
PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018) 69

Bringing ipywidgets Support to plotly.py

Jon Mease‡∗

https://youtu.be/1ndo6C1KWjI

F

Abstract—Plotly.js is a declarative JavaScript data visualization library built on
D3 and WebGL that supports a wide range of statistical, scientific, financial,
geographic, and 3-dimensional visualizations. Support for creating Plotly.js visu-
alizations from Python is provided by the plotly.py library. Version 3 of plotly.py
integrates ipywidgets support, providing a host of benefits to plotly.py users
working in the Jupyter notebook. This paper describes the architecture of this
new version of plotly.py, and presents examples of several of these benefits.

Index Terms—ipywidgets, plotly, jupyter, visualization

Introduction

The Jupyter Notebook [KRKP+16] has emerged as the dominant
interface for exploratory data analysis and visualization in the
Python data science ecosystem. The ipywidgets library [GFC]
provides a suite of interactive widgets for use in the Jupyter
Notebook, and it serves as a foundation for library authors to build
on to create their own custom widgets.

This paper describes our work to bring ipywidgets support to
plotly.py version 3. Compared to version 2, plotly.py version 3
brings plotly.py users working in the Jupyter Notebook a host of
benefits. Figures already displayed in the notebook may now be
updated in-place using property assignment syntax. All properties
throughout the entire figure hierarchy are now discoverable us-
ing tab completion and documented with informative docstrings.
Property values are now fully validated by the Python library
and helpful error messages are raised on validation failures.
Figure transitions may now be animated. Numpy arrays are now
transferred between the Python and JavaScript libraries using a
binary serialization protocol for improved performance. Finally,
Python callbacks may now be registered for execution upon zoom,
pan, click, hover, and data selection events.

Plotly.js Overview

Plotly.js is a JavaScript data visualization library based on D3
and WebGL that supports a wide range of statistical, scientific,
financial, geographic, and 3-dimensional visualizations [Inc15].
The library was initially developed by Plotly Inc. as a core
component of their commercial visualization offerings. The library
was open sourced under the MIT license in 2015 [Ploc], and may
now be used fully offline without requiring any interaction with
Plotly Inc’s commercial infrastructure.

* Corresponding author: jon.mease@jhuapl.edu
‡ Johns Hopkins Applied Physics Laboratory

Copyright © 2018 Jon Mease. This is an open-access article distributed un-
der the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

{"data": [
{"type": "bar",
"y": [2, 3, 1],
"name": "A",},
{"type": "scatter",
"y": [3, 1, 2],
"name": "B",
"marker": {"size": 12}}
],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

Fig. 1: JSON specification of a basic Plotly.js figure

Data model

Plotly figures are fully defined by a declarative JSON specifi-
cation. Key components of this specification are shown in the
example in Figure 1.

The top-level 'data' property contains an array of the traces
present in the figure. The object representing each trace contains a
'type' property that identifies the trace type (e.g. 'scatter',
'bar', 'violin', 'mesh3d', etc.). The remaining properties
are used to configure the trace. As of version 1.37.1, Plotly.js sup-
ports 32 distinct trace types covering many statistical, scientific,
financial, geographic, and 3-dimensional use-cases.

The top-level 'layout' property is an object with properties
that specify characteristics of the figure that are independent of its
traces. These include the figure’s size, axis extents, legend styling,
background color, and many others.

Of particular interest to this work, the Plotly.js library is
capable of exporting a detailed schema corresponding to this
JSON specification. The schema includes the names of all valid

https://youtu.be/1ndo6C1KWjI
mailto:jon.mease@jhuapl.edu


70 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

{"layoutAttributes":
...
"hovermode": {

"valType": "enumerated",
"values": [

"x",
"y",
"closest",
false

],
"description": "Determines ... "
...

}
...

}

Fig. 2: Plotly.js schema example for the hovermode property

properties and information about their permitted values. This
schema is the basis for the Plotly rest API [Ploa] and, as discussed
below, this schema enables us to use code-generation to generate
a complete Python object hierarchy corresponding to the JSON
structure. Figure 2 presents a excerpt of the plot schema describing
the 'hovermode' property of layout.

Next, we provide a brief overview of the relevant portions of
the Plotly.js API that are used by the new widget library. For more
information, including detailed method signatures, see [Plob].

Commands

The following Plotly.js commands are used to create and update
figures.

Plotly.newPlot

Create a new figure with initial traces and layout
Plotly.restyle

Update one or more properties of one or more pre-existing
traces

Plotly.relayout

Update one or more properties of the figure’s layout
Plotly.update

Update both trace and layout properties simultaneously
Plotly.addTraces

Add new traces to an existing figure
Plotly.deleteTraces

Delete select traces from an existing figure
Plotly.moveTraces

Move select traces to a new position in the figure’s data
array

Plotly.animate

Animate property updates in supported trace types

Events

The following events are emitted by Plotly.js figures in response
to various kinds of user interaction.

plotly_restyle

Emitted when properties of one or more traces are updated.
This may either be the result of a Plotly.restyle
command or the result of user interaction. For example,

clicking on a trace in the legend toggles the trace’s
visibility in the figure. This visibility state is stored in the
top-level visible enumeration property on traces.

plotly_relayout

Emitted when properties of the figure’s layout are updated.
This may either be the result of a Plotly.relayout
command or the result of user interaction. For example,
panning or zooming a figure’s axis updates the 'range'
sub-property of the top-level 'xaxis' and 'yaxis'
layout properties.

plotly_selected

Emitted when a user completes a selection action using the
box select or lasso select tools. The event’s data contain the
indices of the traces from which points were selected and
the indices of the selected points themselves. Similar
events are also emitted when a user clicks
(plotly_click), hovers onto (plotly_hover), or
hovers off of (plotly_unhover) points in a trace.

Variables

The current state of a figure is stored in the following four
variables.

data and layout
These variables store the trace and layout properties
explicitly specified by the user.

_fullData and _fullLayout
These variables store the full collection of trace and layout
properties that are currently in use, whether specified by
the user or selected by Plotly.js as defaults.

ipywidgets Overview

The ipywidgets library [GFC] provides a useful collection of
interactive widgets (sliders, check boxes, radio buttons, etc.) for
use in the Jupyter Notebook and in several other contexts [wida].
For the full list of built-in widgets see [widb].

The integration of graphical widgets into the notebook work-
flow allows users to configure ad-hoc control panels to inter-
actively sweep over parameters using graphical widget controls,
rather than by editing code or writing loops over fixed ranges of
values.

The infrastructure behind the built-in ipywidgets is available
to library authors and many custom ipywidgets libraries have
been developed [Cus]. Three notable data visualization examples
include bqplot [CSM+] for 2-dimensional Grammar of Graphics
[Wil05] style visualizations, ipyvolume [Bre] for 3-dimensional
and volumetric visualizations, and ipyleaflet [CG] for geographic
visualization.

The high level architecture, shown in Figure 3, consists of
four components: The Python model, the JavaScript model, the
JavaScript views, and the Comms interface. These components
are described below.

Python Model

The Python model is a Python class that inherits from the
ipywidgets.Widget superclass and uses the traitlets library
[tra] to declare typed attributes that should be synchronized with
the JavaScript model.



BRINGING IPYWIDGETS SUPPORT TO PLOTLY.PY 71

Model Model

View

View

Comms

Python JavaScript/HTML

Fig. 3: High level ipywidgets architecture

JavaScript Model

The JavaScript model is a JavaScript class that extends the
@jupyter-widgets/base/WidgetModel class and de-
clares a collection of attributes that match the traitlet declarations
in the corresponding Python model.

When used in the Jupyter Notebook, there is a one-to-one
relationship between the Python and JavaScript models. The
JavaScript model is constructed just after the Python model is con-
structed, which may be well before the widget is first displayed.

JavaScript View

The JavaScript view (hereafter referred to as "the view" since
there is no ambiguity) is a JavaScript class that extends the
@jupyter-widgets/base/WidgetView class. When used
in the notebook, a separate view is constructed each time a model
is displayed. Each view has a reference to one JavaScript model,
and multiple views may share the same model.

Comms and Synchronization

The Jupyter Comms API provides an abstraction for performing
two-way communication between the front-end and the Python
kernel, hiding the complexity of the web server, ZeroMQ, and
WebSocket implementation details.

The synchronization of the Python and JavaScript models
is accomplished using the widget messaging protocol over the
Jupyter Comms infrastructure.

A powerful feature of the widget messaging protocol is that
it supports the efficient serialization of nested data structures
containing binary buffers. This capability is used by ipyvolume
[Bre] (and now plotly.py) to transfer Python numpy arrays into
JavaScript TypedArrays without ASCII encoding.

New Plotly.py Figure API

In plotly.py version 3, a figure is represented by an instance of
the plotly.graph_objs.Figure class. A Figure instance
maintains an internal representation of the figure’s JSON specifi-
cation, and presents a convenient API for creating and updating
this specification.

Code generation is used to create a rich hierarchy of Python
classes that correspond to the object hierarchy specified in the plot
schema described above. Figure 4 presents an example of property
tab completion (a), a property docstring (b), and a validation error
message (c) for the 'hovermode' property of layout that is
defined by the schema excerpt in Figure 2.

Select components of the new API are described below, and
an example of their use is presented in Figure 5.

Construction

If the full specification of the desired figure is known in advance,
the specification may be passed directly to the Figure construc-
tor as a Python dict. This construction process will trigger the
validation of all properties and nested properties according to the
plot schema. Figure 5 (a) presents an example of constructing a
Figure with a single bar trace.

Property Assignment

A Figure’s properties may be configured iteratively after con-
struction using property assignment. Figure 5 (b) presents an
example of setting the x-axis range to [-1, 3] using property
assignment.

Add Traces

A new trace may be added to an existing Figure using the
add_{trace} method that corresponds to the desired trace type.
Figure 5 (c) presents an example of adding a new scatter trace
to a Figure instance using the add_scatter method.

Batch Update

Multiple properties may be updated simultaneously using a
Figure.batch_update() context manager. In this case, all
property assignments specified inside the batch_update con-
text will be executed simultaneously when the context exits. Figure
5 (d) presents an example of assigning four properties across two
traces and the layout inside a batch_update context.

Reorder Traces

The ordering of traces in the Figure’s data list determines the
order in which the traces are displayed in the legend, and the
colors that are chosen for traces by default. The trace order can be
updated by assigning to the data property a list that contains a
permutation of the figure’s current traces. Figure 5 (e) presents an
example of swapping the order of the bar and scatter traces.

Delete Traces

Traces may be deleted by omitting them from the list of traces that
is assigned to a Figure’s data property. Figure 5 (f) presents an
example of deleting the bar trace by assigning a list that contains
only the scatter trace.

Batch Animate

Multiple properties may be updated simultaneously using a
Figure.batch_animate() context manager. When applied
to a Figure instance this works just like the batch_update
context manager. However, when applied to a FigureWidget
instance (described below) the Plotly.js library will attempt to
smoothly animate the transition to the new property values. Figure
5 (g) presents an example of animating a change in the Figure’s
x-axis and y-axis range extents.



72 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

...

(d)

(c)

(b)

(a)

Fig. 4: Tab completion, documentation, and validation of hovermode property

New Plotly.py ipywidgets Implementation

The entry point for the new ipywidgets support is
the plotly.graph_objs.FigureWidget class.
FigureWidget is a subclass of Figure and, as such,
inherits all of the Figure characteristics described in the
previous section.

Implementing a custom ipywidgets library for Plotly.js
presents some architectural challenges. Plotly.js does not expose a
model-view separation, each figure stores its own data locally in
the figure’s root DOM element. This means that each ipywidgets
JavaScript view will necessarily be an independent Plotly.js figure
instance with its own data. As such, we must take responsibility
for keeping the JavaScript model in sync with the state of the
Plotly.js figures in each view.

An additional performance-based architectural restriction is
that as few properties as possible should be transferred between
the Python and JavaScript models. This restriction eliminates
solutions that require serialization of the entire plot specification
when only a subset of the properties are modified.

The following sections describe our solution to these chal-
lenges.

Python to JavaScript Synchronization

Python to JavaScript synchronization is achieved by translat-
ing Python FigureWidget mutation operations into Plotly.js
API commands. These commands, and their associated data, are
transferred to the JavaScript model and views using the widget
messaging protocol, over the Jupyter Comms infrastructure, as
described above. The views are updated by executing the specified
Plotly.js command, and the JavaScript model is updated manually
in a consistent fashion.

Construction

Construction operations are translated into Plotly.newPlot
commands. Figure 6 (a) presents an example of the newPlot
command that results from the construction operation in Figure 5
(a) if the Figure class is replaced by FigureWidget.

Property Assignment

Trace property assignments are translated into
Plotly.restyle commands, and layout property assignments
are translated into Plotly.relayout commands. Figure 6
(b) presents an example of the relayout command that results
from the property assignment operation in Figure 5 (b).



BRINGING IPYWIDGETS SUPPORT TO PLOTLY.PY 73

>>> import plotly.graph_objs as go
>>> fig = go.FigureWidget(

data=[go.Bar(y=[2, 3, 1])])

>>> fig.layout.xaxis.range = [-1, 3]

>>> fig.add_scatter(y=[3, 1, 2])

>>> with fig.batch_update():
...     fig.data[0].name = 'A'
...     fig.data[1].name = 'B'
...     fig.data[1].marker.size = 12
...     fig.layout.xaxis.tickvals = \
...         [0, 1, 2]

>>> fig.data = \
...     [fig.data[1], fig.data[0]]

>>> with fig.batch_animate():
...     fig.layout.xaxis.range = \
...         [-2, 4]
...     fig.layout.yaxis.range = \
...         [-3, 5]

>>> fig.data = [fig.data[0]]

{"data": [
{"type": "bar",
"y": [2, 3, 1]}],

"layout": {}}

{"data": [
{"type": "bar",
"y": [2, 3, 1]}],

"layout": {"xaxis":
{"range": [-1, 3]}}}

{"data": [
{"type": "bar",
"y": [2, 3, 1]},
{"type": "scatter",
"y": [3, 1, 2]}],

"layout": {"xaxis":
{"range": [-1, 3]}}}

{"data": [
{"type": "bar",
"y": [2, 3, 1],
"name": "A"},
{'type": "scatter",
"y": [3, 1, 2],
"name": "B",
"marker": {"size": 12}}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

{"data": [
{"type": "scatter", ...},
{"type": "bar", ...}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

{"data": [
{"type": "scatter", ...}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]}}}

{"data": [
{"type": "scatter", ...}],

"layout": {"xaxis":
{"range": [-1, 3],
"tickvals": [0, 1, 2]},
"yaxis":
{"range": [-3, 5]}}

JSON Specification Display

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Code

Fig. 5: New Figure API Example



74 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

{"data": [
{"type": "bar",
"y": [2, 3, 1]}],

"layout": {}}

{"xaxis.range": [-1, 3]}

{"type": "scatter",
"y": [3, 1, 2]}

{"data": {"name": ["A", "B"], 
"marker.size": 

[undefined, 12]},
"layout": {"xaxis.tickvals":

[0, 1, 2]}}

{"traceInds": [0, 1],
"newTraceIndes": [1, 0]}

{"traceInds": [1]}

{"layout":
{"xaxis.range": [-1, 3],
"yaxis.range": [-3, 5]}}

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Plotly.newPlot

Plotly.relayout

Plotly.addTraces

Plotly.update

Plotly.moveTraces

Plotly.deleteTraces

Plotly.animate

ArgumentsPlotly.js Command

Fig. 6: Plotly.js commands corresponding to operations in Figure 5 if the Figure class is replaced by FigureWidget

Add Traces

Add trace operations are translated into Plotly.addTraces
commands. Figure 6 (c) presents an example of the addTraces
command that results from the add_scatter operation in 5 (c).

Batch Update

Batch update operations are translated in to Plotly.update
commands. Figure 6 (d) presents an example of the update
command that results from the batch_update operation in 5
(d).

Reorder Traces

Trace reordering operations are translated into
Plotly.moveTraces commands. Figure 6 (e) presents
an example of the moveTraces command that results from the
data assignment operation in 5 (e).

Delete Traces

Trace deletion operations are translated into
Plotly.deleteTraces commands. Figure 6 (f) presents an
example of the deleteTraces command that results from the
data assignment operation in 5 (f).

Batch Animate

Batch animate operations are translated into Plotly.animate
commands. Figure 6 (g) presents an example of the animate

command that results from the batch_animate operation in 5
(g).

JavaScript to Python Synchronization

JavaScript to Python synchronization is required when a user
interacts with a Plotly.js figure in a view in such a way that
the figure’s internal specification is modified. For example, the
action of zooming or panning a figure causes a modification to the
figure’s x-axis and y-axis range properties.

To maintain consistency, views listen for plotly_restyle
and plotly_relayout events and forward these commands to
the Python model. The Python model then applies the command
to itself and forwards the command to the Java Script model and
any additional views.

Property change callbacks

Python functions may be registered for execution when particular
trace or layout properties are modified by using the on_change
method. This method is available on all compound objects in the
figure hierarchy.

Figure 7 presents an example of constructing and display-
ing a FigureWidget instance (a) and then registering the
handle_zoom function for execution when the range sub-
property of either the xaxis or the yaxis properties is changed
(b).



BRINGING IPYWIDGETS SUPPORT TO PLOTLY.PY 75

>>> import plotly.graph_objs as go
>>> from IPython.display import display
>>> fig = go.FigureWidget(

data=[go.Scatter(y=[3, 1, 2])],
layout={'xaxis': {'range': [-1, 3]}})

>>> display(fig)

>>> def handle_zoom(layout, xrange, yrange):
...     print('new x-range:', xrange)
...     print('new y-range:', yrange)

>>> fig.layout.on_change(handle_zoom, 
'xaxis.range',
'yaxis.range')

Model Model

View

View

Python JavaScript/HTML

rel
ayo

ut

relayout

relayout argument:
{"xaxis.range": [0, 1],
"yaxis.range": [1.5, 2.5]}

new x-range: (0, 1)
new y-range: (1.5, 2.5)

(a)

(b)

(d)

(e)

(f)
(g)

(h)

zoom  (c)

Fig. 7: Zoom property change callback example

Next, the zoom tool is used to select a region that extends
from 0 to 1 on the x-axis and from 1.5 to 2.5 on the y-axis
(c). The Plotly.js figure that executes the zoom action emits a
plotly_relayout event (d) which the view forwards to the
Python model (e). The Python model applies the update to itself
and then sends a relayout message to the JavaScript model
(f) and any additional JavaScript views (g). Finally, the Python
model executes any callback functions registered on the range
sub-property of xaxis or yaxis (h).

Point interaction callbacks

As discussed above, a Plotly.js figure emits events when a user in-
teracts with a trace by clicking (plotly_click), hovering onto
(plotly_hover), hovering off of (plotly_unhover), or se-
lecting (plotly_selected) points. Trace objects in plotly.py
now support the registration of Python callbacks to be executed
when these events occur.

Figure 8 presents an example of constructing and displaying
a FigureWidget instance with a scattergl trace containing
100,000 normally distributed points (a). The scattergl trace
is a WebGL optimized version of the SVG-based scatter trace
used in previous examples.

Trace markers are configured to be colored based on a color
scale and a numeric vector. The cmin and cmax properties
specify that color values of 0 should be mapped to the bottom
of the color scale (light gray for the default scale) and values of
1 should be mapped to the top of the color scale (dark red for
the default scale). The color vector is initialized to all zeros so all
points are initially light gray in color.

Next, the brush function is defined and then registered with
the trace for execution when a selection event occurs using the
trace’s on_selection method (b). The first argument to the
brush function is the trace that was selected (the scattergl
trace in this case) and the second argument is a list of the indices
of the points that were selected.

The box select tool is used to select a rectangular region of
points (c). This triggers the execution of the brush function. The
brush function updates the marker’s color property to be an
array where the elements corresponding to selected points have
a value of 1 and all other elements have a value of 0. Due to
the marker color configuration described above, this causes the
selected points to be displayed in dark red.

It is significant to note that even though there are 100,000
points, the time to display the initial figure and the time to update
point colors based on a new selection are each less than one
second. This latency level is enabled by the efficient transfer of
numpy arrays to the JavaScript front-end as binary buffers over
the Jupyter Comms interface, and by the WebGL accelerated
implementation of the scattergl trace.

Default Properties

Plotly.js provides a flexible range of configuration options to
control the appearance of a figure’s traces and layout, and it will
attempt to compute reasonable defaults for properties not specified
by the user.

To improve the experience of interactively refining a figure’s
appearance, it is very helpful to provide the user with the default
values of unspecified properties. For example, if a user would like
to specify a scatter trace marker size that is slightly larger than
the default, it is very helpful for the user to know that the default
value is 6.

Default property information for traces may be determined by
comparing the data and _fullData variables of the Plotly.js
figure. Any property value specified in _fullData that is not
specified in data is considered a default property value. Simi-
larly, the layout and _fullLayout variables may be used to
determine default values for layout properties.

Default properties are transferred from a view to the Python
model upon any change to the Plotly.js figure. These default
property values are then returned by the Python model during
property access when no user specified value is available.



76 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

>>> import plotly.graph_objs as go
>>> import numpy as np
>>> from IPython.display import display
>>> N = 100000
>>> fig = go.FigureWidget(
...     data = [
...         go.Scattergl(
...             x = np.random.randn(N), 
...             y = np.random.randn(N),
...             mode = 'markers',
...             marker={'color': np.zeros(N),  
...                     'opacity': 0.6,
...                     'cmin': 0, 'cmax': 1,
...                     'line': {'width': 1},
...                     'showscale' : True})],
...     layout = {'width': 500,
...               'height': 500})
>>> display(fig)

>>> def brush(trace, points, *_):
...    inds = np.array(points.point_inds)
...    selected = np.zeros(N)
...    if inds.size:
...        selected[inds] = 1
...    trace.marker.color = selected

>>> fig.data[0].on_selection(brush)

Box select  (c)

(a)

(b)

(d)

Fig. 8: Data selection and brushing example

Conclusion

The integration of plotly.py version 3 with the ipywidgets library
brings a wide range of benefits to plotly.py users working in the
Jupyter Notebook. Figure properties are now easily discoverable
through the use of tab completion, and they are understandable
thanks to the presence of detailed docstrings. This greatly reduces
the need for users to interrupt their analysis workflow to consult
external documentation resources.

All of these properties may be updated using property as-
signment syntax and the updates are immediately applied to all

of the displayed views of the figure. This allows users to begin
the visualization process with simple figures, and then iteratively
refine them.

These iterative updates transfer as few properties from Python
to JavaScript as possible, and numpy arrays are transferred as bi-
nary buffers without ASCII encoding. Combined with the Plotly.js
library’s performance optimized WebGL trace types, this allows
users to create and interactively explore visualizations of data sets
with hundreds of thousands of points.

Plotly figures may now be arranged in custom layouts with
other ipywidgets, and Python functions may now be registered for
execution in response to figure interactions including pan, zoom,
click, hover, and selection. These features allow users to create
rich dashboards right in the notebook.

In total, the integration of ipywidgets support in plotly.py
version 3 dramatically enhances the interactive data visualization
experience for plotly.py users working in the Jupyter Notebook,
and we are excited to see what the SciPy community will build
with these new tools.

Acknowledgements

The development of the ipywidgets integration was supported by
the Johns Hopkins Applied Physics Laboratory. The integration of
this work into plotly.py version 3 was additionally supported by
Plotly Inc.

REFERENCES

[Bre] Maarten Breddels. maartenbreddels/ipyvolume: 3d plotting for
Python in the Jupyter notebook based on IPython widgets using
WebGL. URL: https://github.com/maartenbreddels/ipyvolume.

[CG] Sylvain Corlay and Brian Granger. jupyter-widgets/ipyleaflet:
A Jupyter - Leaflet.js bridge. URL: https://github.com/jupyter-
widgets/ipyleaflet.

[CSM+] Sylvain Corlay, Srinivas Sunkara, Dhruv Madeka, Ro-
main Menegaux, Chakri Cherukuri, and Jason Grout.
bloomberg/bqplot: Plotting library for IPython/Jupyter Note-
books. URL: https://github.com/bloomberg/bqplot.

[Cus] Project Jupyter | Widgets. URL: http://jupyter.org/widgets.
[GFC] Jason Grout, Jonathan Frederic, and Sylvain Corlay. ipywid-

gets: Interactive widgets for the Jupyter Notebook. URL:
https://github.com/jupyter-widgets/ipywidgets.

[Inc15] Plotly Technologies Inc. Collaborative data science, 2015. URL:
https://plot.ly.

[KRKP+16] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez,
Brian Granger, Matthias Bussonnier, Jonathan Frederic, Kyle
Kelley, Jessica Hamrick, Jason Grout, Sylvain Corlay, Paul
Ivanov, Damián Avila, Safia Abdalla, and Carol Willing. Jupyter
notebooks – a publishing format for reproducible computational
workflows. In F. Loizides and B. Schmidt, editors, Positioning
and Power in Academic Publishing: Players, Agents and Agen-
das, pages 87 – 90. IOS Press, 2016.

[Ploa] Plotly REST API, v2. URL: https://api.plot.ly/v2/plot-schema.
[Plob] Plotly.js Function Reference. URL: https://plot.ly/javascript/

plotlyjs-function-reference/.
[Ploc] Plotly.js Open-Source Announcement. URL: https://plot.ly/

javascript/open-source-announcement/.
[tra] Traitlets — traitlets 4.3.2 documentation. URL: https://traitlets.

readthedocs.io/en/stable/.
[wida] Embedding Jupyter Widgets in Other Contexts than the Note-

book — Jupyter Widgets 7.2.1 documentation. URL: https:
//ipywidgets.readthedocs.io/en/latest/embedding.html.

[widb] Widget List — Jupyter Widgets 7.2.1 documentation. URL:
http://ipywidgets.readthedocs.io/en/latest/examples/Widget%
20List.html.

[Wil05] Leland Wilkinson. The Grammar of Graphics (Statistics and
Computing). Springer-Verlag, Berlin, Heidelberg, 2005.

https://github.com/maartenbreddels/ipyvolume
https://github.com/jupyter-widgets/ipyleaflet
https://github.com/jupyter-widgets/ipyleaflet
https://github.com/bloomberg/bqplot
http://jupyter.org/widgets
https://github.com/jupyter-widgets/ipywidgets
https://plot.ly
https://api.plot.ly/v2/plot-schema
https://plot.ly/javascript/plotlyjs-function-reference/
https://plot.ly/javascript/plotlyjs-function-reference/
https://plot.ly/javascript/open-source-announcement/
https://plot.ly/javascript/open-source-announcement/
https://traitlets.readthedocs.io/en/stable/
https://traitlets.readthedocs.io/en/stable/
https://ipywidgets.readthedocs.io/en/latest/embedding.html
https://ipywidgets.readthedocs.io/en/latest/embedding.html
http://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html
http://ipywidgets.readthedocs.io/en/latest/examples/Widget%20List.html

	Introduction
	Plotly.js Overview
	Data model
	Commands
	Events
	Variables

	ipywidgets Overview
	Python Model
	JavaScript Model
	JavaScript View
	Comms and Synchronization

	New Plotly.py Figure API
	Construction
	Property Assignment
	Add Traces
	Batch Update
	Reorder Traces
	Delete Traces
	Batch Animate

	New Plotly.py ipywidgets Implementation
	Python to JavaScript Synchronization
	Construction
	Property Assignment
	Add Traces
	Batch Update
	Reorder Traces
	Delete Traces
	Batch Animate

	JavaScript to Python Synchronization
	Property change callbacks
	Point interaction callbacks
	Default Properties

	Conclusion
	Acknowledgements
	References

