
48 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

EarthSim: Flexible Environmental Simulation
Workflows Entirely Within Jupyter Notebooks

Dharhas Pothina‡∗, Philipp J. F. Rudiger§, James A Bednar§, Scott Christensen‡†, Kevin Winters‡†, Kimberly Pevey‡†,
Christopher E. Ball§†, Gregory Brener§†

https://youtu.be/KTbd_oUkP4Q

F

Abstract—Building environmental simulation workflows is typically a slow pro-
cess involving multiple proprietary desktop tools that do not interoperate well.
In this work, we demonstrate building flexible, lightweight workflows entirely
in Jupyter notebooks. We demonstrate these capabilities through examples in
hydrology and hydrodynamics using the AdH (Adaptive Hydraulics) and GSSHA
(Gridded Surface Subsurface Hydrologic Analysis) simulators. The goal of this
work is to provide a set of tools that work well together and with the existing
scientific python ecosystem, that can be used in browser based environments
and that can easily be reconfigured and repurposed as needed to rapidly solve
specific emerging issues such as hurricanes or dam failures.

As part of this work, extensive improvements were made to several general-
purpose open source packages, including support for annotating and editing
plots and maps in Bokeh and HoloViews, rendering large triangular meshes
and regridding large raster data in HoloViews, GeoViews, and Datashader,
and widget libraries for Param. In addition, two new open source projects
are being released, one for triangular mesh generation (Filigree) and one for
environmental data access (Quest).

Index Terms—python, visualization, workflows, environmental simulation, hy-
drology, hydrodynamics, grid generation

Introduction

Environmental Simulation consists of using historical, current and
forecasted environmental data in conjunction with physics-based
numerical models to simulate conditions at locations across the
globe. The simulations of primary interest are weather, hydrol-
ogy, hydrodynamics, soil moisture and groundwater transport.
These simulations combine various material properties such as
soil porosity and vegetation types with topology such as land
surface elevation and bathymetry, along with forcing functions
such as rainfall, tide, and wind, to predict quantities of interest
such as water depth, soil moisture, and various fluxes. Currently,
the primary methodology to conduct these simulations requires a
combination of heavy proprietary desktop tools such as Surface-
water Modeling System (SMS) [Aquaveo] and Computational
Model Builder (CMB) [Hines09], [CMB] that are tied to certain
platforms and do not interoperate well with each other.

* Corresponding author: Dharhas.Pothina@erdc.dren.mil
‡ US Army Engineer Research and Development Center
§ Anaconda, Inc.
† These authors contributed equally.

Copyright © 2018 Dharhas Pothina et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

The process of building and running environmental simula-
tions using these tools is time consuming, requiring a large amount
of manual effort and a fair amount of expertise. Typically, the time
required to build a reasonable model is measured in months. These
workflows support some use cases well, especially multi-year
projects where there is often the need for highly accurate, high-
resolution physical modeling. But these existing tools and work-
flows are too heavyweight for other potential applications, such
as making short-term operational decisions in novel locations.
They also make it difficult to flexibly switch between desktop and
remote high-performance-computing (HPC) systems as needed for
scaling up and for interactive use.

An additional limitation of the existing desktop tools (i.e.
CMB and SMS) are that the users are limited to the functionality
and algorithms that are available in the tool. Adding new function-
ality requires expensive development efforts as well as cooperation
of the tool vendors. For example, adding a coastline extraction
tool to CMB based on the grabcut algorithm [Carsten04] required
contracting with the vendor and several months of development
time. As shown later in this paper, the functionality can be quickly
put together using existing packages within the scientific python
ecosystem.

In this work, we demonstrate building flexible, lightweight
workflows entirely in Jupyter notebooks with the aim of timely
support for operational decisions, providing basic predictions of
environmental conditions quickly and flexibly for any region
of the globe. For small datasets these notebooks can operate
entirely locally, or they can be run with local display and remote
computation and storage for larger datasets. We demonstrate these
capabilities through examples in hydrology and hydrodynamics
using the AdH [McAlpin17] and GSSHA [Downer08] simulators.
The goal of this work is to provide a set of tools that work well
together and with the existing scientific python ecosystem, can
be used in browser based environments and that can easily be
reconfigured and repurposed as needed to rapidly solve specific
emerging issues. A recent example of this was during Hurricane
Harvey when ERDC was required at short notice to provide flood
inundation simulations of the cities of San Antonio, Houston and
Corpus Christi to emergency response personnel. This required
rapid assembly of available data from disparate sources, genera-
tion of computational grids, model setup and execution as well as
generation of custom output visualizations.

An explicit decision was made to avoid creation of new

https://youtu.be/KTbd_oUkP4Q
mailto:Dharhas.Pothina@erdc.dren.mil


EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 49

Fig. 1: Example of a Region of Interest sectioned into multiple
polygons each with a specific material property.

special-purpose libraries as much as possible and to instead
enhance existing tools with the capabilities required. Hence, as
part of this work, extensive improvements were made to several
general-purpose open source packages, including support for an-
notating and editing plots and maps in Bokeh and HoloViews,
rendering large triangular meshes and regridding large raster data
in HoloViews, GeoViews, and Datashader, and widget libraries for
Param [Bokeh], [Holoviews], [Geoviews], [Datashader], [Param].
In addition, two new open source projects are being released
for triangular mesh generation and environmental data access
[Filigree], [Quest].

Background

The traditional workflow for building environmental simulations
can be broken down into the following stages:

1) Model specification: Building a human-specified con-
ceptual model that denotes regions of interest (ROIs)
and their properties. Typically, this involves drawing of
points, lines and polygons to define the ROIs and define
features, boundary types and material properties (land
surface elevation, soil type, bottom friction, permeability,
etc.). See Figure 1.

2) Data Retrieval: Material properties, hydrology and cli-
matology datasets are retrieved from various public web-
based and local-data stores.

3) Computational mesh generation: The ROIs are parti-
tioned into a computational mesh that is used by the en-
vironmental simulation engine. The simulation types that
we are focused on in this work use a 2D structured/regular
rectangular grid or an unstructured 2D triangular mesh
(See Figure 2). 3D meshes are obtained by extruding
the 2D mesh in the z direction in the form of layers.

Fig. 2: Example of an unstructured 2D triangular computational mesh
of a river that is transected by a roadway embankment with culvert
and bridge openings.

Initial generation of a computational mesh is typically
automated and controlled by attributes in the model
specification process. After this an iterative approach is
used to build a high-quality mesh based on the needs
of the numerical algorithms and to resolve key physical
properties in certain regions. Often mesh vertices and
elements need to be adjusted manually.

4) Data gridding: Based on the model specification, any
spatially varying material properties, initial conditions
and time-varying forcing functions (i.e. boundary con-
ditions) are regridded from the original data sources to
the computational mesh.

5) Simulation: The computational mesh along with the re-
gridded data, plus any model parameters (turbulence
model, etc.) and forcings required (rainfall, etc.) needed
for a specific simulation are written to files formatted for a
particular environmental simulation engine. This model is
then run with the simulation engine (i.e. AdH, GSSHA).
For larger simulations, this is run on an HPC system.

6) Visualization/analysis: The results of environmental sim-
ulations typically consist of time varying scalar and
vector fields defined on the computational mesh, stored
in binary or ASCII files. Analysts first render an overall
animation of each quantity as a sanity check, typically
in 2D or 3D via a VTK-based Windows app in current
workflows. For more detailed analysis, analysts typically
specify certain lower-dimensional subsets of this multidi-
mensional space, such as:

• Virtual measurement stations: A specific point on
the Earth’s surface where e.g. water level can be
computed for every time point and then compared
with historical data from nearby actual measure-
ment stations

• Cross-sections: A 1D curve across the surface of
the Earth, where a vertical slice can be extracted
and plotted in 2D

• Iso-surfaces: Slices through the multidimensional
data where a certain value is held constant, such
as salinity. Associated quantities (e.g. temperature)
can then be plotted in 2D as a color.



50 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 3: Water velocity color contours overlain with velocity quiver
plot showing river flow bypassing roadway embankment.

Figure 3 shows an example visualization of a water
circulation field.

This overall pipeline can give very high quality results, but it
takes 3-6 months to build and run a model, which is both expensive
and also precludes the use of this approach for modeling emergent
issues quickly enough to affect operational decisions. Most of
these stages are also locked into particular Windows-based GUI
applications that are typically tied to execution only on specific
desktop machines where they are installed. In most cases, once
the model input files are generated, they can be manually moved
to an HPC cluster and run from the command line, but then no GUI
is available. This linkage of computation and visualization can be
very problematic, because the local machine may not have enough
processing power to simulate the model in a reasonable time, but if
the model is simulated remotely, the resulting data files can be too
large to be practical to transfer to the local machine for analysis. To
give an example of the data sizes and timescales involved, simple
example/tutorial hydrodynamic model runs on idealized domains
using AdH can take up to an hour. The largest simulation that can
be run on a local workstation generate files of the order of a few
gigabytes and can take several days to run. Realistic, regional scale
models are almost always run on HPC systems typically using 500
to a 1000 processors and generate up to a terabyte worth of data.
HPC runs typically take anywhere from several hours to a day to
complete. An example of the type of HPC systems used for AdH
model runs are the Department of Defences supercomputers Topaz
and Onyx. Topaz is an SGI ICE X System. Standard compute
nodes have two 2.3-GHz Intel Xeon Haswell 18-core processors
(36 cores) and 128 GBytes of DDR4 memory. Compute nodes
are interconnected by a 4x FDR InfiniBand Hypercube network.
Onyx is a Cray XC40/50. Standard compute nodes have two 2.8-
GHz Intel Xeon Broadwell 22-core processors (44 cores) and 128
GBytes of DDR4 memory. Compute nodes are interconnected by
a Cray Aries high-speed network. Both systems have dedicated
GPU compute nodes available. [ERDCHPC]

Moreover, the tools that implement the current workflow are
primarily "heavyweight" approaches that encode a wide set of
assumptions and architectural decisions specific to the applica-

tion domain (environmental simulation), and changing any of
these assumptions or decisions will typically require an exten-
sive vendor-implemented project of C/C++ software development.
These constraints make it difficult for end users who are experts
in the application domain (but not necessarily full-time software
developers) to develop and test architectural improvements and the
effects of different modeling approaches that could be suitable for
specific applications.

Because much of the functionality required to implement the
above workflow is already available as general-purpose libraries
in the Python software ecosystem, we realized that it was feasible
to provide a lightweight, flexible alternative for most of these
stages, with rapid iterative refinement of a conceptual model,
simulation on whatever hardware is available, and fast, flexible,
primarily 2D visualization of remote or local data in a local
browser. The idea is to put power and flexibility into the hands
of domain experts so that they can respond quickly and easily
to emerging issues that require input to help decision making
throughout their organizations, without requiring a lengthy period
of model development and without requiring external software
contractors to make basic changes to assumptions and modeling
mechanisms. In this paper, we show how we have built such a
system.

EarthSim

EarthSim is a website and associated GitHub repository that serves
two purposes. First, it is a location to work on new tools before
moving them into other more general purpose python libraries
as they mature. Second, it contains examples of how to solve
the common Earth Science simulation workflow and visualization
problems outlined above. EarthSim aims to demonstrate building
flexible, lightweight workflows entirely in Jupyter notebooks with
the goal of timely support for operational decisions, providing
basic predictions of environmental conditions quickly and flexibly
for any region of the globe. The overall goal is to provide a set of
tools that work well together and with the wider scientific python
ecosystem. EarthSim is not meant to be a one-size-fits-all solution
for environmental simulation workflows but a library of tools that
can be mixed and matched with other tools within the python
ecosystem to solve problems flexibly and quickly. To that end,
the specific enhancements we describe are targeted towards areas
where existing tools were not available or were insufficient for
setting up an end to end simulation.

EarthSim primarily consists of the core PyViz tools (Bokeh,
HoloViews, GeoViews, Datashader, and Param) as well as two
other new open source tools Filigree and Quest. Short descriptions
of these tools follow:

Bokeh provides interactive plotting in modern web browsers,
running JavaScript but controlled by Python. Bokeh allows Python
users to construct interactive plots, dashboards, and data applica-
tions without having to use web technologies directly.

HoloViews provides declarative objects for instantly visu-
alizable data, building Bokeh plots from convenient high-level
specifications so that users can focus on the data being explored.

Datashader allows arbitrarily large datasets to be rendered
into a fixed-size raster for display, making it feasible to work
with large and remote datasets in a web browser, either in batch
mode using Datashader alone or interactively when combined with
HoloViews and Bokeh.

Param allows the declaration of user-modifiable values called
Parameters that are Python attributes extended to have features



EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 51

such as type and range checking, dynamically generated values,
documentation strings, and default values. Param allows code
to be concise yet robustly validated, while supporting automatic
generation of widgets for configuration setting and for controlling
visualizations (e.g. using ParamBokeh).

All of the above tools are fully general, applicable to any
data-analysis or visualization project, and establish a baseline
capability for running analysis and visualization of arbitrarily large
datasets locally or remotely, with fully interactive visualization
in the browser regardless of dataset size (which is not true of
most browser-based approaches). The key is concept is that the
local client system will always be cabable of performing the
visualization, i.e. can deliver it to the user in a browser, regardless
of the dataset size. The assumption is that the remote server will
be able to handle the datasets, but because Datashader is based on
the Dask parallel library, it is possible to assemble a remote system
out of as many nodes as required need to handle a given dataset,
also work can be done out of core if the user is prepared to wait.
Based on this architecture, this software stack will not be a limiting
factor, only the users’ ability to procure nodes or the time taken
to render. This is in contrast to other software stacks that typically
have a hard size limit. It can be clarified that we have achieved this
claim by a three-level implementation: Dask, which can distribute
the computation across arbitrarily many user-selected nodes (or
multiplexed over time using the same node) to achieve the required
computational power and memory, Datashader, which can make
use of data and compute managed by dask to reduce the data into
a fixed-size raster for display, and Bokeh, to render the resulting
raster along with other relevant data like maps.

In addition, the data is not encoded, compressed, modeled,
or subsampled, it’s just aggregated (no data is thrown away, it’s
simply summed or averaged), and the aggregation is done on the
fly to fit the resolution of the screen. This provides the experience
of having the dataset locally, without actually having it and allows
for responsive interactive exploration of very large datasets.

The other libraries involved are specialized for geographic
applications:

GeoViews extends HoloViews to support geographic pro-
jections using the Cartopy library, making it easy to explore
and visualize geographical, meteorological, and oceanographic
datasets.

Quest is a library that provides a standard API to search, pub-
lish and download data (both geographical and non-geographical)
across multiple data sources including both local repositories and
web based services. The library also allows provides tools to
manipulate and manage the data that the user is working with.

Filigree is a library version of the computational mesh gen-
erator from Aquaveo’s XMS software suite [Aquaveo]. It allows
for the generation of high quality irregular triangular meshes that
conform to the constraints set up by the user.

In surveying the landscape of existing python tools to conduct
environmental simulations entirely within a Jupyter notebook
environment, four areas were found to be deficient:

1) Interactively drawing and editing of glyphs (Points,
Lines, Polygons etc) over an image or map.

2) Interactive annotation of objects on an image or map.
3) Efficient visualization of large structured and unstruc-

tured grid data in the browser.
4) Setup of interactive dashboards.

Fig. 4: Visualization of drawing tools showing drawn polygons,
points, paths, and boundary boxes overlaying a web tile service.

Fig. 5: Drawing tools provide a dynamic link to source data accessible
via python backend.

In the next few sections, we describe how this functionality
is now available from Python without requiring custom Javascript
code.

Enhancements: Drawing Tools

The Bokeh plotting library has long supported extensive inter-
active operations for exploring existing data. However, it did
not previously offer any facilities for generating or editing new
data interactively, which is required when constructing inputs for
running new simulations. In this project, we added a set of Bokeh
editing/drawing tools (See Figure 4), which are sophisticated
multi-gesture tools that can add, delete, or modify glyphs on a
plot. The edit tools provide functionality for drawing and editing
glyphs client-side (in the user’s local browser) and synchronizing
the changes with data sources on the Python server that can then
be accessed in Python. The individual tools can be enabled as
needed for each particular plot:

• BoxEditTool: Drawing, dragging and deleting rectangular
glyphs.

• PointDrawTool: Adding, dragging and deleting point-like
glyphs.

• PolyDrawTool: Drawing, selecting and deleting Polygon
(patch) and Path (polyline) glyphs.

• PolyEditTool: Editing the vertices of one or more Polygon
or Path glyphs.

To make working with these tools easy, HoloViews was
extended to define "streams" that provide an easy bidirectional
connection between the JavaScript plots and Python (See Figure
5). This allows for definition of geometries in Python and editing
in the interactive plot, or creation/modification of geometries in the
interactive plot with subsequent access of the data from Python for
further processing.

Similar tools allow editing points, polygons, and polylines.
As a simple motivating example, drawing a bounding box on

a map now becomes a simple 7-line program:
import geoviews as gv
import geoviews.tile_sources as gts



52 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

import holoviews.streams as hvs

gv.extension('bokeh')
box = gv.Polygons(hv.Box(0, 0, 1000000))
roi = hvs.BoxEdit(source=box)
gts.StamenTerrain.options(width=900, height=500) * box

In a Jupyter notebook, this code will display a world map and let
the user move or edit a box to cover the region of interest (ROI),
which can then be accessed from Python as:
roi.data

For example, Figure 6 demonstrates how USGS National Eleva-
tion Dataset (NED) data can then be retrieved for the ROI as:
import quest
import xarray as xr
import holoviews as hv
import cartopy.crs as ccrs

element = gv.operation.project(hv.Polygons(
roi.element), projection=ccrs.PlateCarree()

)
xs, ys = element.array().T
bbox = list(gv.util.project_extents(

(xs[0], ys[0], xs[2], ys[1]),
ccrs.GOOGLE_MERCATOR,
ccrs.PlateCarree())

)

collection_name = 'elevation_data'
quest.api.new_collection(name=collection_name)
service_features = quest.api.get_features(

uris='svc://usgs-ned:19-arc-second',
filters={'bbox': bbox}

)
collection_features = quest.api.add_features(

collection=collection_name,
features=service_features

)
datasets = quest.api.stage_for_download(

uris=collection_features
)

quest.api.download_datasets(datasets=datasets)
elevation_dataset = quest.api.apply_filter(

name='raster-merge',
options={'datasets': datasets, 'bbox': bbox}

)['datasets'][0]
elevation_file = quest.api.get_metadata(

elevation_dataset
)[elevation_dataset]['file_path']

elevation_raster = xr.open_rasterio(
elevation_file

).isel(band=0)
img = gv.Image(elevation_raster, ['x', 'y'])
gts.StamenTerrain.options(width=600) * img

Enhancements: Annotations

The drawing tools allow glyphs to be created graphically, which
is an essential first step in designing a simulation. The next
step is then typically to associate specific values with each such
glyph, so that the user can declare boundary conditions, parameter
values, or other associated labels or quantities to control the
simulation. Examples of how to do this are provided in EarthSim
as "annotators", which show an editable table alongside the plot
that has drawing tools (See Figure 7), allowing users to input text
or numerical values to associate with each glyph. The table and
plots are interlinked, such that editing either one will update the
other, making it simple to edit data however is most convenient.

Using an annotator currently requires defining a new class
to control the behavior, but work on simplifying this process is

Fig. 6: Visualization data downloaded with quest for a ROI specified
with the drawing tools.

Fig. 7: The Point Annotation tool provides for indexing and grouping
of points

ongoing, and if it can be made more straightforward the code
involved will move into GeoViews or HoloViews as appropriate.

Enhancements: Efficient Raster regridding

Many of the datasets used in Earth-related workflows come in the
form of multidimensional arrays holding values sampled regularly
over some portion of the Earth’s surface. These rasters are often
very large and thus slow to transfer to a client browser, and are
often too large for the browser to display at all. To make it feasible
to work naturally with this data, efficient regridding routines were
added to Datashader. Datashader is used by HoloViews to re-
render data at the screen’s resolution before display, requiring
only this downsampled version to be transferred to the client
browser. The raster support is described at datashader.org, using
all available computational cores to quickly render the portions of
the dataset needed for display. The same code can also be used to
re-render data into a new grid spacing for a fixed-sized rectangular
simulator like GSSHA.

The Datashader code does not currently provide reprojection
of the data into a different coordinate system when that is needed.
A separate implementation using the xESMF library was also
developed for GeoViews to address this need and to provide
additional Earth-specific interpolation options. The geoviews.org

http://datashader.org/user_guide/5_Rasters.html
http://geoviews.org/user_guide/Resampling_Grids.html


EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 53

Fig. 8: Example of a datashader visualization of triangular unstruc-
tured mesh of a portion of Chesapeake Bay

website explains how to use either the Datashader or xESMF
regridding implementations developed in this project.

Enhancements: Triangular mesh visualization

Although Earth imaging data is typically measured on a regular
grid, how quickly the values change across the Earth’s surface
is highly non-uniform. For instance, elevation changes slowly
in many regions, but very quickly in others, and thus when
simulating phenomena like water runoff it is often necessary to
use very high resolution in some locations and relatively sparse
sampling in others. To facilitate working with irregularly gridded
data, the Bokeh, HoloViews, GeoViews, and Datashader libraries
were extended to support "TriMesh" data, i.e., irregular triangle
grids. For very large such grids, Datashader allows them to be
rendered into much smaller rectangular grids for display, making it
feasible to explore meshes with hundreds of millions of datapoints
interactively. The other libraries provide additional interactivity for
smaller meshes without requiring Datashader, while being able to
use Datashader for the larger versions (Figure 8).

Interactive Dashboards

The drawing tools make it possible to generate interactive dash-
boards quickly and easily to visualize and interact with source
data. Figure 9 shows hydrodynamic model simulation results
displayed in an animation on the left. Users are able to query the
results by annotating paths directly on the results visualization.
As annotations are added, the drawing on the right dynamically
updates to show the depth results along the annotated paths.
The animation tool is dynamically linked to both drawings to
demonstrate changes over time.

The drawing tools allow for specification of source data as
key dimensions (independent variables or indices) or as value
dimensions (dependent values or results data). Value dimensions
can be visualized using widgets that are dynamically linked to

Fig. 9: Dashboard with animation demonstrating the ability to dy-
namically visualize multiple looks at a single source dataset.

Fig. 10: Dynamic interaction with drawing via interactive widgets.

the drawing. This allows for simplified visualizations of multi-
dimensional datasets such as parameter sweeps (Figure 10).

Drawings can be both the sender and receiver of dynamic
information. Dashboards can be created that visualize data, allow
users to specify paths in which to query data (e.g. river cross-
sections), and visualize the results of the query in a dynamic
manner. In Figure 11, the user-drawn cross-sections on the image
on the left query the underlying depth data and generate the image
on the right. Users can then interact with the right image sliding
the vertical black bar along the image which simultaneously
updates the left image with a marker to denote the location along
the path.

Crucially, note that very little of the code involved here is
customized for hydrology or geographic applications specifically,

Fig. 11: Dynamic linking provides interaction between drawings as
both sender and receiver.

http://geoviews.org/user_guide/Resampling_Grids.html


54 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 12: User-specification of boundary, dam centerline, and reservoir
level with the drawing tools.

which means that the same techniques can be applied to different
problems as they arise in practice, even if they require changing
the domain-specific assumptions involved.

GSSHA Hydrology Workflow Example

Using many of the tools described here, we have created a note-
book workflow to setup, execute, and visualize the results of the
GSSHA hydrology model. This workflow uses the drawing tools
to specify an area of interest, and then Quest to download elevation
and landuse data. Param is used to specify the model inputs, and
finally GeoViews and Datashader are used to visualize the results.
This flexible workflow can easily be applied to any location in the
globe, and the specific output visualizations can easily be modified
to meet specific project needs. The complete workflow can be
found at http://earthsim.pyviz.org/topics/GSSHA_Workflow.html.

AdH Dambreak Workflow Example

The drawing tools, coupled with AdH, allow for rapid devel-
opment of dambreak simulations to analyze potential hazard
situations. In this example, as seen in Figure 12, the Polygon tool
is used to delineate the boundary of a watershed, a dam centerline
is specified with the Path tool, and a reservoir level specified with
the Point tool.

Data from all three user-specified data sources can also be
accessed and described via tables that are dynamically linked
to the drawing. Additionally, Param widgets allow for users to
specify the reservoir level as either a water depth or an elevation
and whether to use an existing inital water depth file.

Available elevation data to describe the watershed is collected
via Quest. Filigree is then called to develop a unstructured 2D
triangular mesh within the boundary polygon. Using the basic
information about the dam and the dynamically generated mesh,
a reservoir is created behind the dam centerline. This is achieved
by setting AdH water depths on the mesh to reflect the reservoir
level. AdH then simulates the instantaneous breaching of the dam.
The resulting simulation of water depths over time can then be
visualized in the drawing tools as an animation.

Fig. 13: Demonstration of a interactive widget for coastline extraction
using the grabcut algorithm.

Coastline Extraction (GrabCut) Workflow Example

The GrabCut algorithm provides a way to annotate an image using
polygons or lines to demark the foreground and background. The
algorithm estimates the color distribution of the target object and
that of the background using a Gaussian mixture model. This is
used to construct a Markov random field over the pixel labels, with
an energy function that prefers connected regions having the same
label, and running a graph cut based optimization to infer their
values. This procedure is repeated until convergence, resulting in
an image mask denoting the foreground and background.

In this example this algorithm is applied to satellite imagery to
automatically extract a coast- and shoreline contour. First we load
an Image or RGB and wrap it in a HoloViews element, then we
can declare a GrabCutDashboard (See Figure 13). Once we have
created the object we can display the widgets using ParamBokeh,
and call the view function to display some plots.

The toolbar in the plot on the left contains two poly-
gon/polyline drawing tools to annotate the image with foreground
and background regions respectively. To demonstrate this process
in a static paper there are already two polygons declared, one
marking the sea as the foreground and one marking the land as the
background.

We can trigger an update in the extracted contour by pressing
the Update contour button. To speed up the calculation we can also
downsample the image before applying the Grabcut algorithm.
Once we are done we can view the result in a separate cell. See
Figure 14

The full coastline extraction with Grabcut Jupyter note-
book is available at the EarthSim website: https://pyviz.github.
io/EarthSim/topics/GrabCut.html

Future Work

Through the work presented here, we have shown that it is possible
to build flexible, lightweight workflows entirely within Jupyter
notebooks. However, there is still room for improvement. Current
areas being targeted for development are:

• Performance enhancements for GIS & unstructured mesh
datasets

• Making annotation and drawing tools easier to use (i.e.
requiring less custom code)

http://earthsim.pyviz.org/topics/GSSHA_Workflow.html
https://pyviz.github.io/EarthSim/topics/GrabCut.html
https://pyviz.github.io/EarthSim/topics/GrabCut.html


EARTHSIM: FLEXIBLE ENVIRONMENTAL SIMULATION WORKFLOWS ENTIRELY WITHIN JUPYTER NOTEBOOKS 55

Fig. 14: Final image with extracted coastline show in red.

• Layout of Jupyter Notebooks in Dashboard type form
factors with code hidden

• Integration with non Jupyter notebook web frontends (i.e.
Tethys Platform [Swain14] )

• Prototype bidirectional visual programing environment
(e.g. ArcGIS Model Builder)

REFERENCES

[Downer08] Downer, C. W., Ogden, F. L., and Byrd, A.R. 2008,
GSSHAWIKI User’s Manual, Gridded Surface Subsurface Hy-
drologic Analysis Version 4.0 for WMS 8.1, ERDC Technical
Report, Engineer Research and Development Center, Vicksburg,
Mississippi.

[McAlpin17] McAlpin, J. T. 2017, Adaptive Hydraulics 2D Shallow Water
(AdHSW2D) User Manual (Version 4.6), Engineer Research and
Development Center, Vicksburg, Mississippi. Available at https:
//chl.erdc.dren.mil/chladh

[Hines09] Hines, A. et al., Computational Model Builder (CMB): A Cross-
Platform Suite of Tools for Model Creation and Setup, 2009
DoD High Performance Computing Modernization Program
Users Group Conference, San Diego, CA, 2009, pp. 370-373.

[Carsten04] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake.
2004. "GrabCut": interactive foreground extraction using iter-
ated graph cuts. ACM Trans. Graph. 23, 3 (August 2004), 309-
314. DOI: https://doi.org/10.1145/1015706.1015720

[Aquaveo] “Introduction | Aquaveo.com.” [Online]. Available: https://www.
aquaveo.com/. [Accessed: 05-Jul-2018].

[CMB] “CMB Hydro | CMB.” [Online]. Available: https://www.
computationalmodelbuilder.org/cmb-hydro/. [Accessed: 05-Jul-
2018].

[Bokeh] “Welcome to Bokeh — Bokeh 0.13.0 documentation.” [Online].
Available: https://bokeh.pydata.org/en/latest/. [Accessed: 05-Jul-
2018].

[Holoviews] “HoloViews — HoloViews.” [Online]. Available: http://
holoviews.org/. [Accessed: 05-Jul-2018].

[Geoviews] “GeoViews — GeoViews 1.5.0+g63ddd7c-dirty documenta-
tion.” [Online]. Available: http://geoviews.org/. [Accessed: 05-
Jul-2018].

[Datashader] “Installation — Datashader 0.6.6+geb9218c-dirty documenta-
tion.” [Online]. Available: http://datashader.org/. [Accessed: 05-
Jul-2018].

[Param] “Param — Param 1.4.1-dev documentation.” [Online]. Avail-
able: http://param.pyviz.org/. [Accessed: 05-Jul-2018].

[Filigree] TODO talk to Aquaveo for correct Filigree reference
[Quest] “Welcome to Quest’s documentation! — Quest 0.5 documenta-

tion.” [Online]. Available: https://quest.readthedocs.io/en/latest/.
[Accessed: 05-Jul-2018].

[EarthSim] “EarthSim — EarthSim 0.0.1 documentation.” [Online]. Avail-
able: http://earthsim.pyviz.org/. [Accessed: 05-Jul-2018].

[ERDCHPC] “ERDC DSRC - Hardware.” [Online]. Available: https://www.
erdc.hpc.mil/hardware/index.html. [Accessed: 05-Jul-2018].

[Swain14] Swain, N., S. Christensen, N. Jones, and E. Nelson (2014),
Tethys: A Platform for Water Resources Modeling and Decision
Support Apps, paper presented at AGU Fall Meeting Abstracts.

https://chl.erdc.dren.mil/chladh
https://chl.erdc.dren.mil/chladh
https://doi.org/10.1145/1015706.1015720
https://www.aquaveo.com/
https://www.aquaveo.com/
https://www.computationalmodelbuilder.org/cmb-hydro/
https://www.computationalmodelbuilder.org/cmb-hydro/
https://bokeh.pydata.org/en/latest/
http://holoviews.org/
http://holoviews.org/
http://geoviews.org/
http://datashader.org/
http://param.pyviz.org/
https://quest.readthedocs.io/en/latest/
http://earthsim.pyviz.org/
https://www.erdc.hpc.mil/hardware/index.html
https://www.erdc.hpc.mil/hardware/index.html

	Introduction
	Background
	EarthSim
	Enhancements: Drawing Tools
	Enhancements: Annotations
	Enhancements: Efficient Raster regridding
	Enhancements: Triangular mesh visualization
	Interactive Dashboards
	GSSHA Hydrology Workflow Example
	AdH Dambreak Workflow Example
	Coastline Extraction (GrabCut) Workflow Example
	Future Work
	References

