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Abstract—The neighborhood effects literature represents a wide span of the
social sciences broadly concerned with the influence of spatial context on social
processes. From the study of segregation dynamics, the relationships between
the built environment and health outcomes, to the impact of concentrated
poverty on social efficacy, neighborhoods are a central construct in empirical
work. From a dynamic lens, neighborhoods experience changes not only in their
socioeconomic composition, but also in spatial extent; however, the literature has
ignored the latter source of change. In this paper, we discuss the development
of a novel, spatially explicit tool: the Open Source Longitudinal Neighborhood
Analysis Package (OSLNAP) using the scientific Python ecosystem.

Index Terms—neighborhoods, GIS, clustering, dynamics

Introduction

For social scientists in a wide variety of disciplines, neighborhoods
are central thematic topics, focal units of analysis, and first-
class objects of inquiry. Despite their centrality in public health,
sociology, geography, political science, economics, psychology,
and urban planning, however, neighborhoods remain understudied.
One of the reasons for that is because researchers lack appropriate
analytical tools for understanding neighborhood evolution through
time and space. Towards this goal we are developing the open
source longitudinal neighborhood analysis program (OSLNAP).
We envisage OSLNAP as a toolkit for better, more open and repro-
ducible science focused on neighborhoods and their sociospatial
ecology. In this paper we first provide an overview of the main
components of OSLNAP. Next, we present an illustration of
selected OSLNAP functionality. We conclude the paper with a
road map for future developments.

OSLNAP

Neighborhood analysis involves a multitude of analytic tasks, and
different types of inquiry lead to different analytical pipelines
in which distinct tasks are combined in sequence. OSLNAP is
designed in a modular fashion to facilitate the composition of
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different pipelines for neighborhood analysis. Its functionality is
available through several interfaces that include a web-based front
end as well as a library for scripting in Jupyter notebooks or at
the shell. As such, OSLNAP is intended to support different types
of researchers and questions. For example, a sociologist interested
in comparative segregation dynamics can use OSLNAP to derive
time-consistent boundaries for a collection of US metropolitan ar-
eas from 1980-2010. Alternatively, public health epidemiologists
can use the same boundaries to study the impact of neighborhood
context on childhood obesity trends. Both of these types of studies
might be characterized as "neighborhood effects" studies as neigh-
borhood units serve as containers to study different socioeconomic
processes.

An alternative group of studies falls under the "neighborhood
dynamics" label. Here the interest is in the neighborhood units
themselves and how their boundaries and internal socioeconomic
composition evolve over time. Processes such as gentrification
and the so called great inversion [Ehr12] where wealthy, higher
educated, white populations are relocating into the center cities
while growing numbers of minorities move to the suburbs both
fundamentally restructure urban and suburban neighborhoods.
OSLNAP is designed to support both neighborhood effects and
neighborhood dynamics modes of inquiry.

Here we provide an overview of each of the main analytical
components of OSLNAP before moving on to an illustration of
how selections of the analytical functionality can be combined for
particular use cases. OSLNAP’s analytical components are orga-
nized into three core modules: [a] data layer; [b] neighborhood
definition layer; [c] longitudinal analysis layer.

Data Layer

Like many quantitative analyses, one of the most important and
challenging aspects of longitudinal neighborhood analysis is the
development of a tidy and accurate dataset. When studying the
socioeconomic makeup of neighborhoods over time, this challenge
is compounded by the fact that the spatial units whose composition
is under study often change size, shape, and configuration over
time. The harmonize module provides social scientists with
a set of simple and consistent tools for building transparent
and reproducible spatiotemporal datasets. Further, the tools in
harmonize allow researchers to investigate the implications of
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Fig. 1: Enumeration Unit Changes [U.S10].

alternative decisions in the data processing pipeline and how those
decisions affect the results of their research.

Neighborhood demographic and socioeconomic data relevant
to social scientists are typically collected via a household census
or survey and aggregated to a geographic reporting unit such as
a state, county or zip code which may be relatively stable. The
boundaries of smaller geographies like census tracts, however,
often are designed to encapsulate roughly the same number of
people for the sake of comparability, which means that they are
necessarily redrawn with each data release as population grows
and fluctuates. Figure 1 illustrates the issues involved. Here two
census tracts from 2000 have been merged to form a new tract in
2010. However, while one of the original tracts is completely con-
tained in the new tracts, the second original tract is only partially
contained in the new tract. In other words, since same physical
location may fall within the boundary of different reporting units
at different points in time, it is impossible to compare directly a
single neighborhood with itself over time.

To facilitate temporal comparisons, research to date has pro-
ceeded by designating a “target” geographic unit or zone that is
held constant over time, and allocating data from other zones using
areal interpolation and other estimation techniques. This process is
sometimes known as “boundary harmonization” [LSX16]. While
“harmonized” data is used widely in neighborhood research, the
harmonization process also has known shortcomings, since the
areal interpolation of aggregate data is subject to the ecological
fallacy–the geographic manifestation of which is known as the
“Modifiable Areal Unit Problem” (MAUP) [Ope84]. Simply put,
MAUP holds that areal interpolation introduces bias since the
spatial distribution of variables in each of the overlapping zones
is unknown. A number of alternative approaches have been sug-
gested to reduce the amount of error by incorporating auxiliary
data such as road networks, which help to uncover the “true”
spatial distribution of underlying variables, but this remains an
active area of research [Sch17], [SQ13], [Tap10], [Xie95].

In practice, these challenges mean that exceedingly few neigh-
borhood researchers undertake harmonization routines in their
own research, and those performing temporal analyses typically
use exogenous, pre-harmonized boundaries from a commercial
source such as the Neighborhood Change Database (NCDB)
[Tat], or the freely available Longitudinal Tract Database (LTDB)
[LXS14]. The developers of these products have published studies
verifying the accuracy of their respective data, but those claims
have gone untested because external researchers are unable to fully

replicate the underlying methodology.
To overcome the issues outlined above, OSLNAP provides a

suite of methods for conducting areal interpolation and bound-
ary harmonization in the harmonize module. It leverages
geopandas and PySAL for managing data and performing
geospatial operations, and the PyData stack for attribute calcu-
lations [RA10]. The harmonize module allows a researcher to
specify a set of input data (drawn from the space-time database
described in the prior section), a set of target geographic units
to remain constant over time, and an interpolation function that
may be applied to each variable in the dataset independently. For
instance, a researcher may decide to use different interpolation
methods for housing prices than for the share of unemployed
residents, than for total population; not only because the researcher
may wish to treat rates and counts separately, but also because
different auxiliary information might be applicable for different
types of variables.

In a prototypical workflow, harmonize permits the end-user
to carry out a number of tasks: [a] compile and query a spatiotem-
poral database using either local data or connections to public data
services; [b] define the relevant variables to be harmonized and
optionally apply a different (spatial and/or temporal) interpolation
function to each; [c] harmonize temporal data to consistent spatial
units by either selecting an existing native unit (e.g. zip codes in
2016), inputting a user-defined unit (e.g. a theoretical or newly
proposed boundary), or developing new primitive units (e.g. the
intersection of all polygons).

Neighborhood Identification

Neighborhoods are complex social and spatial environments with
multiple interacting individuals, markets, and processes. Despite
decades of research it remains difficult to quantify neighborhood
context, and certainly no single variable is capable of capturing
the entirety of a neighborhood’s essential essence. For this reason,
several traditions of urban research focus on the application
of multivariate clustering algorithms to develop neighborhood
typologies. Such typologies are sometimes viewed as more holistic
descriptions of neighborhoods because they account for multiple
characteristics simultaneously [Gal01].

One notable tradition from this perspective called “geodemo-
graphics”, is used to derive prototypical neighborhoods whose
residents are similar along a variety of socioeconomic and demo-
graphic attributes [FG89], [SS14]. Geodemographics have been
applied widely in marketing [FE05], education [SL09], and health
research [PGL+11] among a wide variety of additional fields. The
geodemographic approach has also been criticized, however, for
failing to model geographic space formally. In other words, the
geodemographic approach ignores spatial autocorrelation, or the
“first law of geography”–that the attributes of neighboring zones
are likely to be similar.

Another tradition in urban research, known as “regionaliza-
tion” has thus been focused on the development of multivariate
clustering algorithms that account for spatial dependence explic-
itly. To date, however, these traditions have rarely crossed in the
literature, limiting the utility each approach might have toward
applications in new fields. In the clustermodule, we implement
both clustering approaches to (a) foster greater collaboration
among weakly connected components in the field of geographic
information science, and (b) to allow neighborhood researchers
to investigate the performance of multiple different clustering
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solutions in their work and evaluate the implications of including
space as a formal component in their clustering models.

In OSLNAP, the cluster module leverages the scientific
python ecosystem, building from scikit-learn [PVG+11], geopan-
das [Geo18], and PySAL [Rey15]. Using input from the Data
Layer, the cluster module allows researchers to develop neigh-
borhood typologies based on either attribute similarity (the geode-
mographic approach) or attribute similarity with incorporated spa-
tial dependence (the regionalization approach). Given a space-time
data set, the cluster module permits three different treatments
of time when defining neighborhoods. The first focuses on the case
where only a single cross-section is available, and the clustering is
carried out to define neighborhoods for that one point in time.
In the second case, multiple waves or periods of observations
are available and the clustering is repeated for each time slice
of observations. This can be a useful approach if researchers
are interested in the durability and permanence of certain kinds
of neighborhoods. If similar types reappear in multiple cross
sections (e.g. if the k-means algorithm places the k-centers in
approximately similar locations each time period), then it may
be inferred that the metropolitan dynamics are somewhat stable,
at least at the macro level, since new kinds of neighborhoods do
not appear to be evolving and old, established neighborhood types
remain prominent. The drawback of this approach is the type of
a single neighborhood cannot be compared between two different
time periods because the types are independent in each period.

In the third approach, clusters are defined from all observations
in all time periods. The universe of potential neighborhood types
is held constant over time, the neighborhood types are consistent
across time periods, and researchers can examine how particular
neighborhoods get classified into different neighborhood types as
their composition transitions through different time periods. While
comparatively rare in the research, this latter approach allows a
richer examination of socio-spatial dynamics. By providing tools
to drastically simplify the data manipulation and analysis pipeline,
we aim to facilitate greater exploration of urban dynamics that will
help catalyze more of this research.

To facilitate this work, the cluster module provides
wrappers for several common clustering algorithms from
scikit-learn that can be applied . Beyond these, however,
it also provides wrappers for several spatial clustering algorithms
from PySAL, in addition to a number of state-of-the art algorithms
that have recently been developed [Wol18].

In a prototypical workflow, cluster permits the end-
user to: [a] query the (tidy) space-time dataset created via the
harmonize module; [b] define the neighborhood attributes and
time periods and on which to develop a typology; [c] run one or
more clustering algorithms on the space-time dataset to derive
neighborhood cluster membership. Clustering may be applied
cross-sectionally or on the pooled time-series, and clustering
may incorporate spatial dependence, in which case cluster
provides options for users to parameterize a spatial contiguity
matrix. Clustering results may be reviewed quickly via the built-
in plot() method, or interactively by leveraging the planned
geovisualization module.

Longitudinal Analysis

Having identified the neighborhood types for all units of analysis
over the whole time span, researchers might be interested in how
they evolve over time. The third core module of OSLNAP’s ana-
lytical components, change, provides a suite of functionality to-

wards this end. Traditional longitudinal analysis in neighborhood
contexts focuses solely on changes in residential socioeconomic
composition, while we and others have argued that changes in
geographic footprints are also substantively interesting [RAF+11].
Therefore, this component draws upon recent methodological
developments from spatial inequality dynamics and implements
two broad sets of spatially explicit analytics to provide deeper
insights into the evolution of socioeconomic processes and the
interaction between these processes and geographic structure.

Both sets of analytics operate on time series of neighborhood
types; they each take as input a set of spatial units of analysis
(e.g. census tracts) that have been assigned a categorical variable
for each point in time (e.g. the output of the cluster module).
They differ, however, in how the time series are modeled and
analyzed. The first set centers on transition analysis, which treats
each time series as stochastically generated from time point to
time point. It is in the same spirit of the first-order Markov Chain
analysis where a (k,k) transition matrix is formed by counting
transitions across all the k neighborhood types between any two
consecutive time points for all spatial units. One drawback of this
approach is that it treats all the time series as being independent of
one another and following an identical transition mechanism. The
spatial Markov approach was proposed by [Rey01] to interrogate
potential spatial interactions by conditioning transition matrices
on neighboring context while the spatial regime Markov approach
allows several transition matrices to be formed for different spatial
regimes which are constituted by contiguous spatial units. Both
approaches together with inferences have been implemented in
Python Spatial Analysis Library (PySAL) [Rey15] and Geospatial
Distribution Dynamics (giddy) package [gid18]. The change
module considers these packages as dependencies and wraps rel-
evant classes and functions to make them consistent and efficient
for longitudinal neighborhood analysis.

The other set of spatially explicit approach to neighborhood
dynamics is concerned with sequence analysis which treats each
time series of neighborhood types as a whole, in contrast to
transition analysis. The core of sequence analysis is the similarity
measure between a pair of sequences. Various aspects of a neigh-
borhood sequence such as the order in which successive neighbor-
hood types appears, the year(s) in which a specific neighborhood
type appears, and the duration of a neighborhood type could be
the focus of the similarity measure. Choosing which aspect or
aspects to focus on should be driven by the research question at
hand and the interpretation should proceed with caution [SR16].
A major approach of sequence analysis, the optimal matching
(OM) algorithm, which was originally used for matching protein
and DNA sequences [AT00], has been adopted to measure the
similarity between neighborhood sequences in metropolitan areas
such as Los Angeles and Chicago [Del16], [Del17]. It generally
works by finding the minimum cost for transforming one sequence
to another using a combination of operations including substitu-
tion, insertion, deletion and transposition. The similarity matrix is
then used as the input for another round of clustering to derive a
typology of neighborhood trajectory to produce several sequences
of neighborhood types typically happening in a particular order
[Del16].

In a prototypical workflow, the change module permits the
end user to explore the nature of neighborhood change from a
dynamic, holistic or combined holistic & dynamic perspective.
From a dynamic perspective, transition analysis can be used to
apply a first-order Markov chain model to look at probabilities
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of transitioning between neighborhood types over time. It also
supports the use of a spatial Markov chains model to interrogate
the role of spatial interactions in shaping neighborhood dynamics
or the application of a spatial regime Markov chains model to
explore spatially heterogeneous neighborhood dynamics. From a
holistic perspective, sequence analysis involves the application of
the OM algorithm with classic cost functions for substitution,
insertion, deletion and transposition, or those explicitly taking
account of potential spatial dependence and spatial heterogeneity.
Finally, a combined holistic & dynamic perspective is gained by
feeding the output from transiton analysis, which is the empical
transition probability matrix, or spatially dependent transition
probability matrices into sequence analysis to help set operation
costs.

Empirical Illustration

In the following sections we demonstrate the utility of OSLNAP by
presenting the results of several initial analyses conducted with the
package. We begin with a series of cluster analyses, which are then
used to analyze neighborhood dynamics. Typically, workflows of
this variety would require extensive data collection, munging and
recombination; with OSLNAP, however, we accomplish the same
in just a few lines of code. Using the Los Angeles metropolitan
area as our example, we present three neighborhood typologies,
each of which leverages the same set of demographic and socioe-
conomic variables, albeit with different clustering algorithms. The
results show similarities across the three methods but also several
marked differences. This diversity of results can be viewed as
either nuisance or flexibility, depending on the research question
at hand, and highlights the need for research tools that facilitate
rapid creation and exploration of different neighborhood clustering
solutions. For each example, we prepare a cluster analysis for the
Los Angeles metropolitan region using data at the census tract
level. We visualize each clustering solution on a map, describe the
resulting neighborhood types, and examine the changing spatial
structure over time. For each of the examples, we cluster on the
following variables: race categories (percent white, percent black,
percent Asian, percent Hispanic), educational attainment (share
of residents with a college degree or greater) and socioeconomic
status (median income, median home value, percent of residents
in poverty).

Agglomerative Ward

We begin with a simple example identifying six clusters via
the agglomerative Ward method. Following the geodemographic
approach, we aim to find groups of neighborhoods that are similar
in terms of their residential composition, regardless of whether
those neighborhoods are physically proximate. Initialized with the
demographic and socioeconomic variables listed earlier, the Ward
method identifies three clusters that are predominantly white on
average but which differ with respect to socioeconomic status. The
other three clusters, meanwhile, tend to be predominantly minority
neighborhoods but are differentiated mainly by the dominant racial
group (black versus Hispanic/Latino) rather than by class. The
results, while unsurprising to most urban scholars, highlight the
continued segregation by race and class that characterize American
cities. For purposes of illustration, we give each neighborhood
type a stylized moniker that attempts to summarize succinctly its
composition (again, a common practice in the geodemographic
literature). To be clear, these labels are oversimplifications of the

socioeconomic context within each type, but they help facilitate
rapid consumption of the information nonetheless. The resulting
clusters are presented in Figure 2.

• Type 0. racially concentrated (black and Hispanic) poverty
• Type 1. minority working class
• Type 2. integrated middle class
• Type 3. white upper class
• Type 4. racially concentrated (Hispanic) poverty
• Type 5. white working class

When the neighborhood types are mapped, geographic patterns
are immediately apparent, despite the fact that space is not consid-
ered formally during the clustering process. These visualizations
reveal what is known as “the first law of geography”–that near
things tend to be more similar than distant things (stated otherwise,
that geographic data tend to be spatially autocorrelated) [Tob70].
Even though we do not include the spatial configuration as part
of the modeling process, the results show obvious patterns, where
neighborhood types tend to cluster together in euclidian space. The
clusters for neighborhoods type zero and four are particularly com-
pact and persistent over time (both types characterized by racially
concentrated poverty), helping to shed light on the persistence of
racial and spatial inequality. With these types of visualizations in
hand, researchers are equipped not only with analytical tools to
understand how neighborhood composition can affect the lives of
its residents (a research tradition known as neighborhood effects),
but also how neighborhood identities can transform (or remain
stagnant) over time and space. Beyond the simple diagnostics
plots presented above, OSLNAP also includes an interactive vi-
sualization interface that allows users to interrogate the results
of their analyses in a dynamic web-based environment where
interactive charts and maps automatically readjust according to
user selections.

Affinity Propagation

Affinity propagation is a newer clustering algorithm with imple-
mentations in scikit-learn that is capable of determining the num-
ber of clusters endogenously (subject to a few tuning parameters).
Initialized with the default settings, OSLNAP discovers 14 neigh-
borhood types in the Los Angeles region; in a way, this increases
the resolution of the analysis beyond the Ward example, since
increasing the number of clusters means neighborhoods are more
tightly defined with lower variance in their constituent variables.
On the other hand, increasing the number of neighborhood types
also increase the difficulty of interpretation since the each type
will be, by definition, less differentiable from the others. In the
proceeding section, we discuss how researchers can exploit this
variability in neighborhood identification to yield different types
of dynamic analyses. Again, we find it useful to present stylized
labels to describe each neighborhood type:

• Type 0. white working class
• Type 1. white extreme wealth
• Type 2. black working class
• Type 3. Hispanic poverty
• Type 4. integrated poverty
• Type 5. Asian middle class
• Type 6. white upper-middle class
• Type 7. integrated Hispanic middle class
• Type 8. extreme racially concentrated poverty
• Type 9. integrated extreme poverty
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Fig. 2: Neighborhood Types in LA using Ward Clustering.

Fig. 3: Neighborhood Types in LA using Affinity Propagation.

• Type 10. Asian upper middle class
• Type 11. integrated white middle class
• Type 12. white elite
• Type 13. Hispanic middle class

Despite having more than double the number of neighborhood
types in the Ward example, many of the spatial patterns remain
when using affinity propagation clustering, including concentrated
racial poverty in South Central LA, concentrated affluence along
much of the coastline, black and Hispanic enclaves in the core of
the city, and white working class strongholds in more rural areas
to the north of the region. Comparing these two examples makes
clear that some of the sociodemographic patterns in the LA region
are quite stable, and are somewhat robust to the clustering method
or number of clusters. Conversely, by increasing the number of
clusters in the model, researchers can explore a much richer
mosaic of social patterns and their evolution over time, such as
the continued diversification of the I-5 corridor along the southern
portion of the region.

SKATER

Breaking from the geodemographic approach, the third example
leverages SKATER, a spatially-constrained clustering algorithm
that finds groups of neighborhoods that are similar in composition,
but groups them together if and only if they also satisfy the criteria

for a particular geographic relationship [Wol18]. As such, the
family of clustering algorithms that incorporate spatial constraints
(from the tradition known as “regionalization”) must be applied
cross-sectionally, and yield an independent set of clusters for each
time period, as shown in Figure 4. The clusters, thus, depend not
only on the composition of the census units, but also their spatial
configuration and connectivity structure at any given time.

Despite the fact that clusters are independent from one year
to the next (and thus, we lack appropriate space in this text
for describing the SKATER results for each year) comparing
the results over time nonetheless yield some interesting insights.
Regardless of the changing spatial and demographic structure of
the Los Angeles region, some of the neighborhood boundaries
identified are remarkably stable, such as the area of concentrated
affluence in Beverly Hills and its nearby communities that jut
out to the region’s West. Conversely, there is considerable change
among the predominantly minority communities in the center of
the region, whose boundaries appear to be evolving considerably
over time. In these places, a researcher might use the output
from SKATER to conduct an analysis to determine the ways
in which the empirical neighborhood boundaries derived from
SKATER conform to residents’ perceptions of such boundaries,
their evolution over time, and their social re-definition as devel-
oped by different residential groups [Wol18]. Irrespective of its



126 PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

Fig. 4: Neighborhood Types in LA using SKATER.

particular use, the regionalization approach presents neighborhood
researchers with another critical tool for understanding the bi-
directional relationship between people and places.

In each of the sample analyses presented above, we use
OSLNAP to derive a set of neighborhood clusters or types that
can be used to analyze the demographic makeup of places over
time. In some cases, these maps can serve as foundations for
descriptive analyses or be analyzed as research projects in their
own right. In other cases, in which social processes rather than the
demographic makeup of communities are the focus of study, the
neighborhood types derived here can be used as input to dynamic
analyses of neighborhood change and evolution, particularly as
they relate to phenomena such as gentrification and displacement.
In the following sections, we demonstrate how the neighborhood
typologies generated by OSLNAP’s cluster module can be used
as input to the change module to explore the neighborhood
evolution.

Transition Analysis to Neighborhood Change

The change module can provide insights into the nature of
neighborhood change in the Los Angeles metropolitan area. We
utilize the neighborhood types for all census tracts of the Los
Angeles metropolitan area across four census years identified by
selected clustering algorithms in the former section as the input
for the change module. Among the three clustering algorithms,
SKATER was applied to each cross section of census tracts
independently yielding clusters which are not directly comparable
over time. Thus, we focus only on the six neighborhood types
identified by the agglomerative Ward method (Fig. 2) and the
fourteen neighborhood types identified by the affinity propagation
method (Fig. 3).

We start with the aspatial transition analysis which pools all
the time series of neighborhood types and counts how many tran-
sitions between any pair of neighborhood types across immediate
consecutive census years (t, t + 10) (or (t, t + 5) for 2010-2015)
which are further organized into a (k,k) transition count matrix
NNN. Adopting the maximum likelihood estimator for the first-order
Markov transition probability as shown in Equation (1), a (k,k)
transition probability matrix can thus be constructed providing the
insights in the underlying dynamics of neighborhood change. The
(6,6) and the (14,14) transition probability matrices for Ward
and affinity propagation clusters are estimated and visualized in

Fig. 5: Markov transition probability matrix for Ward and Affinity
Propagation clusters.

Fig. 5 where the color in grid (i, j) represents the probability of
transitioning from neighborhood type i to j in the next census
year. It is obvious that both transition probability matrices are
characterized by large diagonal entries, indicating a certain level
of neighborhood stability for the focal four census years. This
is especially true for the Ward neighborhood type 4 which is
characterized by racially concentrated (Hispanic) poverty. The
probability of staying at this type is 0.876 meaning that there is
only 12.4% chance of changing to other neighborhood types once
the census tract enters into type 4.

p̂i j =
ni j

∑
k
q=1 niq

, where i, j ∈ S= {1,2, · · · ,k} (1)

Moving from the aspatial transition analysis, we interrogate poten-
tial spatial interactions among neighborhood dynamics using the
spatial Markov chain approach. More specifically, we hypothesize
that the transition probability for any focal census tract is not
constant, but rather dependent on the spatial context, that is, the
most common neighborhood type of contiguous tracts, the so-
called spatial lag. Therefore, k exhaustive and mutually exclusive
subsamples are constructed based on the spatial lag at t, from
which k (k,k) transition probability matrices are estimated based
on Equation (1). Fig. 6 displays the spatial Markov transition
probability matrices for Ward neighborhood types. It should be
noted that the interpretation with these conditional transition
probabilities should proceed with caution as the increased number
of parameters to be estimated here could lead to large standard
errors for some estimates. For example, the (0,0) entry in the
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Fig. 6: Spatial Markov transition probability matrices for Ward
clusters.

Fig. 7: Neighborhoods with similar spatial-social histories since 1980

subplot of Spatial Lag 3 is 1. The tendency of interpreting the 100
percent to be tracts "perfectly stuck at" Ward neighborhood type
0 if the spatial lag is type 3 should be compromised by the fact
that there is only 1 observation transitioning from type 0 which
has the spatial lag of type 3 at t and this very observation happens
to stay at type 0. Since we are short of information, we could not
conclude with the "perfectly stuck" theory. The spatial Markov
tests (available upon request) including the likelihood ratio test
and the χ2 test [BB03], [RKW16] are both rejected indicating
that neighboring context plays an important role in shaping the
neighborhood dynamics.

Sequence Analysis to Neighborhood Change

Armed with the sequences of sociodemographic classifications
for every harmonized tract in LA, the distance between these se-
quences can be computed. Since these sequences are intrinsically
aligned in time, the Hamming distance between classifications
yields an effective metric for how different places’ demographic
changes have been. The pairwise Hamming distance matrix for
demographic transitions in LA is sufficient to recover a set of
boundaries. However, alone, this metric only considers that two
areas are in different sociodemographic classifications at a specific
point in time. It does not consider the difference in the attribute’s
strength of assignment in these classifications, nor does it consider
how well an area fits into its demographic classification.

Conceptually, this is important; even though the gist of the
demographic classifications stay consistent over time, the mem-
bers of these classes may shift around significantly over time. As
a tract drifts from one classification to another classification over
time, it may move within the class before it hops classifications

if the movement is slow. This means that, at each point in time,
tracts are more or less representative of their clusters; a transition
of one area from "white working class" to "white upper class" may
not necessarily reflect the same amount of social/spatial volatility
as a move from "minority working class" to "white upper class,"
as might happen during rapid gentrification.

As such, we can also weight the edit distance based on how
"expensive" the edit is in terms of the clustering distance. Using
this weighting method, not all transitions from white working class
to white upper class will be treated the same: observations that are
"almost" white upper class but not quite will be considered more
similar to white upper class tracts. But, since a reassignment is still
involved, there will still be a cost associated with that edit. Clus-
terings for both the raw Hamming edit distance and the weighted
Hamming edit distances over sociodemographic sequences are
shown in Figure 7 using [Wol18]. Broadly speaking, the assign-
ments between the two clustering methods are strongly related
(with an adjusted Rand index of .68), but macro-level distinctions
between assignment structures are visible, particularly in the areas
of central northern LA near the Hollywood Hills, as well as the
areas of east LA, near Fullerton. This means that, when the sub-
classification information is taken into account, clusterings can
change. However, when examining spatially-contiguous clusters,
the total amount of possible change is often quite constrained as
well. Thus, the move from unweighted to weighted edit distances
may make even more of a difference in some cases.

Future Directions

At present, we are in the early phases of the project and moving
forward we will be focusing on the following directions.

Parameter sweeps: In the definition of neighborhoods, a
researcher faces a daunting number of decisions surrounding
treatment of harmonization, selection of variables, and choice of
clustering algorithm, among others. In the neighborhood literature,
the implications of these decisions remain unexplored and this
is due to the computational burdens that have precluded formal
examination. We plan on a modular design for OSLNAP that
would support extensive parameter sweeps to provide an empirical
basis for exploring these issues and to offer applied researchers
computationally informed guidance on these decisions.

Data services: OSLNAP is being designed to work with
existing harmonized data sets available from various firms and
research labs. Because these fall under restrictive licenses, users
must first acquire these sources - they cannot be distributed with
OLSNAP. To address the limitations associated with this strategy,
we are exploring interfaces to public data services such as CenPy
[cen18] and tigris [tig18].

Interactive visualization: Apart from scripted environments
demonstrated in this paper, OSLNAP is being designed with a
web-based, interactive front-end that allows users to explore the
results of different neighborhood analyses with the assistance of
linked maps, charts, and tables. Together, these linked "views"
allow a researcher to interrogate their results in a manner far richer
than creating a series of static maps.

Reproducible Urban Data Science: A final direction for future
research is the development of reproducible workflows as part of
OSLNAP. Here we envisage leveraging our earlier work on prove-
nance for spatial analytical workflows [ARL14] and extending it
to the full longitudinal neighborhood analysis pipeline.
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Conclusion

In this paper we have presented the motivation for, initial design,
and implementation of OSLNAP. We feel that, even at this early
stage in the project, OSLNAP has benefitted from the scope and
deep nature of the PyData stack as we have been able to move from
conceptualization to prototyping in fairly short order. At the same
time, we see OSLNAP playing an important role in widening the
use of Python in urban and spatial data science. We are looking
forward to the future development of OSLNAP and interaction
with both the PyDATA community and the broader community of
computational social sciences.
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