can access limitless computing resources to meet the demands
of their computational workloads. At the same time they offer
elasticity: resources are provisioned as-needed and can be de-
comissioned when they are no longer needed. In data-intensive
research scenarios in which large computational workloads are
coupled with large amounts of data this could, in principle, offer
substantial speedups.

But the complexity and learning curve associated with a
transition to cloud computing make it inaccessible to beginners.
This transition cost has been improving. For example, Dask
[Roc15] used to be difficult to run in parallel in a cloud computing
environment, but it is now more accessible, thanks in part to
tools such as dask-ec2 [Rod17] and kubernetes/helm [Autl8]. Yet
despite these improvements, computation in the cloud remains
inaccessible to many researchers who have not had previous
exposure to distributed computing.

A number of Python libraries have sought to close this gap
by allowing users to interact seamlessly with AWS resources
from within their Python environment. For example, Cottoncandy
allows users to store and access numpy array data on Amazon
S3 [NEZH'17]. Pywren [JPV'17] enables users to run their
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existing Python code on AWS Lambda, providing convenient
distributed execution for jobs that fall within the limits of this
service!. However, these limitations are impractical for many
data-oriented workloads, which require more RAM and local
storage, longer compute times, and complex dependencies. The
AWS Batch service offers a platform for workloads with these
requirements. Batch dynamically provisions AWS resources based
on the volume and requirements of user-submitted jobs. Instead of
provisioning and managing their own batch computing jobs, users
specify job constraints, such as the amount of memory required
for a single job, and the number of jobs. AWS Batch manages the
job distribution to satisfy those constraints. The user can optionally
constrain the cost by using Amazon EC2 Spot Instances [AWS18a]
and specifying a bid percentage?.

One of the main advantages of Batch, relative to the provision-
ing of your own compute instances is that it abstracts away the
exact details of the infrastructure that is needed, offering instead
relatively straight-forward abstractions:

a job, which is an atomic, independent task to repeat on
multiple inputs, encapsulated in a linux executable, a bash
script or a Docker container;

a job definition, which connects the job with the compute
resources it require;

a compute environment, which defines the configuration
of the computational resources needed, such as number of
processors, or amount of RAM;

a job queue, where jobs reside until they are run in a
compute environment.

While Batch provides useful functional abstractions for pro-
cessing data in bulk, the user interface provided through the
AWS web console still resists automation, requires learning many
of the terms that control its execution and does not facilitate
scripting and/or reproducibility [AWS18b]. The AWS Python API
offers a programming interface that can control the execution of
computational tasks in AWS Batch, but it is not currently designed
to offer an accessible single point of access to these resources.

Here, we introduce a new Python library with support for
Python 2.7 and 3.5+: Cloudknot [RHR18a] [RHRI18c], that
launches Python functions as jobs on the AWS Batch service,
thereby lifting these limitations. Rather than introducing its own

1. Current limits include a maximum of 300 seconds of execution time, 1.5
GB of RAM, 512 MB of local storage, and no root access.

2. The bid percentage is the maximum price, expressed as a percentage of
the on-demand EC2 instance price, with which to bid on unused EC2 capacity.


https://youtu.be/D9LPzqoZ3f8
mailto:richiehalford@gmail.com

CLOUDKNOT: A PYTHON LIBRARY TO RUN YOUR EXISTING CODE ON AWS BATCH

‘ cloudknot.Knot.__init__ ‘

Create resources
using

Method Knot.map() ‘
Cloudformation )

Send Dockerized
UDF

Amazon ECR

distribute
serialized input

. using cloudpickle
 Referenced in >

job definition on AWS Batch

Manages instances on

_—
Relrieveslinput

Amazon S3

Amazon EC2

Sends output

Collects output

Knot.map()
output

'
'
'
o
'
'
'
'
'
]
'
'
'
'
'
'
'
'
'
'
1

Single Program Multiple Data

Fig. 1: Cloudknot’s SPMD workflow. The left two columns depict steps
Cloudknot takes to create the single program (SP). The right column
depicts Cloudknot’s management of the multiple data (MD). Blue
rounded squares represent components of Cloudknot’s user-facing
APL. Yellow circles represent AWS resources. Grey document shapes
represent containers, templates, or data used to communicate with
cloud resources.

set of terms and abstractions, Cloudknot provides a simple ab-
straction on top of Executor objects whose results are returned
by concurrent futures. Users of Cloudknot have to familiarize
themselves with one new object: the Knot. While some of its
functionality will initially be new to users of Cloudknot (e.g., the
way that resources on AWS are managed), its map method should
be familiar to most Python users.

The next section discusses Cloudknot’s approach to paral-
lelism and the API section describes Cloudknot’s user interface.
In the Examples section, we demonstrate a few of Cloudknot’s
use cases, including examples with data ranging from hundreds
of GB to several TB. We then summarize the trade-offs between
performance and accessibility in the Conclusion.

Design

The primary object in Cloudknot is the Knot, which employs
the single program, multiple data (SPMD) paradigm to achieve
parallelism. In this section, we describe Cloudknot’s approach to
establishing the single program (SP) and managing the multiple
data (MD). Knot’s user-facing API and interactions with cloud-
based resources are depicted in Figure 1.

Single Program (SP)

The Knot object creates the single program on initialization,
taking a user-defined function (UDF) as input and wrapping it
in a command line interface (CLI), which downloads data from
an Amazon Simple Storage Service (S3) bucket specified by an
input URL. The UDF is also wrapped in a Python decorator that
sends its output back to an S3 bucket. So in total, the resulting
command line program downloads input data from S3, executes
the UDF, and sends output back to S3. Knot then packages the
CLI, along with its dependencies, into a Docker container. The
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container is uploaded into the Amazon Elastic Container Registry
(ECR). Cloudknot’s use of Docker allows it to handle non-trivial
software and data dependencies (see examples below). This is
because Docker provides a consistent and isolated environment,
allowing complete control over the software dependencies of a
particular application, and near-immediate deployment of these
dependencies [Boel4].

Separately, Knot uses an AWS CloudFormation template to
create the AWS resources required by AWS Batch®. Knot passes
the location of the Docker container on AWS ECR to its job
definition so that all jobs execute the SP. The user may restrict the
compute environment of the Knot to only certain instance types
(e.g. c4.2xlarge) or may choose a specific Amazon Machine
Image (AMI) to be loaded on each compute resource. Or, they
may simply request a minimum, desired, and maximum number
of virtual CPUs and let AWS Batch select and manage the EC2
instances.

Knot uses job definition and compute environment defaults
that are conservative enough to run most simple jobs, with the
goal of minimizing errors due to insufficient resources. The casual
user may never need to concern themselves with selecting an
instance type or specifying an AMI. Users who want to minimize
costs by specifying the minimum sufficient resources or users
who need additional resources for intensive jobs can control their
jobs’ memory requirements, instance types, or AMIs. This might
be necessary if the jobs require special hardware (e.g. GPGPU
computing) or if the user wants more fine-grained control over
which resources are launched.

One of the most complex aspects of AWS is its permissions
model*. Here, we assume that the user has the permissions needed
to run AWS Batch in the console. We also provide users with the
minimal necessary permissions in the documentation.

Finally, Knot exposes AWS resource tags [AWS18c] to the
user, allowing the user to assign metadata key-value pairs to
each created resource. This facilitates management of Cloudknot
generated resources and allows the user to quickly recognize
Cloudknot resources in the AWS console.

Multiple Data (MD)

To operate on the MD, the Knot .map () method uses a simple
for loop to iterate over the outer-most dimension of the input
array and assign each element to a separate AWS Batch job.

3. The required resources are
e  AWS Identity and Access Management (IAM) Roles

— a batch service IAM role to allow AWS Batch to make calls
to other AWS services on the user’s behalf;

— an Elastic Container Service (ECS) instance role to be at-
tached to each container instance when it is launched;

— an Elastic Cloud Compute (EC2) Spot Fleet role to allow
Spot Fleet to bid on, launch, and terminate instances if the
user chooses to use Spot Fleet instances instead of dedicated
EC2 instances;

e« an AWS Virtual Private Cloud (VPC) with subnets and a security
group;

« an AWS Batch job definition specifying the job to be run;

« an AWS Batch job queue that holds jobs until scheduled into a
compute environment;

o and an AWS Batch compute environment, which is a set of compute
resources that will be used to run jobs.

4. https://docs.aws.amazon.com/IAM/latest/UserGuide


https://docs.aws.amazon.com/IAM/latest/UserGuide
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The Knot serializes each element in the array and sends it to S3,
organizing the data in a schema that is internally consistent with
the expectations of the CLI. It then launches an AWS Batch array
job (or optionally, separate individual Batch jobs) to execute the
program over these data. When run, each batch job selects its own
input, executes the UDF, and returns its serialized output to S3.

If the instances and S3 bucket are in the same region, then
users do not pay for transfer from S3 to the EC2 instances and
back. They pay only for transfer out of the data center (i.e. from
their local machine to S3 and back). Transfer speed within the
data center also outperforms transfer speed between data centers.
So it is both less costly and more performant to colocate the
Cloudknot S3 bucket with the EC2 instances. Cloudknot includes
utility functions to change regions and S3 buckets for this purpose.

In the last step, Knot .map () downloads the output from S3
and returns it to the user. Since AWS Batch allows arbitrarily
long execution times, Knot .map () returns a list of futures for
the results, mimicking Python’s concurrent futures’ Executor
objects. If the results are too large to fit on the local machine,
the user may augment their UDF to write results to S3 or some
other remote storage and then simply return the address at which
to retrieve the result.

Under the hood, Knot .map () creates a
concurrent. futures.ThreadPoolExecutor

instance where each thread intermittently queries S3
for its returned output. The results are encapsulated
in concurrent.futures.Future objects, allowing

asynchronous execution. The user can use Future methods
such as done () and result () to test for success or view the
results. This also allows attaching callbacks to the results using
the add_done_callback () method. For example a user may
want to perform a local reduction on results generated on AWS
Batch.

API

The above interactions with AWS resources are hidden from the
user. The advanced and/or curious user can customize the Docker
container or CloudFormation template. But for most use cases, the
user interacts only with the Knot object. This section provides an
example calculating the value of 7 as a pedagogical introduction
to the Cloudknot API.

We first import Cloudknot and define the function that we
would like to run on AWS Batch. Cloudknot uses the pipregs
[Kral7] package to generate the requirements file used to install
dependencies in the Docker container on AWS ECR. So all
required packages must be imported in the source code of the
UDF itself.

import cloudknot as ck

def monte_pi_count (n):
import numpy as np
x = np.random.rand(n)
y = np.random.rand(n)
return np.count_nonzero(x * x + y % y <= 1.0)

Next, we create a Knot instance and pass the UDF
using the func argument. The name argument affects
the names of resources created on AWS. For example,
in this case, the created job definition would be named
pi-calc-cloudknot-job-definition:

knot = ck.Knot (name='pi-calc', func=monte_pi_count)
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We submit jobs with the Knot .map () method:

import numpy as np # for np.ones

n_jobs, n_samples = 1000, 100000000

args = np.ones (n_jobs, dtype=np.int32) * n_samples
future = knot.map (args)

This will launch an AWS Batch array job with 20 child jobs,
one for each element of the input array. Cloudknot can acco-
modate functions with multiple inputs by passing the map ()
method a sequence of tuples of input arguments and the
starmap=True argument. For example, if the UDF signature
were def udf (arg0, argl), one could execute udf over
all combinations of arg0 in [1, 2, 3] and arglin ['a"',
'b', 'c'] by calling

args = list (itertools.product([1l, 2, 3],

[fa", "', 'c']))

future = knot.map (args, starmap=True)

We can then query the result status using future.done ()
and retrieve the results using future.result (), which
will block until results are returned unless the user passes
an optional timeout argument. We can also check the sta-
tus of all the jobs that have been submitted with this Knot
instance by inspecting the knot.jobs property, which re-
turns a list of cloudknot.BatchJob instances, each of
which has its own done property and result () method.
So in the example above, future.done () is equivalent to
knot. jobs[-1] .done and future.result () is equiva-
lent to knot.jobs[-1].result (). In this way, users have
access to AWS Batch job results that they have run in past sessions.
In this pedagogical example, we are estimating 7 using the
Monte Carlo method. Knot .map () returns a future for an array
of counts of random points that fall within the circle enclosed by
the unit square. To get the final estimate of 7, we need to sum all
the elements of this array and divide by four, a simple use case for
future.add_done_callback ():

PI = 0.0

n_total = n_samples % n_Jjobs

def pi_from_future (future) :
global PI

PI = 4.0 = np.sum(future.result()) / n_total

future.add_done_callback (pi_from_future)

Lastly, without navigating to the AWS console, we can get a quick
summary of the status of all jobs submitted with this Knot using

>>> knot.view_jobs ()

Job ID Name Status
fcd2aldb. .. pi-calc-0 PENDING
Examples

In this section, we will present a few use cases of Cloudknot.
We will start with examples that have minimal software and data
dependencies, and increase the complexity by adding first data
dependencies and subsequently complex software and resource
dependencies. These and other examples are available in Jupyter
Notebooks in the Cloudknot repository [RHR 18b].

Solving differential equations

Simulations executed with Cloudknot do not have to comply with
any particular memory or time limitations. This is in contrast
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to Pywren’s limitations, which stem from the use of the AWS
Lambda service. On the other hand, Cloudknot’s use of AWS
Batch increases the overhead associated with creating AWS re-
sources and uploading a Docker container to ECR. While this
infrastructure setup time can be minimized by reusing AWS
resources that were created in a previous session, this setup time
suits use-cases for which execution time is much greater than the
time required to create the necessary resources on AWS.

To demonstrate this, we used Cloudknot and Pywren to find
the steady-state solution to the two-dimensional heat equation
by the Gauss-Seidel method [BBC194]. The method chosen is
suboptimal, as is the specific implementation of the method, and
serves only as a benchmarking tool. In this unrealistic example,
we wish to parallelize execution both over a range of different
boundary conditions and over a range of grid sizes.

First, we hold the grid size constant at 10 x 10 and parallelize
over different temperature constraints on one edge of the simu-
lation grid. We investigate the scaling of job execution time as a
function of the size of the argument array. In Figure 2 we show the
execution time as a function of 72,4, the length of the argument ar-
ray (with both on log, scales). We tested scaling using Cloudknot’s
default parameters and also using custom parameters’. Regardless
of the Knot parameters, Pywren outperformed Cloudknot at all
argument array sizes. Indeed, Pywren appears to achieve constant
scaling between 22 < Nargs < 29, revealing AWS Lambda’s capa-
bilities for massively parallel computation. For 7,5 > 2°, Pywren
appears to conform to linear scaling with a constant of roughly
0.25. By contrast, Cloudknot exhibits noisy linear scaling for
Nargs 2 23, with constants of roughly 2 for the custom configuration
and roughly 4 for the default configuration. Precise determination
of these scaling constants would require more data for a larger
range of argument sizes.

For the data in Figure 3, we still parallelized over only five
different temperature constraints, but we did so for increasing
grid sizes. Grid sizes beyond 125 x 125 required an individual
job execution time that exceeded the AWS Lambda execution
limit of 300s. So Pywren was unable to compute on the larger
grid sizes. There is a crossover point around 80 x 80 where
Cloudknot outperforms Pywren. Before this point, AWS Lambda’s
fast triggering and continuous scaling surpass the AWS Batch
queueing system. Conversely, past this point the compute power of
each individual EC2 instance launched by AWS Batch is enough
to compensate for the difference in queueing performance.

Taken together, Figures 2 and 3 indicate that if a UDF can
be executed within AWS Lambda’s five minute execution time
and 1.5 GB memory limitations and does not have software and
data dependencies that would prohibit using Pywren, it should
be parallelized on AWS using Pywren rather than Cloudknot.
However, when simulations are too large or complicated to fit
well into Pywren’s framework, Cloudknot is the appropriate tool
to simplify their distributed execution on AWS. Pywren’s authors
note that the AWS Lambda limits are not fixed and are likely
to improve. We agree and note only that EC2 and AWS Batch
limitations are likely to improve as well. So long as there exists
a computational regime between the two sets of limitations,

5. Default settings are min_vcpus=0, desired_vcpus=8, and
max_vcpus=256. Custom settings are desired_vcpus=2048,
max_vcpus=4096, and min_vcpus=512. Both default and custom
Cloudknot cases were also limited by the EC2 service limits for our region
and account, which vary by instance type but never exceeded 200 instances.
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Fig. 2: Execution time to find solutions of the 2D heat equation for
many different temperature constraints on a 10 x 10 grid. We show
execution time scaling as a function of the number of constraints for
Pywren, the default Cloudknot configuration, and a Cloudknot config-
uration with more available vCPUs. Pywren outperforms Cloudknot
in all cases. We posit that the additional overhead associated with
building the Docker image, along with EC2 service limits affected
Cloudknot’s throughput.
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Fig. 3: Execution time to find five solutions to the 2D heat equation
as a function of grid size. Grid sizes above 125 x 125 exceed Pywren’s
limit on execution time of 300 sec. The cross-over point at around 80
x 80 occurs when it is more beneficial to have the more powerful EC2
instances provided by Cloudknot with AWS Batch than the massively
parallel execution provided by Pywren with AWS Lambda.

Cloudknot can offer researchers a simple platform with which to
execute their scientific workloads.

Data Dependencies: Analysis of magnetic resonance imaging data

Because Cloudknot is run on the standard AWS infrastructure,
it allows specification of complex and large data dependencies.
Dependency of individual tasks on data can be addressed by
preloading the data into object storage on S3, and then down-
loading of individual bits of data needed to complete each task
into the individual worker machines.



As an example, we implemented a pipeline for analysis of
human MRI data. Human MRI data is a good use-case for a system
such as Cloudknot because much of the analysis proceeds in a
parallel manner. Even for large datasets with multiple subjects,
a large part of the analysis is conducted first at the level of
each individual brain. Aggregation of information across brains
is typically done after many preprocessing and analysis stages at
the level of each individual subject.

For example, diffusion MRI (dMRI) is a method that measures
the properties of the connections between different regions of the
brain. Over the last few decades, this method has been used to
establish the role of these connections in many different cognitive
and behavioral properties of the human brain, and to delineate the
role that the biology of these connections plays in neurological and
psychiatric disorders [Wanl16]. Because of the interest in these
connections, several large consortium efforts for data collection
have aggregated large datasets of human dMRI data from multiple
different subjects [GSM T 16].

In the analysis of dMRI data, the first few steps are done
at the individual level. For example, the selection of regions of
interest within each image and the denoising and initial modeling
of the data can all be completed at the individual level in parallel.
In a previous study, we implemented a dMRI analysis pipeline
that contained these steps and we used it to compare several Big
Data systems as a basis for efficient scientific image processing
[MDZ*17]. Here, we reused this pipeline. This allows us to
compare the performance of Cloudknot directly against the per-
formance of several alternative systems for distributed computing
that were studied in our previous work: Spark [ZCF*10], Myria
[HTdAC " 14] and Dask [Roc15].

In Cloudknot, we used the reference implementation from
this previous study written in Python and using methods from
Dipy [GBA " 14], which are implemented in Python and Cython.
In contrast to the other systems, essentially no changes had to
be made to the reference implementation when using Cloudknot,
except to download the part of the data required for an individual
job from S3 into the individual instances. Parallelization was
implemented only at the level of individual subjects, and a naive
serial approach was taken at the level of each individual.

We found that with a small number of subjects this reference
implementation is significantly slower with Cloudknot compared
to the parallelized implementation in these other systems. But
the relative advantage of these systems diminshes substantially
as the number of subjects grows larger (Figure 4), and the benefits
of parallelization across subjects starts to be more substantial.
With the largest number of subjects used, Cloudknot processed
25 subjects 10% slower than Spark and Myria; however, it was
25% slower than Dask, the fastest of the tools that we previously
benchmarked.

There are two important caveats to this analysis: the first is that
the analysis with the other systems was conducted on a cluster
with a fixed allocation of 16 nodes (each node was an AWS
r3.2xlarge instance with 8§ vCPUs). The benchmark code does
run faster with more nodes added to the cluster [MDZ " 17]. The
largest amount of data that was benchmarked was for 25 subjects,
corresponding to 105 GB of input data and a maximum of 210
GB of intermediate data. Notably, even for this amount of data,
Cloudknot deployed only two instances of the r4.16xlarge type --
each with 64 vCPUs and 488 GB of RAM. In terms of RAM,
this is the equivalent of a 16 node cluster of r3.2xlarge instances,
but the number of CPUs deployed to the task is about half. In
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Fig. 4: MRI analysis pipeline with data requirements. A compari-
son of Cloudknot performance to other parallel computing systems:
Dask, Spark and Myria, based on a previous benchmark [MDZ " 17].
Cloudknot is orders of magnitude slower for small amounts of data,
but reaches within 10-25 % of these systems’ performance for large
amounts of data.

general, users can choose to scale vertically (i.e., larger instance
types, with more CPUs) or horizontally (i.e., more machines of
smaller instance types) through the instance_types keyword
argument to Knot. Additional scaling can also be reached by
expanding the cluster with min_vcpus. The second caveat to
these results is that that the comparison timing data for the other
systems is from early 2017, and these systems may have evolved
and improved since.

Data and software dependencies: analysis of microscopy data

The MRI example demonstrates the use of a large and rather com-
plex dataset. In addition, Cloudknot can manage complex software
dependencies. Researchers in cell biology, molecular engineering
and nano-engineering are also increasingly relying on methods
that generate large amounts of data and on analysis that requires
large amounts of computing power. For example, in experiments
that evaluate the mobility of synthetically designed nano-particles
in biological tissue [Nan17], [NWS™ 12], researchers may record
movies of microscopic images of the tissue at high spatial and
temporal resolution and with a wide field of view, resulting in
large amounts of image data, often stored in multiple large files.
These collections often reach several TB in size.

To analyze these experiments, researchers rely on software
implemented in Image] for particle segmentation and tracking,
such as TrackMate [TPS'17]. However, when applied to large
amounts of data, using TrackMate serially in each experiment can
be prohibitively time consuming. One solution is to divide the
movies spatially into smaller field of view movies, and analyze
them in parallel.

Image] and Trackmate are written in Java and can be scripted
using Jython. This implies complex software dependencies, be-
cause the software requires installation of the ImageJ Jython
runtime. Because Cloudknot relies on docker, this installation can
be managed using the command line interface (i.e., wget). Once
a docker image is created that contains the software dependencies
for a particular analysis, Python code can be written on top of it to
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execute system calls that will run the analysis. This approach was
recently implemented in [Curl8].

Additional complexity in this use-case is caused by the volume
of data. Because of the data size in this case, a custom AMI had
to be created from the AWS Batch AMI, that includes a larger
volume (Batch AMI volumes are limited to 30 GB of disk-space).

Conclusion

Cloudknot simplifies cloud-based distributed computing by pro-
grammatically executing UDFs in AWS Batch. This lowers the
barrier to cloud computing and allows users to launch massive
workloads at scale from within their Python environment.

We have demonstrated Cloudknot’s ability to execute complex
algorithms over vast quantities of data using real-world examples
from neuroimaging and microscopy. And we’ve included analyses
that show Cloudknot’s performance compared to other distributed
computing frameworks. On one hand, scaling charts like the ones
in Figures 2, 3, and 4 are important because they show potential
users the relative cost in execution time of using Cloudknot
compared to other distributed computing platforms.

On the other hand, the timing results in this paper, indeed
most benchmark results in general, measure the bare execution
time, capturing only partial information about the time that it
takes to reach a computational result. This is because all the
distributed systems currently available require some amount of
systems administration and often incur non-trivial setup time. In
addition, most of the existing systems currently require some
amount of rewriting of the original code [MDZ " 17]. If the amount
of time that a user will spend learning a new queueing system
or batch processing language, administering this system, and
rewriting their code for this system exceeds the time savings
due to reduced execution time, then it will be advantageous to
accept Cloudknot’s suboptimal execution time in order to use its
simplified API. Once they gain access to AWS Batch, beginning
Cloudknot users simply add an extra import statement, instantiate
a Knot object, call the map () method, and wait for results. And
because Cloudknot is built using Docker and the AWS Batch
infrastructure, it can accommodate the needs of more advanced
users who want to augment their Docker files or specify instance
types.

Cloudknot trades runtime performance for development per-
formance and is best used when development speed matters most.
Its simple API makes it a viable tool for researchers who want
distributed execution of their computational workflow, from within
their Python environment, without the steep learning curve of
learning a new platform. It may have business applications as well
since data scientists performing exploratory analysis would benefit
from short development times.

Future Work

Cloudknot can benefit from several enhancements:

o In future developments, we will focus our attention on
domain-specific applications (in neuroimaging, for exam-
ple) and include enhancements and bug-fixes that arise
from use in our own research.

o Unlike Dask, Cloudknot does not support computational
pipelines that define dependencies between different tasks.
Future releases may support job dependencies so that
specific jobs can be scheduled to wait for the results of
previously submitted jobs.
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¢ Cloudknot could also provide a simple way to connect to
EC?2 instances to allow in-situ monitoring of running jobs.
To do this now, a user must look up an EC2 instance’s
address in the AWS console and connect to that instance
using an SSH client. Future releases may launch this SSH
terminal from within the Python session.

e Knot uses hard-coded defaults for the configuration of its
job definition and compute environment. Future Cloudknot
releases could intelligently estimate these defaults based
on the UDF and the input data. For example, Knot could
estimate its resource requirements by executing the UDF
on one element of the input array many times using a
variety of EC2 instance types. By recording the execution
time, memory consumption, and disk usage for each trial,
Knot could then adopt the configuration parameters of the
best® run and apply those to the remaining input.

In addition to these capability enhancements, Cloudknot could
benefit from performance enhancements designed to address the
performance gap with other distributed computing platforms. This
might involve prebuilding certain Docker containers or intelli-
gently selecting an AWS region to minimize cost or queueing time.
Lastly, we claimed that Cloudknot’s simple API likely gives it a
gentler learning curve than other distributed computing platforms,
but we did not rigorously compare the time investment required
to learn how to use Cloudknot, relative to other systems. Future
work may seek to fill this gap with a comparative human-computer
interaction (HCI) study.
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