PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

137

A Bayesian’s journey to a better research workflow

Konstantinos Vamvourellisi*, Marianne Corvellec’

https://youtu.be/piQvcvaladl

Abstract—This work began when the two authors met at a software devel-
opment meeting. Konstantinos was building Bayesian models in his research
and wanted to learn how to better manage his research process. Marianne
was working on data analysis workflows in industry and wanted to learn more
about Bayesian statistics. In this paper, the authors present a Bayesian scientific
research workflow for statistical analysis. Drawing on a case study in clinical
trials, they demonstrate lessons that other scientists, not necessarily Bayesian,
could find useful in their own work. Notably, they can be used to improve
productivity and reproducibility in any computational research project.

Index Terms—Bayesian statistics, life sciences, clinical trials, probabilistic pro-
gramming, Stan, PyStan

Introduction

We present a research workflow for Bayesian statistical analysis.
We demonstrate lessons we learned from our own computational
research that other scientists, not necessarily Bayesian, could find
useful when they manage their work. To illustrate these lessons,
we use a specific case study in clinical trial modeling.

Clinical trial data are presented to experts and clinicians to
assess the efficacy and safety of a given drug. The analysis of
trial data is based on statistical summaries of the data, including
averages, standard deviations, and significance levels. However,
dependencies between the treatment effects are the subject of clin-
ical judgment and are rarely included in the statistical summaries.

We propose a Bayesian approach to model clinical trial data.
We use latent variables to account for the whole joint distribution
of the treatment effects, including effects of different types. As
a result, we can find the predictive distribution of the treatment
effects on a new patient accounting for uncertainty in all the
parameters, including correlation between the effects.

The analysis is implemented in PyStan, the Python interface to
Stan, which is the state-of-the-art, free and open-source Bayesian
inference engine. Stan and the researchers behind it provide users
with guidance that make Bayesian inference easier to use. We
discuss aspects of this ecosystem in the second-to-last section.

Although this case study is by no means the ideal introductory
example of computational modeling, it provides us with a real-
world problem from which we can share practical lessons. We
believe this paper can be of help to a number of different audi-
ences. Firstly, it can help non-Bayesian statisticians, or beginning

Corresponding author: k.vamvourellis@lse.ac.uk
London School of Economics and Political Science
§ Institute for Globally Distributed Open Research and Education (IGDORE)

Copyright © 2018 Konstantinos Vamvourellis et al. This is an open-access
article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

<+

Bayesians, get a a sense of how to apply Bayesian statistics to
their work. Secondly, it can provide computational scientists with
advice on building a reproducible and efficient research workflow.
And, thirdly, it can spark discussions among advanced Bayesians
about the complexities of Bayesian workflows and how to build
better models.

A Bayesian Workflow

We present a Bayesian workflow for statistical modeling. We
recognize that the research process is too complex to summarize in
a recipe-style list. However, we find that there are a few building
blocks that are common to every Bayesian statistical analysis.
In this paper, we focus on these and break them down to a
few basic steps. To avoid over-simplification, we hint to possible
connections with more advanced aspects where appropriate. We
believe that following a workflow, such as suggested here, can
help researchers avoid mistakes and increase productivity. It also
helps make research projects more reproducible, as we discuss in
the last section.
We propose a simple workflow made of the following steps:

1) Scope the problem;
2) Specity the likelihood and priors;
3) Generate synthetic data that resemble the true data to a
reasonable degree;
4) Fit the model to the synthetic data;
a. Check that the true values are recovered;
b. Check the model fit;
5) Fit the model to the real data.

An advanced workflow, which is beyond the scope of this
paper, could be extended to include the following steps:

6) Check the predictive accuracy of the model;

7) Evaluate the model fit;

8) Select best model among different candidates (model
selection);

9) Perform a sensitivity analysis.

In what follows, we will use M(0) to denote the model as
a function of its parameter 6 (0 is either a scalar or a vector
representing a set of parameters). Data usually consist of observ-
able outcomes' y and covariates® x, if any. We will distinguish
between the two when necessary; otherwise, we will denote all
data together by D. We use p(-) to denote either probability

https://youtu.be/piQvcVala9I
mailto:k.vamvourellis@lse.ac.uk

138

distributions or probability densities, even though it is not rigorous
notation.

1) Scope the problem

The main goal of this workflow is to achieve successful
Bayesian inference. That is, correctly retrieving samples from the
posterior distribution of the parameter values, which are typically
unknown before the analysis, using the information contained in
the data. The major difference of the Bayesian approach relative
to frequentist, is that it modifies the likelihood function (to be
introduced later) into a proper distribution over the parameters,
called the posterior distribution. The posterior distribution p(6|D)
forms the basis of the Bayesian approach from which we derive
all quantities of interest.

Why do we need statistical inference in the first place? We
need it to answer our questions about the world. Usually, our
questions refer to an implicit or explicit parameter 6 in a statistical
model, such as:

o What values of 0 are most consistent with the data?

¢ Do the data support a certain condition (e.g., for 6 a scalar,
06 >0)?

« How can we predict the future outcome of an experiment?

To proceed, we need to define a model. Choosing a model is
usually tied to the exact research questions we are interested in.
We can choose to start with a postulated data generation process
and then decide how to interpret the parameters in relation to the
research question. Alternatively, it is equally valid to start from
the research question and design the model so that its parameters
are directly connected to the specific questions we wish to answer.
In the next section, we illustrate with an example how to design a
model to answer a specific research question.

Note that the question of prediction depends directly on
inferring successfully the parameter values. We shall come back
to this at the end of this section.

2) Specify the likelihood and priors

Once we have defined the scope of the problem, we need
to specify the design of the model which is captured in the
likelihood function f(D|6,M). Usually, argument M is dropped
for notational simplicity, the model being chosen and assumed
known>. Note, however, that when the model includes covari-
ates, the more accurate expression is f(y|6,x). This function
ties together the ingredients of statistical inference and allows
information to flow from the data D to the parameters 6. With
Bayes’ rule, p(0|D) = p(D|0)p(0)/p(D), we can calculate the
posterior distribution.

The second ingredient of Bayesian inference is the prior
distribution p(0). Priors are inescapably part of the Bayesian
approach and, hence, have to be considered carefully. The goal
of Bayesian inference is to combine the prior information on the
parameters (the prior distribution), with the evidence contained
in the data (the likelihood), to derive the posterior distribution
p(6|D). It is difficult to predict how sensitive the final results will
be to a change in the priors. However, it is important to note that

1. Depending on their field, readers may want to think ‘dependent variables’
or ‘labels’.

2. Depending on their field, readers may want to think ‘independent vari-
ables’ or ‘features’.

3. This is a good time to highlight that the choice of the model is a constant
assumption in everything we do from now on. In research projects, it is
common to work with a few different models in parallel.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

the impact of priors progressively diminishes as the number of
observations increases.

The ideal scenario for applying the Bayesian approach is when
prior knowledge is available, in which case the prior distribution
can and should capture that knowledge. But, sometimes, we might
want to avoid expressing prior knowledge, especially when such
knowledge is not available. How are we supposed to choose priors
then? Constructing default priors is an active area of research that
is beyond the scope of this work. Here, we provide a high-level
overview and refer the interested reader to various sources for
further reading.

Priors which express very little or no prior knowledge are
called vague or uninformative priors. Such priors are deliberately
constructed in a way which minimizes their impact on the resulting
inference, relative to the information brought in by the likelihood.
In fact, Bayesian inference technically works even when the prior
is not a proper distribution but a function that assumes all values
are equally likely, referred to as improper prior. However, it is
generally advisable to avoid improper priors, especially in settings
beyond just inference, such as the more advanced workflow of
steps 6)-9). If no prior knowledge is available, a normal distri-
bution with large variance is still a better default prior than a
uniform distribution. It is important to note that improper or even
vague priors are not appropriate for model selection.

Additional considerations can impact the choice of priors,
especially when chosen together with the likelihood. From a
computational perspective, the most convenient priors are called
conjugate priors, because they mimic the structure of the like-
lihood function and lead to a closed-form posterior distribution.
Priors can have additional benefits when used with a certain goal in
mind. For example, priors can be used to guard against overfitting
by pulling the parameters away from improbable values, or help
with feature selection (e.g., see horse-shoe priors).

Bayesian critics often see priors as a weakness, whereas
in reality they are an opportunity. Notably, priors give us the
opportunity to employ our knowledge to guide the inference in
the absence of evidence from the data. Also, it is important to
remember that, in a scientific research context, we rarely have
absolutely no prior knowledge and we typically do not consider
any parameter value to be equally likely.

3) Generate synthetic data

Once we have agreed on a generative process, i.e., a model
M, we can use it to simulate data D'. To do that, we choose
reasonable parameter values 6y and use M to generate data
based on these values. Alternatively, instead of coming up with
reasonable parameter values, we can sample these values from
the prior distribution 6y ~ p(6). The synthetic data D' can then
be interpreted as our prior distribution of the data. Hence, by
inspecting the synthetic data, we can reflect back on our choices
for the likelihood and priors. However, if we do use our priors to
generate parameter values, we should make sure that our priors
are not uninformative, which would likely produce unreasonable
synthetic data.

Note how the model M is a hypothesized process and comes
with necessary assumptions and simplifications. It is highly un-
likely that the real world would follow exactly M. That being said,
if M is close enough to the real generative process, it can still
be very useful to help us understand something about the world.
As the phrase goes, “all models are wrong, but some models are
useful.”

4) Fit the model to the synthetic data

A BAYESIAN'S JOURNEY TO A BETTER RESEARCH WORKFLOW

If simulating data using our generative process M is the
forward direction, statistical inference is the reverse direction by
which we find what parameter values could have produced such
data, under M.

The most popular statistical inference algorithm is maximum
likelihood estimation (MLE), which finds the parameter values
that maximize the likelihood given the observed data. To reiterate,
under the Bayesian approach, we treat the parameters 8 as random
variables and express our prior knowledge about 6 with the prior
probability distribution p(6). Bayesian inference is the process
of updating our beliefs about 6 in light of the data D. The
updating process uses Bayes’ rule and results in the conditional
distribution p(0|D), the posterior distribution. Bayesian inference
is generally a hard problem. In most cases, we cannot derive
the mathematical form of the posterior distribution; instead, we
settle for an algorithm that returns samples from the posterior
distribution.

When we fit the model to synthetic data, we want to check two
things: the correctness of the inference algorithm and the quality
of our model.

a. Much like in software testing, we want to check if the
inference process works by starting simple and advance progres-
sively to the real challenge. By fitting the model to synthetic data
generated from the same model, we effectively rule out issues
of mismatch between our model and the real data. Testing the
inference algorithm under these ideal conditions allows us to
perfect the inference algorithm in a controlled environment, before
trying it on the real data. In our experience, this step brings to the
surface many bugs in the code as well as issues about the model
in general. It offers an added benefit, later on, when we critique
the fit of our model M to the real data D. Having confidence in
the correctness of our inference process allows us to attribute any
mismatch issues to the choice of the model, as opposed to the
inference algorithm.

By fitting the model to synthetic data, we recover samples
from the posterior distribution of the model parameters. There are
various model fit tests to choose from. At a minimum, we need
to check that the true parameter values 6y are within the range
implied by the posterior distributions*. Success at this stage is not
a sufficient guarantee that the model will fit well to the real data,
but it is a necessary condition for proceeding further.

b. Fitting the model to synthetic data is the first opportunity to
critique the model M and, if necessary, calibrate it to better suit
our needs. This is a good time to catch any issues that affect the
quality of the model irrespective of how well it captures reality.
For example, an issue that comes up often is non-identifiability, the
situation where the likelihood and the data is specified in a way
such that there is not enough information to identify the correct
parameter values, no matter how big the sample size is. It is also
a good time to check if small variations to the model (such as
replacing a normal with a heavier-tail distribution) fit our needs
better. For instance, calibrating a model to make inferences about
the center of a distribution, such as the mean, is relatively easy. On
the other hand, we might need to do more extensive calibration if
we are interested in the tail behavior of the distribution, such as

4. A common test is to construct an interval that includes 95% of the most
likely values, called highest posterior density interval, and check that it covers
the true parameter values 6 that were used to generate the synthetic data. We
should tolerate a few misses, since 95% intervals will not cover the true values
5% of the time, even if the algorithm is perfectly calibrated.

139

maximum values. If we do choose to use a different model M’, we
need to go back to step 2) and start again.

Model evaluation is an essential part of a good workflow. It is
a complex task that can be used with both synthetic and real data,
providing possibly different insights each time. We do not have
space to go into more details in this paper but we provide pointers
in the further reading section.

5. Fit the model to the real data

This is the moment we have been waiting for: We are ready to
fit our model to the real data and get the final results. Usually, we
focus our attention on a specific quantity of interest that is derived
from the posterior samples (see further reading for pointers). If
we are satisfied with the fit of the model, we are done. In most
cases, though, at this stage we are expected to evaluate the model
again, this time focusing on how well it captures reality. This
step is highly application-specific and requires a combination
of statistical expertise and subject-matter expertise (we refer the
interested reader to sources later). We note that it is important to
build confidence in the power of our inference algorithm before
proceeding on to interpreting results. This helps us separate, to the
extent possible, inference issues from model issues. At this stage,
it is likely that we will come up with a slightly updated model M’.
We then have to go back and start again from the beginning.

Posterior Predictive Checks and Model Evaluation

In this subsection, we would like to touch briefly on two topics
for more advanced workflows, prediction and model evaluation.
The Bayesian posterior predictive distribution is given by the
following formula:

- [p.0iD)de

= [pGle)p(oID)do

In practice, we approximate the integral using samples from the
posterior distributions. Posterior predictive checks, evaluating the
predictive accuracy of a model, can also be used to evaluate
a model. To do this, we check how well it predicts unknown
observable data J, where unknown means that the model was not
fit to 3.

Further reading

For a concise overview of statistical modeling and inference,
including a high-level comparison with the frequentist approach,
see [Wool5]. For a more extended treatment of the Bayesian ap-
proach, see [Rob07]. For an accessible Bayesian modeling primer,
especially for beginner Bayesians, see [McE15] and [MRO06]. For
a complete treatment of Bayesian data analysis, including many
workflow-related discussions, see [GCST131°.

A Case Study in Clinical Trial Data Analysis

We propose a Bayesian model to extract insights from clinical
trial datasets. We are interested in understanding the effect of a
treatment on the patients. Our goal is to use the data to predict the
effect of the treatment on a new patient. We apply our method on
artificially created data, for illustration purposes only.

5. To check the predictive accuracy of the model, we need to measure our
predictions ¥ against real data. To do this, we usually hold out a small random
sample of the original data and deliberately restrain from fitting the model to
that sample.

6. And for an example implementation of a complete workflow with
PyStan, see https://github.com/betanalpha/jupyter_case_studies/tree/master/
pystan_workflow.

https://github.com/betanalpha/jupyter_case_studies/tree/master/pystan_workflow
https://github.com/betanalpha/jupyter_case_studies/tree/master/pystan_workflow

140

Subject ID Group Hemoglobin Dyspepsia Nausea
Type Level

123 Control 342 1 0

213 Treatment 4.41 1 0

431 Control 1.12 0 0

224 Control -0.11 1 0

233 Treatment 2.42 1 1

TABLE 1: Toy clinical trial data.

1) Scope the problem

Regulators focus on a few key effects when deciding whether
a drug is fit for market. In our case we will assume, for simplicity,
that there are three effects, where two are binary variables and the
other is a continuous variable.

Our dataset is organized as a table, with one patient (subject)
per row and one effect per column. For example, if our clinical
trial dataset records three effects per subject, ‘Hemoglobin Levels’
(continuous), ‘Nausea’ (yes/no), and ‘Dyspepsia’ (yes/no), the
dataset looks like Table 1.

The fact that the effects are of mixed data types, binary and
continuous, makes it harder to model their interdependencies. To
address this challenge, we use a latent variable structure. Then,
the expected value of the latent variables will correspond to the
average effect of the treatment. Similarly, the correlations between
the latent variables will correspond to the correlations between
effects. Knowing the distribution of the latent variables will give
us a way to predict what the effect on a new patient will be,
conditioned on the observed data.

2) Specify the model, likelihood, and priors

a. Model: Let Y be a N x K matrix where each column
represents an effect and each row refers to an individual subject.
This matrix contains our observations, it is our clinical trial
dataset. We distinguish between treatment and control subjects by
considering separately Y7 (resp. Y©), the subset of ¥ containing
only treatment (resp. control) subjects. Since the model for Y7 and
Y€ is identical, for convenience, we suppress the notation into ¥
in the remainder of this section.

We consider the following general latent variable framework.
We assume subjects are independent and wish to model the
dependencies between the effects. The idea is to bring all columns
to a common scale (—oo,0). The continuous effects are observed
directly and are already on this scale. For the binary effects, we
apply appropriate transformations on their parameters via user-
specified link functions 4;(-), in order to bring them to the (—eo, o)
scale. Let us consider the i-th subject. Then, if the j-th effect is
measured on the binary scale, the model is

Yij ~

himij) = Zij,
where the link function /;(-) can be the logit, probit, or any other
bijection from [0, 1] to the real line. Continuous data are assumed

to be observed directly and accurately (without measurement
error), and modeled as follows:

Bernoulli(n;;)

Yij:Zij fOfiZl,...7N.

In order to complete the model, we need to define the N x K matrix
Z. Here, we use a K-variate normal distribution Nk (-) on each Z;.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

row, such that
Zi< ~ NK(uvz)v

where ¥ is a K x K covariance matrix, i is a row K-dimensional
vector, and Z;. are independent for all i.

In the model above, the vector t = (Ui, ..., Ux) represents the
average treatment effect in the common scale. In our example,
the first effect (Hemoglobin Level) is continuous and hence its
latent value directly observed. Regarding the remaining two effects
(Dyspepsia and Nausea), their latent values can only be inferred
via their binary observations. Note that the variance of the non-
observed latent variables is non-identifiable [CG98], [TDM12], so
we need to fix it to a known constant (here we use 1) to fully
specify the model. We do this by decomposing the covariance into
correlation and variance: ¥ = DRD, where R is the correlation
matrix and D is a diagonal matrix of variances D;; = GJZ for the
Jj-th effect.

b. Likelihood: The likelihood function can be expressed as

fY|z,px) = <Y|Z>-p(zm,>
= HHh L=y (i) 19)-
]EJbl
= Han”l—nu D] N(z|w,),
JEJ i=

where J,, is the index of effects that are binary and N(Z|u,X) is
the probability density function (pdf) of the multivariate normal
distribution.

c. Priors: In this case study, the priors should come from
previous studies of the treatment in question or from clinical
judgment. If there was no such option, then it would be up to
us to decide on an appropriate prior. We use the following priors
for demonstration purposes:

" ~ N(0,10)

R ~ LKI(2)

o; ~ Cauchy(0,2) for j & J,
Zij ~ N(0,1) for j € Jp.

This will become more transparent in the next section, when we
come back to the choice of priors’. Let us note that our data
contain a lot of information, so the final outcome will be relatively
insensitive to the priors.

3) Generate synthetic data

To generate synthetic data, given some values for the pa-
rameters (i,X) we only need to follow the recipe given by
the model. To fix the parameter values we could sample from
the priors we chose, or just choose some reasonable values.
Here we picked p = (0.3,0.5,0.7), 6 = (1.3,1,1), and R(1,2) =
—0.5, R(1,3) = —0.3, R(2,3) = 0.7. Then, as the model dictates,
we use these values to generate samples of underlying latent
variables Z;. ~ N(u,X)®. Each Z;. corresponds to a subject, here we
choose to generate 200 subjects. The observed synthetic data Y;;
are defined to be equal to Z;; for the effects that are continuous. For

7.0n the LKJ distribution,
article/pii/S0047259X09000876.

see https://www.sciencedirect.com/science/

p(Z|u,x)

https://www.sciencedirect.com/science/article/pii/S0047259X09000876
https://www.sciencedirect.com/science/article/pii/S0047259X09000876

A BAYESIAN'S JOURNEY TO A BETTER RESEARCH WORKFLOW

the binary effects, we sample Bernoulli variables with probability
equal to the inverse logit of the corresponding Z;; value.

Recall that a Bayesian model with proper informative priors,
such as the ones we use in this model, can also be used directly
to sample synthetic data. As explained in the previous section, we
can sample all the parameters according to the prior distributions.
The synthetic data can then be interpreted as our prior distribution
on the data.

4) Fit the model to the synthetic data

The Stan program encoding this model is the following:

1 data |
int<lower=0> N;
int<lower=0> K;
int<lower=0> Kb;
int<lower=0> Kc;
int<lower=0, upper=1> yb[N, Kb]l;
vector [Kc] yc[N];
}

[R C N O)

9
10 transformed data {

11 matrix[Kc, Kc] I = diag_matrix(rep_vector(l, Kc));
12}

13

14 parameters {

15 vector [Kb] zb[N];

16 cholesky_factor_corr[K] L_R;

17 vector<lower=0>[Kc] sigma;

18 vector [K] mu;

19 }

20

21 transformed parameters {

22 matrix [N, Kb] z;

23 vector [Kc] mu_c = head(mu, Kc);

24 vector[Kb] mu_b = tail (mu, Kb); {

25 matrix[Kc, Kc] L_inv = \

26 mdivide_left_tri_low(diag_pre_multiply(sigma, \
27 L_R[1l:Kc, 1:Kcl), I);

28 for (n in 1:N) {

29 vector[Kc] resid = L_inv x (yc[n] - mu_c);
30 z[n,] = transpose(mu_b + tail(L_R * \

31 append_row (resid, zb[n]), Kb));

32 }
34}

36 model {

37 mu ~ normal (0, 10);

38 L_R ~ lkj_corr_cholesky(2);

39 sigma~cauchy (0, 2.5);

40 yc ~ multi_normal_cholesky (mu_c, \

41 diag_pre_multiply(sigma, L_R[1:Kc, 1:Kcl));

42 for (n in 1:N) zb[n] ~ normal(0, 1);

43 for (k in 1:Kb) yb[, k] ~ bernoulli_logit(z[, k1);
44}

45

46 generated quantities {

47 matrix[K, K] R = \

48 multiply lower_tri_self transpose(L_R);

49 vector[K] full_sigma = append_row(sigma, \

50 rep_vector (1, Kb));
51 matrix[K, K] Sigma = \

52 multiply lower_tri_self transpose (\
53 diag_pre_multiply(full_sigma, L_R));
54 }
Model Fit Checks

Figures 1, 2, and 3, we plot the posterior samples on top
of the true values (vertical black lines). We check visually that
the intervals containing 95% of samples (around their respective
means) cover the true values we used to generate the synthetic
data.

8. Both Z;. ~ Ng(i,X) and Z;. ~ N(u,X) hold, since the ~ symbol means
“is distributed as” and N(u,X) is the pdf of Nx(u,X).

141

bin Level

g 0 == True value

s M Posterior Samples

i

£ g N -
08 06 04 0.2 0o a2

g 0 == True value

“é_ Posterior Samples

7]

£ g -. - -y .

08 -06 04 0.2 0o

- 0

Q

c

©

-1

o

]

£ g -~

-0.75

-0.50 -0.25 000 025 as0 o7s 1.00

Fig. 1: Histogram of values sampled from the posterior mean of latent
variables.

= True valus
B Hemoglobin Leval

3

Frequency

=]
1

11 1.2 13 14 15

Fig. 2: Histogram of values sampled from the posterior standard
deviation for Hemoglobin Level.

With Stan, we can also utilize the built-in checks to inspect the
correctness of the inference results. One of the basic tests is the
R (Rhat), which is a general summary of the convergence of the
Hamiltonian Monte Carlo (HMC) chains. Another measure is the
number of effective samples, denoted by n_ef £. Below, we show
an excerpt from Stan’s summary of the £it object, displaying
Rhat and n_eff, along with other metrics (mean and standard
deviation), for various parameters. We shall come back to the topic
of fit diagnostics in the next section.

Inference for Stan model:

. ('"Hemqglobin Level', 'Dyspepsia’)
2 w0 = True value
] M Posterior Samples
£
0 o e
08 06 04 02 a0 02
>
Q
(=
L+
=2
o
[
= g
L@ ('Dyspepsia’, 'Nausea')
g = True value
% M Posterior
o
o
E ~

075 -0.50 -0.25 000 025 050 075 1.00

Fig. 3: Histogram of values sampled from the posterior correlation of
effects.

142

variable = Hemoglobin Level

variable = Dyspepsia

variable = Nausea
03]

group
control
treatment

0.0 0.5 1.0 . 0.0 0.5 1.0
value value value

Fig. 4: Histogram of values sampled from the posterior predictive
distributions.

anon_model_389cd056347577840573e8£6df0e7636.

4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500,

total post-warmup draws=2000.

mean sd n_eff Rhat
mul[0] 0.36 0.09 2000 1.0
mul[l] 0.56 0.18 2000 1.0
mul2] 0.67 0.18 2000 1.0
R[0,0] 1.0 0.0 2000 nan
R[1,0] -0.24 0.16 2000 1.0
R[2,0] -0.38 0.16 2000 1.0
R[0,1] -0.24 0.16 2000 1.0
R[1,1] 1.0 9.3e-17 1958 nan
R[2,1] 0.1 0.32 550 1.0
R[0,2] -0.38 0.16 2000 1.0
R[1,2] 0.1 0.32 550 1.0
R[2,2] 1.0 7.8e-17 2000 nan
sigmal[0] 1.28 0.06 2000 1.0

5. Fit the model to the real data

Once we have built confidence in our inference algorithm,
we are ready to fit our model to the real data and answer the
question of interest. Our goal is to use the data to predict the effect
of the treatment on a new patient, i.e., the posterior predictive
distribution.

In this case study, we may not share real data but, for demon-
stration purposes, we created two other sets of synthetic data, one
representing the control group and the other the treatment group.
For each posterior sample of parameters (u;,X;), we generate a
latent variable Z; ~ N(u;,%;). We then set Y;; = Z;; for j =1,
whereas for j = {2,3}, we sample Y;; ~ Bernoulli(logit™!(Z;).
The resulting set of Y;. is the posterior predictive distribution. We
do this for the parameters learned from both groups, Y7 and Y¢
separately, and plot the results in Figure 4.

Looking at the plots, we can visualize the effect of the drug
on a new patient by distinguishing the effects with the treatment
(green) versus without (blue). We observe that the Hemoglobin
levels are likely to decrease under the treatment by about 1 unit
on average. The probability of experiencing dyspepsia is slightly
lower under the treatment, contrary to that of nausea which
is the same in both groups. Note how the Bayesian approach
results in predictive distributions rather than point estimates, by
incorporating the uncertainty from the inference of the parameters.

Bayesian Inference with Stan

Stan is a powerful tool which “mitigates the challenges of pro-
gramming and tuning” HMC to do statistical inference. Stan is a
compiled language written in C++. It includes various useful tools
and integrations which make the researcher’s life easier. It can be
accessed from different languages via interfaces. This case study
was created with the Python interface, Pystan. Note that, at the
time of writing, the most developed interfaced is the R one, called
RStan. Although the underlying algorithm and speed is the same

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

throughout the different interfaces, differences in user experience
can be meaningful.

Stan requires a description of the basic ingredients of Bayesian
inference (i.e., the model, likelihood, priors, and data) and returns
samples from the posterior distribution of the parameters. The user
specifies these ingredients in separate code blocks called model
(lines 37-45), parameters (lines 14-20), and data (lines 1-8). Stan
code is passed in via a character string or a plain-text .stan file,
which is compiled down to C++ when the computation happens.
Results are returned to the interface as objects.

Choice of priors

Stan provides many distributions to choose from, which are
pre-implemented to maximize efficiency. The Stan team also
provides researchers with recommendations on default priors for
commonly used parameters, via the Stan manual [Teal7] and other
online materials. In our case study, we chose an LKJ prior (line
39) for the correlation matrix, one of the pre-implemented dis-
tributions in Stan. The LKJ prior has certain attractive properties
and is a recommended prior for correlation matrices in Stan (for
reasons beyond the scope of this paper). It has only one parameter
(we set it to 2) which pulls slightly the correlation terms towards
0. Another example is the half-Cauchy prior distribution for scale
parameters such as standard deviation (line 40). Half-Cauchy is
the recommended prior for standard deviation parameters because
its support is the positive real line but it has higher dispersion than
other alternatives such as the normal distribution. Note that it is
easy to truncate any pre-implemented distribution. Stan accepts
restrictions on parameters. For example, we restrict the parameter
for standard deviation to be positive (line 18). This restriction is
then respected when combined with the prior distribution defined
later (line 40) to yield a constrained half-Cauchy prior.

Fit diagnostics

HMC has many parameters that need to be tuned and can
have a big impact on the quality of the inference. Stan provides
many automated fit diagnostics as well as options to tune manually
the algorithm, if the default values do not work. For example, the
Gelman—Rubin convergence statistic, R, comes for free with a Stan
fit; effective sample size is another good way to evaluate the fit. In
most cases, R values need to be very close to 1.0 (£0.01) for the
results of the inference to be trusted, although this on its own does
not guarantee a good fit. More advanced topics, such as divergent
transitions, step sizes and tree depths are examined in the Stan
manual, together with recommendations on how to use them.

Challenges

Stan, and HMC in general, is not perfect and can be challenged
in various ways. For example multimodal posterior distribution,
which are common in mixture models, are hard to exploreg.

Another common issue is that mathematically equivalent pa-
rameterizations of a model can have vastly different performance
in terms of sampling efficiency'®. Although finding the right
model parameterization does not admit a simple recipe, the Stan
manual [Teal7] provides recommendations to common problems.
For example, we can usually improve the sampling performance
for normally distributed parameters of the form x ~ N (u, 62) if we
use the non-center parameterization x = y + oz for z ~ N(0,1). In
our case study, we use this trick, or rather its multivariate version,
by targeting the non-centered parts of the latent variable Z (lines
15, 23, 31-32 and 43). Another cause of bad inference results
in regression models is correlation among covariates. The way
to improve the sampling efficiency of a regression model is to
parameterize it using the QR decomposition''. We note that these

A BAYESIAN'S JOURNEY TO A BETTER RESEARCH WORKFLOW

issues, among others, that a researcher will encounter when using
Stan stem from the difficulties of Bayesian inference, and HMC in
particular [BG13], not Stan. The biggest limitation of HMC is that
it only works for continuous parameters. As a result we cannot
use Stan, or HMC for that matter, to do inference on discrete
unknown model parameters. However, in some cases we are able
to circumvent this issue'?.

Stan vs PyMC3

In this subsection, we provide a brief overview of the similari-
ties and differences between PyStan and PyMC3, which is another
state-of-the-art FLOSS!3 implementation of automatic Bayesian
inference in Python. By ‘automatic,’ we mean that the user only
needs to specify the model and the data and the software takes care
of the Bayesian inference. Both PyStan and PyMC3 let users fit
highly complex Bayesian models, by using HMC under the hood.

Stan and PyMC3 are the same insofar as they serve exactly
the same purpose. They both are expressive languages and allow
flexible model specification in code. PyMC3 leverages Theano to
implement automatic differentiation, whereas Stan relies on its
own algorithm. Practitioners report that PyMC3 is easier to get
started with (hence, more suitable for prototyping), while Stan is
more robust (hence, more suitable for production). For example,
Prophet'* is a timeseries forecasting package by Facebook imple-
mented with Stan. Indeed, there is a rich ecosystem of packages
built on top of Stan. However, most of these are available in R only.
Most of RStan derived packages follow pre-existing conventions
to ease the transition of researchers who want to try Bayesian
modeling seamlessly. For example, R users are usually familiar
with the glm building block for fitting generalized linear models;
with the brms package!’ users can insert a Bayesian estimates
in place of frequentist estimates with minimal changes to their
scripts. This way users can easily compare the estimates of the
two methods and judge whether the Bayesian approach works for
them.

Such packages can also be of use to more advanced users
of Bayesian inference as they typically implement the state-of-
the-art modeling choices such as default priors and expose the
generated Stan code to the user. Hence, interested researchers
can learn by essentially using them to generate a baseline Stan
code that they can tweak further according to their needs. At the
time of writing, PyStan users cannot directly benefit from the Stan
ecosystem of packages without leaving Python, at least briefly,
as most of the packages above are not available in Python. As a
result, we think that PyMC3 seems to be a more complete solution
from a Python perspective. PyMC3 is native to Python and hence
more integrated into Python than PyStan. PyMC3 also offers more
integrated plotting capabilities than PyStan'®.

The value of Stan, in the authors’ view, should be considered
beyond the mere software implementation of HMC. Stan consists
of a dynamic research community that aims at making Bayesian

9. See https://github.com/betanalpha/knitr_case_studies/tree/master/
identifying_mixture_models.

10. See
params.html.

http://mc-stan.org/users/documentation/case- studies/mle-

11. See http://mc-stan.org/users/documentation/case-studies/qr_regression.
html.

12. See http://elevanth.org/blog/2018/01/29/algebra-and-missingness/.
13. FLOSS stands for “Free/Libre and Open Source Software.”
14. See https://research.fb.com/prophet-forecasting-at-scale/.

15. This package makes it easy to fit models (https://github.com/paul-
buerkner/brms).

143

inference more accessible and robust. This is achieved through
open discussion of all Bayesian topics, many of which are areas
of active research. Interested users can learn more about Bayesian
inference in general, not just Stan, by reading online and partici-
pating in the discussion (see next subsection).

Further reading

The Stan manual [Teal7] is a comprehensive guide to Stan
but also includes guidance for Bayesian data analysis in general.
For a concise discussion on the history of Bayesian inference
programs and the advantages of HMC, see [McE17]. For examples
of other case studies and tutorials in Stan, see http://mc-stan.org/
users/documentation/. For active discussions and advice on how
to use Stan, see the Stan forum at http://discourse.mc-stan.org/.

Reproducibility

In this last section, we report on our experience of making
the case study more reproducible. We consider the definition of
reproducibility put forward by [KTD18]. Namely, reproducibility
is “the ability of a researcher to duplicate the results of a prior
study using the same materials as were used by the original
investigator” [RMS18]. To achieve it, we follow the guidance of
the three key practices of computational reproducibility [Kit18]:

1) Organizing the project into meaningful files and folders;
2) Documenting each processing step;
3) Chaining these steps together (into a processing pipeline).

We care about reproducibility for both high-level and low-
level reasons. In the big picture, we want to make the work more
shareable, reliable, and auditable. In the day-to-day, we want to
save time, catch mistakes, and ease collaboration. We are expe-
riencing these benefits already, having taken a few steps towards
computational reproducibility. Finally, let us borrow a quote which
is well-known in the reproducible research communities: “Your
most important collaborator is your future self.”

The case study presented earlier was not originally set up
according to the three practices outlined above. Notably, it used
to live in a variety of files (scripts, notebooks, figures, etc.) with
no particular structure. File organization is a common source of
confusion and frustration in academic research projects. So, the
first step we took was to create a clear, relatively standardized
directory structure. We went for the following:
| -— mixed-data/ <- Root (top-most)

for the project.
| —— README.md <- General information about
the project.

Spec. file for reproducing
the computing environment.

directory

|-— environment.yml <-

|-— data/
|-— raw/ <- The original, immutable
data dump.
|-- interim/ <- Intermediate outputs.
| —— models/

16. For additional sources on PyMC3 vs Stan comparisons, see:

o https://github.com/jonsedar/pyme3_vs_pystan

o http://discourse.mc-stan.org/t/jonathan-sedar-hierarchical-bayesian-
modelling-with-pymc3-and-pystan/3207

o http://andrewgelman.com/2017/05/3 1/compare-stan-pymc3-edward-
hello-world/

« https://towardsdatascience.com/stan-vs-pymc3-vs-edward-
1d45¢5d6da77

o https://pydata.org/london2016/schedule/presentation/30/

o https://github.com/jonsedar/pyme3_vs_pystan

https://github.com/betanalpha/knitr_case_studies/tree/master/identifying_mixture_models
https://github.com/betanalpha/knitr_case_studies/tree/master/identifying_mixture_models
http://mc-stan.org/users/documentation/case-studies/mle-params.html
http://mc-stan.org/users/documentation/case-studies/mle-params.html
http://mc-stan.org/users/documentation/case-studies/qr_regression.html
http://mc-stan.org/users/documentation/case-studies/qr_regression.html
http://elevanth.org/blog/2018/01/29/algebra-and-missingness/
https://research.fb.com/prophet-forecasting-at-scale/
https://github.com/paul-buerkner/brms
https://github.com/paul-buerkner/brms
http://mc-stan.org/users/documentation/
http://mc-stan.org/users/documentation/
http://discourse.mc-stan.org/
https://github.com/jonsedar/pymc3_vs_pystan
http://discourse.mc-stan.org/t/jonathan-sedar-hierarchical-bayesian-modelling-with-pymc3-and-pystan/3207
http://discourse.mc-stan.org/t/jonathan-sedar-hierarchical-bayesian-modelling-with-pymc3-and-pystan/3207
http://andrewgelman.com/2017/05/31/compare-stan-pymc3-edward-hello-world/
http://andrewgelman.com/2017/05/31/compare-stan-pymc3-edward-hello-world/
https://towardsdatascience.com/stan-vs-pymc3-vs-edward-1d45c5d6da77
https://towardsdatascience.com/stan-vs-pymc3-vs-edward-1d45c5d6da77
https://pydata.org/london2016/schedule/presentation/30/
https://github.com/jonsedar/pymc3_vs_pystan

144

| -— modelcode.stan <- Model definition.
| -— notebooks/ <- <- Jupyter notebooks.
|-— rosi_py.ipynb

|-— rosi_py_files/ <- Subdirectory for temporary

outputs such as figures.
| —— README.md <- Documentation for this
subdirectory.

We have found this directory structure to be very helpful and use-
ful in the case of an exploratory data analysis project. Additionally,
there is value in reusing the same structure for other projects (given
a structure that works for us): By reducing unnecessary cognitive
load, this practice has made our day-to-day more productive and
more enjoyable. For further inspiration, we refer the interested
reader to [Tral7], [Dc] and references therein.

The second step we took was to set up the project as its own
Git repository!”. Thus, we can track changes conveniently and
copy (‘clone’) the project on other machines safely (preserving
the directory structure and, hence, relative paths)lg.

Reproducible research practitioners recommend licensing your
scientific work under a license which ensures attribution and
facilitates sharing [Sto09]. Raw data are not copyrightable, so it
makes no sense to license them. Code should be made available
under a FLOSS license. Licenses suitable for materials which are
neither software nor data (i.e., papers, reports, figures), and offer-
ing both attribution and ease of sharing, are the Creative Commons
Attribution (CC BY) licenses. The case study (notebook) has
been licensed under CC BY since the beginning. This practice
can indeed contribute to improving reproducibility, since other
researchers may then reuse the materials independently, without
having to ask the copyright holders for permission.

We were confronted with the issue of software portability in
real life, as soon as we (the authors) started collaborating. We
created an isolated Python 3 environment with conda, a cross-
platform package and environment manager'®. As it turned out, the
conventional file environment .yml, which specifies package
dependencies, did not suffice: We run different operating systems
and some dependencies were not available for the other platform.
Therefore, we included a spec—file.txt as a specification file
for creating the conda environment on GNU/Linux. Admittedly,
this feels only mildly satisfying and we would welcome feedback
from the community.

At the moment, all the analysis takes place in one long Jupyter
notebook””. We could break it down into smaller notebooks
(and name them with number prefixes, for ordering). This way,
someone new to the project could identify the various modelling
and computing steps, in order, only by looking at the ‘self-
documenting’ file structure. If we ever take the project to a
production-like stage, we could further modularize the functional-
ity of each notebook into modules (.py files), which would contain
functions and would be organized into a project-specific Python
package. This would pave the way for creating a build file?! which
would chain all operations together and generate results for our
specific project. Reaching this stage is referred to as automation.

17. Git is a distributed version control system which is extremely popular in
software development (https://git-scm.com/).

18. The mixed-data project is hosted remotely at https:/github.com/
bayesways/mixed-data.
19. See https://conda.io/docs/.

20. See https://github.com/bayesways/mixed-data/blob/
d2fc4ea72466a4884dc2a5c46510129fac602f1{/notebooks/rosi_py.ipynb.

21. See https://swcarpentry.github.io/make-novice/reference#build-file.

PROC. OF THE 17th PYTHON IN SCIENCE CONF. (SCIPY 2018)

In data analysis, the first of these operations usually consists
in accessing the initial, raw dataset(s). This brings about the
question of data availability. In human subject research, such
as clinical trials, the raw data cannot, and should not, be made
publicly available. We ackowledge the tension existing between
reproducibility and privacy??. At the time of this writing and
as mentioned in the case study section, we are showcasing the
analysis only with synthetic input data.

REFERENCES

[Barl8] Pablo Barberd. The Trade-Off Between Reproducibility and Pri-
vacy in the Use of Social Media Data to Study Political Behavior.
University of California Press, Oakland, CA, 2018. URL: https:/

www.practicereproducibleresearch.org/case-studies/barbera.html.

[BG13] Michael Betancourt and Mark Girolami. Hamiltonian monte carlo
for hierarchical models. 2013. arxXiv:1312.0906v1.

[CGI98] Siddhartha Chib and Edward Greenberg. Analysis of multivariate
probit models. Biometrika, 85(2):347-361, jun 1998. doi:10.
1093/biomet/85.2.347.

[Dc] DrivenData and contributors. The cookiecutter data science

project. Accessed on Wed, May 23, 2018. URL: http://drivendata.

github.io/cookiecutter-data-science/.
[GCS*13] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson,
AKki Vehtari, and Donald B. Rubin. Bayesian Data Analysis. CRC
press, 2013.
Justin Kitzes. The Basic Reproducible Workflow Template,
chapter 3. University of California Press, Oakland, CA,
2018. URL: https://www.practicereproducibleresearch.org/core-
chapters/3-basic.html.
J. Kitzes, D. Turek, and F. Deniz, editors. The Practice of
Reproducible Research: Case Studies and Lessons from the Data-
Intensive Sciences. University of California Press, Oakland, CA,
2018. URL: https://www.practicereproducibleresearch.org/.
Richard McElreath. Statistical rethinking : a Bayesian course with
examples in R and Stan. 2015.
Richard McElreath. Markov chains: Why walk when you can
flow?, 2017. Accessed on Wed, May 23, 2018. URL: http:
/felevanth.org/blog/2017/11/28/build- a-better-markov-chain/.
Jean-Michel Marin and Christian P. Robert. The bayesian core: a
practical approach for computational bayesian statistics, volume
102. Springer Texts in Statistics, 2006. doi:10.1016/7.
peva.2007.06.006.
Ariel Rokem, Ben Marwick, and Valentina Staneva. Assessing
Reproducibility, chapter 2. University of California Press, Oak-
land, CA, 2018. URL: https://www.practicereproducibleresearch.
org/core-chapters/2-assessment.html.
Christian P. Robert. The Bayesian choice: from decision-theoretic
foundations to computational implementation. Springer Science &
Business Media, 2007.
Victoria Stodden. Enabling reproducible research: Open licensing
for scientific innovation. International Journal of Communications
Law and Policy, 2009. doi:10.7916/D8N01H1Z.
Aline Talhouk, Arnaud Doucet, and Kevin Murphy. Efficient
bayesian inference for multivariate probit models with sparse
inverse correlation matrices. Journal of Computational and
Graphical Statistics, 21(3):739-757, jul 2012. doi:10.1080/
10618600.2012.679239.
Stan Development Team. Stan modeling language: User’s guide
and reference manual, 2017. URL: https://github.com/stan-dev/
stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf.
Dustin Tran. A research to engineering workflow, 2017. Ac-
cessed on Wed, May 23, 2018. URL: http://dustintran.com/blog/a-
research-to-engineering- workflow.
Simon N. Wood. Core Statistics. ~ Cambridge University
Press, 2015. URL: https://people.maths.bris.ac.uk/~sw15190/core-
statistics.pdf.

[Kit18]

[KTD18]

[McE15]

[McE17]

[MRO6]

[RMS18]

[Rob07]

[Sto09]

[TDM12]

[Teal7]

[Tral7]

[Wool5]

22. A case study in political science is discussed in this respect in [Bar18].
Some private communication with political scientists and various technologists
have led us to throw the idea of leveraging the blockchain to improve
reproducibility in human subject research: What if the raw datasets could live
as private data on a public blockchain, notably removing the possibility of
cherry-picking by design?

https://git-scm.com/
https://github.com/bayesways/mixed-data
https://github.com/bayesways/mixed-data
https://conda.io/docs/
https://github.com/bayesways/mixed-data/blob/d2fc4ea72466a4884dc2a5c46510129fac602f1f/notebooks/rosi_py.ipynb
https://github.com/bayesways/mixed-data/blob/d2fc4ea72466a4884dc2a5c46510129fac602f1f/notebooks/rosi_py.ipynb
https://swcarpentry.github.io/make-novice/reference#build-file
https://www.practicereproducibleresearch.org/case-studies/barbera.html
https://www.practicereproducibleresearch.org/case-studies/barbera.html
http://arxiv.org/abs/1312.0906v1
http://dx.doi.org/10.1093/biomet/85.2.347
http://dx.doi.org/10.1093/biomet/85.2.347
http://drivendata.github.io/cookiecutter-data-science/
http://drivendata.github.io/cookiecutter-data-science/
https://www.practicereproducibleresearch.org/core-chapters/3-basic.html
https://www.practicereproducibleresearch.org/core-chapters/3-basic.html
https://www.practicereproducibleresearch.org/
http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/
http://elevanth.org/blog/2017/11/28/build-a-better-markov-chain/
http://dx.doi.org/10.1016/j.peva.2007.06.006
http://dx.doi.org/10.1016/j.peva.2007.06.006
https://www.practicereproducibleresearch.org/core-chapters/2-assessment.html
https://www.practicereproducibleresearch.org/core-chapters/2-assessment.html
http://dx.doi.org/10.7916/D8N01H1Z
http://dx.doi.org/10.1080/10618600.2012.679239
http://dx.doi.org/10.1080/10618600.2012.679239
https://github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf
https://github.com/stan-dev/stan/releases/download/v2.17.0/stan-reference-2.17.0.pdf
http://dustintran.com/blog/a-research-to-engineering-workflow
http://dustintran.com/blog/a-research-to-engineering-workflow
https://people.maths.bris.ac.uk/~sw15190/core-statistics.pdf
https://people.maths.bris.ac.uk/~sw15190/core-statistics.pdf

	Introduction
	A Bayesian Workflow
	A Case Study in Clinical Trial Data Analysis
	Bayesian Inference with Stan
	Reproducibility
	References

