
PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 65

Sparse: A more modern sparse array library

Hameer Abbasi‡∗

https://youtu.be/xH5eVcb1SlA

F

Abstract—This paper is about sparse multi-dimensional arrays in Python. We
discuss their applications, layouts, and current implementations in the SciPy
ecosystem along with strengths and weaknesses. We then introduce a new
package for sparse arrays that builds on the legacy of the scipy.sparse imple-
mentation, but supports more modern interfaces, dimensions greater than two,
and improved integration with newer array packages, like XArray and Dask. We
end with performance benchmarks and notes on future work. Additionally, this
work provides a concrete implementation of the recent NumPy array protocols to
build generic array interfaces for improved interoperability, and so may be useful
for broader community discussion.

Index Terms—sparse, sparse arrays, sparse matrices, scipy.sparse, ndarray,
ndarray interface

Introduction

Sparse arrays are important in many situations and offer both
speed and memory benefits over regular arrays when solving a
broad spectrum of problems. For example, they can be used in
solving systems of equations [LN89], solving partial differential
equations [MR91], machine learning problems involving Bayesian
models [Tip01] and natural language processing [NTK11].

As a motivating example, consider two NumPy arrays with
a shape of (10 ** 5, 10 ** 5) and only five nonzero el-
ements per row. Computations on such arrays, such as addition,
multiplication and so on would perform the operation on each of
the 1010 elements individually, taking up a large amount of time
and memory.

If we instead focused on just the nonzero elements in each
array and worked with those, we would be down to at most 106

elements to work with, a huge improvement. If we were smart
about how the array would be stored, we could also bring down
memory usage as well. This is, in essence, what sparse arrays do
and what they’re used for.

Traditionally, within the SciPy ecosystem, sparse arrays
have been provided within SciPy [Sci18] in the submodule
scipy.sparse, which is arguably the most feature-complete
implementation of sparse matrices within the ecosystem, provid-
ing support for basic arithmetic, linear algebra and graph theoretic
algorithms.

However, it lacks certain features which prevent it from work-
ing nicely with other packages in the ecosystem which consume
NumPy’s [Num18] ndarray interface:

* Corresponding author: hameerabbasi@yahoo.com
‡ TU Darmstadt

Copyright © 2018 Hameer Abbasi. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

• It doesn’t follow the ndarray interface (rather, it follows
NumPy’s deprecated matrix interface)

• It is limited to two dimensions only (even one-dimensional
structures aren’t supported)

In addition, scipy.sparse is depended on by many down-
stream projects, which makes removing NumPy’s matrix inter-
face that much more difficult, and limits usage of both ndarray
style duck arrays and scipy.sparse arrays within the same
codebase.

This is important for a number of other packages that are
quite innovative, but cannot take advantage of scipy.sparse
for these reasons, because they expect objects following the
ndarray interface. These include packages like Dask [Das18]
(which is useful for parallel computing, even across clusters, for
both NumPy arrays and Pandas dataframes) and XArray [xar18]
(which extends Pandas dataframes to multiple dimensions).

Both of these frameworks could benefit tremendously from
sparse structures. In the case of Dask, it could be used in combi-
nation with sparse structures to scale up computational tasks that
need sparse structures. In the case of XArray, datasets with large
amounts of missing data could be represented efficiently, as well
as other benefits such as broadcasting by axis name rather than by
rather opaque axis positions.

In this paper, we present Sparse [Spa18], a sparse array
library that supports arbitrary dimension sparse arrays and sup-
ports most common parts of the ndarray interface. It supports
basic arithmetic, application of ufunc s directly to sparse arrays
(including with broadcasting), most common reductions, indexing,
concatenation, stacking, transpose, reshape and a number of other
features. The primary format in this library is based on the
coordinate format, which stores indices where the array is nonzero,
and the corresponding data.

Since a full explanation of usage would be a repeat of the
NumPy user manual and the package documentation, we move on
to some of the design decisions that went into making this pack-
age, including some challenges we had to face some optimizations,
applications and possible future work.

Algorithms and Challenges

Choice of storage format

We chose the COO format for its simplicity while storing and
accessing elements, even though it isn’t the most efficient storage
format. In this format, two dense arrays are required to store the
sparse array’s data. The first is a coordinates array, which stores
the coordinates where the array is nonzero. This array has a shape
(ndim, nnz). The second is a data array, which stores the

https://youtu.be/xH5eVcb1SlA
mailto:hameerabbasi@yahoo.com

66 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

dim1 dim2 dim3 ... data

0 0 0 ... 10
0 0 3 ... 13
0 2 2 ... 9
...
3 1 4 ... 21

TABLE 1
A visual representation of the COO format.

data corresponding to each coordinate, and thus it has the shape
(nnz,). Here, ndim represents the number of dimensions of the
array and nnz represents the number of nonzero entries in the
array.

For simplicity of operations in many cases, the coordinates
are always stored in C-contiguous order. Table 1 shows a visual
representation of how data is stored in the COO format.

We use whatever data-type the source array has for the data
array and np.int64 for the coordinates array. This means
that, assuming ndim = 3 and dtype.itemsize = 8 (as
is the case for a data type of np.int64, np.uint64 and
np.float64), the tipping point versus dense arrays for memory
usage will be a density of 0.25, with the benefit increasing with
the inverse of the density.

Element-wise operations

Element-wise operations are an important and common part of
any array interface. For example, arithmetic, casting an array,
and all NumPy ufunc s are common examples of element-wise
operations.

These turn out to be simple for NumPy arrays, but are surpris-
ingly complex for sparse arrays. The first problem to overcome
was that there was no dependency on Numba [Ana18]/Cython
[Cyt18]/C++ at the time that this algorithm was to be imple-
mented, and a discussion was ongoing about which algorithm
to use. [Spae] I, therefore wished to solve the problem in pure
NumPy, therefore looping over all possible nonzero coordinates
was not an option, and we had to process the coordinates and
data in batches. The batches that made sense at the time were
something like the following:

1) Coordinates in the first array but not in the second.
2) Coordinates in the second array but not in the first.
3) Coordinates in both arrays simultaneously.

This algorithm (when applied to multiple inputs instead of just
two) looks like the following:

all_coords = []
all_data = []

for each combination of inputs where some are zero
and some nonzero:
if all inputs are zero:

continue

coords = find coordinates common to
nonzero inputs

coords = filter out coordinates that are
in zero inputs

data = apply function to data corresponding
to these coordinates

all_coords.append(coords)

all_data.append(data)

concatenate all_coords and all_data

The addition of broadcasting makes this problem even more
complex to solve, as it turns out that for sparse arrays, simply
broadcasting all arrays to a common shape and then performing
element-wise operations is not the most efficient way to perform
such an operation.

Consider two arrays, one shaped (n,) and another shaped
(m, n), both with only one nonzero entry. If all we wanted to do
was multiply them, the result would have just one nonzero entry,
yet broadcasting the first array would result in an array with m
nonzero entries (which clearly isn’t the most optimal way to do
things). For this reason, we chose to handle broadcasting within
the algorithm itself, instead of broadcasting all inputs upfront.

Effectively, this resulted in the following algorithm, which
doesn’t have the limitation mentioned above. This is because any
zeros are filtered out before any broadcasting is done:

all_coords = []
all_data = []

for each combination of inputs where some are zero
and some nonzero:
if all inputs are zero:

continue

coords = find coordinates common to
nonzero inputs
(for dimensions that are not being
broadcast in both, with repetition
similar to an SQL outer join)

data = apply function to data corresponding
to these coordinates

coords, data = filter out zeros from coords/data

coords, data = filter out coordinates/data that
are in zero inputs
(again, for non-broadcast dimensions)

broadcast coordinates and data to output shape

all_coords.append(coords)
all_data.append(data)

concatenate all_coords and all_data

The full implementation can be found in [Spaa]. While this algo-
rithm is effective at applying all sorts of element-wise operations
for any amount of inputs, it does have a few drawbacks:

• It’s slower than scipy.sparse, because

– It loops over all possible combinations of
zero/nonzero coordinates, which makes it
O
((

2nin −1
)
×nnz

)
in the worst case, where nin

is the number of inputs to the operation and nnz
are the number of nonzero elements.

– It’s in COO format rather than CSR/CSC.
– scipy.sparse uses specialized code paths for

each operation that greatly reduce the strain on the
CPU whereas we keep everything generic.

• In the current implementation, sorting of coordinates is
sometimes done unnecessarily.

This can be improved in the future in the following ways:

• Looping over possibly nonzero coordinates with some-
thing like Numba or Cython.

SPARSE: A MORE MODERN SPARSE ARRAY LIBRARY 67

– This approach will solve most of the speed issues.
– Sorting will be rendered unnecessary.
– Specialized code paths introduce a large mainte-

nance burden, but can be implemented.

• Introducing multidimensional CSR/CSC.

You can see the current performance of the code in Table 2.
Currently, the implementation raises a ValueError if

ndarray s are mixed with sparse arrays, or if the operation
produces a dense array, such as operations like y = x + 5
where x is sparse. This is an intentional design choice: We raise
an error to show that the result is likely dense, and that if the
user wishes to perform a dense operation, they should convert all
arrays involved to dense ones and repeat the operation. This is
better than an undesired performance degradation, which can be
hard to detect.

However, work is being done to reduce the amount of such
errors. For example, there is a feature planned to allow mixed
ndarray -sparse operations if such operations do not produce
dense results e.g. multiplication. [Spac]. Also, we are planning
to allow arbitrary fill values in arrays, which will allow for
operations such as y = x + 5 (if x.fill_value was zero,
y.fill_value will be five). [Spad]

Reductions

We implemented reductions by the elegant concept of a "grouped
reduce". The idea is to first group the coordinates by the non-
selected axes, and then reduce along the selected axes. This is
simple to implement in practice, and also works quite well. Here
is some psuedocode that we use for reductions:

x = x.transpose((selected_axes, non_selected_axes))
x = x.reshape((selected_axes_size,

non_selected_axes_size))

y, counts = perform a reduce on x
grouped by the first coordinate
using ufunc.reduceat

where counts < non_selected_axes_size, reduce
an extra time by zero

y = y.reshape(non_selected_axes_shape)

The full implementation can be found at [Spab]. Only some
reductions are possible with this algorithm at the moment, but
most common ones are supported. Supported reductions must have
a few properties:

• They must be implemented in the form of
ufunc.reduce

• The ufunc must be reorderable
• Reducing by multiple zeros shouldn’t change the result
• An all-zero reduction must produce a zero.

Although these criteria seem restricting, in practice most
reductions such as sum, prod, min, max, any and all ac-
tually fall within the class of supported reductions. We used
__array_ufunc__ protocol to allow application of ufunc
reductions to COO arrays. Notable unsupported reductions are
argmin and argmax, because they cannot be implemented in
the form ufunc.reduce.

This is nearly as fast as the reductions in scipy.sparse
when reducing along C-contiguous axes, but is slow otherwise.
Performance results can be seen in Table 2. Profiling reveals that
most of the time in the slow case is taken up by sorting, as

ufunc.reduceat expects all "groups" to be right next to each
other. This can be improved in the following ways:

• Implement a radix argsort, which will significantly speed
up the sorting.

• Perform a "grouped reduce" by other methods, such as
how Pandas does it, perhaps by using a dict to maintain
the results.

Indexing

For indexing, we realize that to construct the new coordinates and
data, we can perform two kinds of filtering as to which coordinates
will be in the new array and which ones won’t.

The first is where we look at the coordinates directly, and then
filter them out successively for each given index. For integers,
we check for coordinates that are exactly equal to that index. For
slices, we similarly check for matching coordinates. We do this
for each index. This turns out to be O(ndim×nnz) in total. where
ndim is the number of dimensions of the array to the operation
and nnz are the number of nonzero elements.

This has a few benefits: it is simple to do and the performance
only depends on the size of the input array.

The second is where we look at each integer index in series,
and then look at sub-arrays for each integer index. Since the
coordinates are sorted in lexographical order, we will have to do
a binary search for the start and end of each sub array, and repeat
this for each integer index within the previous sub-array. Getting
a single item or an integer slice in this case is O(nidx× lognnz).
Here, nidx is the number of provided integer indices. For slices,
we will loop over each possible integer in the slice and repeat the
above procedure.

For integer indexing, the second method is almost always
faster. For slices, the situation becomes more complicated. Even
for slices, in some cases, it is faster to use the second procedure.
This happens for small slices, e.g. x[:10].

For other cases, it’s wise to initially use the second procedure
(to filter out some sub-arrays), and then switch to the first. For
example, for x[:500, :500, :500], as using just the second
procedure will require a large amount of binary searches (5003 in
this case).

So we used a hybrid approach where the second method is
used until there are a sufficiently low number of coordinates left
for filtering, then we fall back to simple filtering. Where we do the
switch is determined by a heuristic: will the expected number of
binary searches be faster in a specific case, or directly filtering the
number of left-over coordinates? The overall algorithm is imple-
mented in Numba, because when this algorithm was implemented,
the discussion in [Spae] had been resolved. However, it has since
been reopened due to further missing features in Numba.

After getting the required coordinates and corresponding data,
we apply some simple transformations to it to get the output
coordinates and data.

However, one thing is important to realize: indexing sparse
arrays is more expensive than indexing dense arrays. Indexes of
dense arrays produce a view for any combination of slices and
integers, and take O(nidx) time in every case. Sparse arrays take
more time, and it’s usually not possible to produce a view of the
original array.

68 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Benchmark Sparse SciPy Sparse NumPy

Addition 50.8 ms ± 3.45
ms

2.49 ms ± 211
µs

507 ms ± 6.43
ms

Multiplication 10.7 ms ± 526
µs

14.9 ms ± 1.68
ms

529 ms ± 13.5
ms

Sum,
Axis=0

12 ms ± 116 µs 545 µs ± 49.8
µs

97.8 ms ± 4.19
ms

Sum,
Axis=1

959 µs ± 23.7
µs

641 µs ± 83.9
µs

62.7 ms ± 4.86
ms

TABLE 2
Performance benchmarks comparing Sparse to SciPy and dense NumPy code

Transposing and Reshaping

Transposing corresponds to a simple reordering of the dimensions
in the coordinates, along with a re-sorting of the coordinates and
data to make the coordinates C-contiguous again.

Reshaping corresponds to linearizing the coordinates and
then doing the reverse for the new shape, similar to
np.ravel_multi_index and np.unravel_index. How-
ever, we write our own custom implementation for this.

Matrix and tensor multiplication

For tensordot, we currently just use the
NumPy implementation, replacing np.dot with
scipy.sparse.csr_matrix.dot. This is mainly just
transposing and reshaping the matrix into 2-D, using np.dot
(or scipy.sparse.csr_matrix.dot in our case), and
performing the reshape and transpose operations in reverse.

For sparse.dot, we simply dispatch to tensordot, pro-
viding the appropriate axes.

This may not always produce a sparse array as output. If we
think of each element of the output matrix as a dot product of the
appropriate row of the first matrix and the appropriate column of
the second matrix, we realize that it may be difficult to guarantee
that this will be zero. Indeed, in general, nnzout ≤ nnzin1 ×nnzin2,
without knowing much about the structure of the matrix. For some
inputs however, the outputs will be relatively sparse (for example
for identity matrices and diagonal matrices).

Benchmarks

Because of our desire for clean and generic code as well as using
mainly pure Python as opposed to Cython/C/C++ in most places,
our code is not as fast as scipy.sparse.csr_matrix. It,
however, does beat numpy.ndarray, provided the sparsity of
the array is small enough. The benchmarks were performed on a
laptop with a Core i7-3537U processor and 16 GB of memory.
Any arrays used had a shape of (10000, 10000) with a
density of 0.001. The results are tabulated in Table 2.

The NumPy results are given only for comparison, and for the
purposes of illustrating that using sparse arrays does, indeed, have
benefits over using dense arrays when the density of the sparse
array is sufficiently low.

Outlook and Future Work

We discussed the current leading solution for sparse arrays in
the ecosystem, scipy.sparse, along with its shortcomings and
limitations. We then introduced a new package for N-dimensional
sparse arrays, and how it has the potential to address these

shortcomings. We discuss its current implementation, including
the algorithms used in some of the different operations and the lim-
itations and drawbacks of each algorithm. We also discuss future
improvements that could be made to improve these algorithms.

There are a number of areas we would like to focus on in the
future. These include, in very broad terms:

• Better performance
• Better integration with community packages, such as

scikit-learn, Dask and XArray
• Support for more of the ndarray interface (particularly

through protocols)
• Implementation of more linear algebra routines, such as

eig, svd, and solve
• Implementation of more sparse storage formats, such as a

generalization of CSR/CSC

REFERENCES

[Ana18] Anaconda, Inc. Numba, 2018. URL: https://numba.pydata.org/.
[Cyt18] Cython developers. Cython, 2018. URL: http://cython.org/.
[Das18] Dask core developers. Dask, 2018. URL: https://dask.pydata.org/

en/latest/.
[LN89] Dong C Liu and Jorge Nocedal. On the limited memory BFGS

method for large scale optimization. Mathematical programming,
45(1-3):503–528, 1989.

[MR91] Mo Mu and John R Rice. An organization of sparse Gauss
elimination for solving PDEs on distributed memory machines.
1991.

[NTK11] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-
way model for collective learning on multi-relational data. In ICML,
volume 11, pages 809–816, 2011.

[Num18] NumPy developers. Numpy, 2018. URL: https://www.numpy.org/.
[Sci18] SciPy developers. Scipy, 2018. URL: https://www.scipy.org/.
[Spaa] Sparse developers. Sparse Implementation: Elem-

wise. URL: https://github.com/pydata/sparse/blob/
b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/umath.
py#L12.

[Spab] Sparse developers. Sparse Implementation: Reduc-
tions. URL: https://github.com/pydata/sparse/blob/
b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/core.
py#L564.

[Spac] Sparse developers. Sparse Issue: Allow ndarray in elemwise again.
URL: https://github.com/pydata/sparse/issues/124.

[Spad] Sparse developers. Sparse Issue: Arbitrary fill value. URL: https:
//github.com/pydata/sparse/issues/143.

[Spae] Sparse developers. Sparse Issue: Use Cython, Numba, or C/C++
for algorithmic code. URL: https://github.com/pydata/sparse/issues/
143.

[Spa18] Sparse developers. Sparse, 2018. URL: https://sparse.pydata.org/en/
latest/.

[Tip01] Michael E Tipping. Sparse Bayesian learning and the relevance
vector machine. Journal of machine learning research, 1(Jun):211–
244, 2001.

[xar18] xarray Developers. xarray, 2018. URL: https://xarray.pydata.org/en/
stable/.

https://numba.pydata.org/
http://cython.org/
https://dask.pydata.org/en/latest/
https://dask.pydata.org/en/latest/
https://www.numpy.org/
https://www.scipy.org/
https://github.com/pydata/sparse/blob/b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/umath.py#L12
https://github.com/pydata/sparse/blob/b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/umath.py#L12
https://github.com/pydata/sparse/blob/b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/umath.py#L12
https://github.com/pydata/sparse/blob/b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/core.py#L564
https://github.com/pydata/sparse/blob/b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/core.py#L564
https://github.com/pydata/sparse/blob/b51d74924d62ff6537b15ce4e1dd4e56080a3b6f/sparse/coo/core.py#L564
https://github.com/pydata/sparse/issues/124
https://github.com/pydata/sparse/issues/143
https://github.com/pydata/sparse/issues/143
https://github.com/pydata/sparse/issues/143
https://github.com/pydata/sparse/issues/143
https://sparse.pydata.org/en/latest/
https://sparse.pydata.org/en/latest/
https://xarray.pydata.org/en/stable/
https://xarray.pydata.org/en/stable/

	Introduction
	Algorithms and Challenges
	Choice of storage format
	Element-wise operations
	Reductions
	Indexing
	Transposing and Reshaping
	Matrix and tensor multiplication

	Benchmarks
	Outlook and Future Work
	References

