
Design and Implementation of pyPRISM: A Polymer Liquid-State Theory Framework
Abstract¶
In this work, we describe the code structure, implementation, and usage of a Python-based, open-source framework, pyPRISM, for conducting polymer liquid-state theory calculations. Polymer Reference Interaction Site Model (PRISM) theory describes the equilibrium spatial-correlations, thermodynamics, and structure of liquid-like polymer systems and macromolecular materials. pyPRISM provides data structures, functions, and classes that streamline predictive PRISM calculations and can be extended for other tasks such as the coarse-graining of atomistic simulation force-fields or the modeling of experimental scattering data. The goal of providing this framework is to reduce the barrier to correctly and appropriately using PRISM theory and to provide a platform for rapid calculations of the structure and thermodynamics of polymeric fluids and polymer nanocomposites.
Copyright © 2018 Martin et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creators.
- PRISM
- Polymer Reference Interaction Site Model