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Parallel High Performance Bootstrapping in Python
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We use a combination of code-generation, code lowering,
and just-in-time compilation techniques called SEJITS (Selec-
tive Embedded JIT Specialization) to generate highly performant
parallel code for Bag of Little Bootstraps (BLB), a statistical
sampling algorithm that solves the same class of problems as
general bootstrapping, but which parallelizes better. We do this
by embedding a very small domain-specific language into Python
for describing instances of the problem and using expert-created
code generation strategies to generate code at runtime for a
parallel multicore platform. The resulting code can sample giga-
byte datasets with performance comparable to hand-tuned parallel
code, achieving near-linear strong scaling on a 32-core CPU,
yet the Python expression of a BLB problem instance remains
source- and performance-portable across platforms. This work
represents another case study in a growing list of algorithms we
have "packaged" using SEJITS in order to make high-performance
implementations of the algorithms available to Python program-
mers across diverse platforms.

Introduction

A common task domain experts are faced with is performing
statistical analysis on data. The most prevalent methods for doing
this task (e.g. coding in Python) often fail to take advantage of
the power of parallelism, which restricts domain experts from
performing analysis on much larger data sets, and doing it much
faster than they would be able to with pure Python.

The rate of growth of scientific data is rapidly outstripping
the rate of single-core processor speedup, which means that
scientific productivity is now dependent upon the ability of domain
expert, non-specialist programmers (productivity programmers)
to harness both hardware and software parallelism. However,
parallel programming has historically been difficult for produc-
tivity programmers, whose primary concern is not mastering
platform specific programming frameworks. At the same time, the
methods available to harness parallel hardware platforms become
increasingly arcane and specialized in order to expose maximum
performance potential to efficiency programming experts. Several
methods have been proposed to bridge this disparity, with varying
degrees of success.

High performance natively-compiled scientific libraries (such
as SciPy) seek to provide a portable, high-performance interface
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for common tasks, but the usability and efficiency of an interface
often varies inversely to its generality. In addition, SciPy’s imple-
mentations are sequential, due to both the wide variety of parallel
programming models and the difficulty of selecting parameters
such as degree of concurrency, thread fan-out, etc.

SEJITS [SEJITS] provides the best of both worlds by allowing
very compact Domain-Specific Embedded Languages (DSELs)
to be embedded in Python. Specializers are mini-compilers for
these DSELs, themselves implemented in Python, which perform
code generation and compilation at runtime; the specializers only
intervene during those parts of the Python program that use Python
classes belonging to the DSEL. BLB is the latest such specializer
in a growing collection.

ASP ("ASP is SEJITS for Python") is a powerful framework
for bringing parallel performance to Python using targeted just-in-
time code transformation. The ASP framework provides a skinny
waist interface which allows multiple applications to be built
and run upon multiple parallel frameworks by using a single
run-time compiler, or specializer. Each specializer is a Python
class which contains the tools to translate a function/functions
written in Python into an equivalent function/functions written
in one or more low-level efficiency languages. In addition to
providing support for interfacing productivity code to multiple
efficiency code back-ends, ASP includes several tools which help
the efficiency programmer lower and optimize input code, as well
as define the front-end DSL. Several specializers already use
these tools to solve an array of problems relevant to scientific
programmers [SEJITS].

Though creating a compiler for a DSL is not a new problem,
it is one with which efficiency experts may not be familiar.
ASP eases this task by providing accessible interfaces for AST
transformation. The NodeTransformer interface in the ASP
toolkit includes and expands upon CodePy’s [CodePy] C++ AST
structure, as well as providing automatic translation from Python
to C++ constructs. By extending this interface, efficiency program-
mers can define their DSEL by modifying only those constructs
which differ from standard python, or intercepting specialized con-
structs such as special function names. This frees the specializer
writer from re-writing boilerplate for common constructs such as
branches or arithmetic operations.

ASP also provides interfaces for managing source variants
and platforms, to complete the task of code lowering. The ASP
framework allows the specializer writer to specify Backends,
which represent distinct parallel frameworks or platforms. Each
backend may store multiple specialized source variants, and in-
cludes simple interfaces for selecting new or best-choice variants,
as well as compiling and running the underlying efficiency source
codes. Couple with the Mako templating language and ASP’s
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AST transformation tools, efficiency programmers are relieved of
writing and maintaining platform-specific boilerplate and tools,
and can focus on providing the best possible performance for their
specializer.

Related Work

Prior work on BLB includes a serial implementation of the
algorithm, as described in "The Big Data Bootstrap" and a Scala
implementation that runs on the Spark cluster computing frame-
work, as described in "A Scalable Bootstrap for Massive Data".
The first paper shows that the BLB algorithm produces statistically
robust results on a small data set with a linear estimator function.
The second paper describes how BLB scales with large data sets
in distributed environments.

BLB

BLB ("Bag of Little Bootstraps") is a method to assess the quality
of a statistical estimator, 6(X), based upon subsets of a sample
distribution X. 0 might represent such quantities as the parameters
of a regressor, or the test accuracy of a machine learning classifier.
In order to calculate 6, subsamples of size K7, where K = |X]|
and 7y is a real number between O and 1, are drawn n times
without replacement from X, creating the independent subsets
X1,X5,...,X,. Next, K elements are resampled with replacement
from each subset X;, m times. This procedure of resampling
with replacement is referred to as bootstrapping. The estimator
0 is applied to each bootstrap. These results are reduced using a
statistical aggregator (e.g. mean, variance, margin of error, etc.)
to form an intermediate estimate 6’(X;).Finally, the mean of 6’
for each subset is taken as the estimate for 6(X). This method
is statistically rigorous, and in fact reduces bias in the estimate
compared to other bootstrap methods [BLB]. In addition, its
structural properties lend themselves to efficient parallelization.

DSEL for BLB

A BLB problem instance is defined by the estimators and reducers
it uses, its sampling parameters, and its input data. Our BLB
specializer exposes a simple but expressive interface which allows
the user to communicate all of these elements using either pure
Python or a simple DSEL.

The DSEL, which is formally specified in Appendix A, is
designed to concisely express the most common features of BLB
estimator computations: position-independent iteration over large
data sets, and dense linear algebra. The BLB algorithm was
designed for statistical and loss-minimization tasks. These tasks
share the characteristic of position-independant computation; they
depend only on the number and value of the unique elements
of the argument data sets, and not upon the position of these
data points within the set. For this reason, the DSEL provides
a pythonic interface for iteration, instead of a position-oriented
style (i.e., subscripts and incrementing index variables) which is
common in lower-level languages. Because most data sets which
BLB operates on will have high-dimensional data, the ability to
efficiently express vector operations is an important feature of the
DSEL. All arithmetic operations and function calls which operate
on data are replaced in the final code with optimized, inlined
functions which automatically handle data of any size without
changes to the source code. In addition to these facilities, common
dense linear algebra operations may also be accessed via special
function calls in the DSEL.
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The next set of problem parameters, the sampling parameters,
are not represented directly in the DSEL; In fact, they are not refer-
enced anywhere therein. This is because the sampling parameters,
which comprise n, m, and 7, have pattern-level consequences, and
have no direct bearing on the executrion of users’ computations.
These values can be passed as keyword arguments to the special-
izer object when it is created, or the specializer may be left to
choose reasonable defaults.

The final components of a problem instance are the input data.
Much of the necessary information about the input data is gleaned
by the specializer without referring to the DSEL. However, a major
component of what to do with the input data is expressed using
the DSEL’s annotation capability. Argument annotations, as seen
in figure 1 below, are used to determine whether or not a given
input should be subsampled as part of the BLB pattern. This is
essential for many tasks, because it allows the user to pass in
non-data information (e.g. a machine learning model vector) into
the computation. Though the annotations are ultimately removed,
the information they provide propagates as changes to the pattern
within the execution template.

An example application of BLB is to do model verification.
Suppose we have trained a classifier 7 : R? — C where d is the
dimension of our feature vectors and C is the set of classes. We can
define O[Y]tobe error [Y]/|Y|, where the error function is 1 if
7(y) is not the true class of y, and 0 elsewhere. If we then choose
arithmetic mean as a statistical aggregator, the BLB method using

the ¥ we defined will provide an estimate of the test error of our
impoxt blb
impoxrt numpy

class SVMVerifierBLB( Dlb.BLE ):

def compute estimate( emails, tags, models = ('models', 'nosubsample’

errors = 0.0
for email, tag in emails, tags:
choice = 0
max _match = -1
for model in models:
match = dot( model, email )
if match > max match:
choice = index() + 1
max_match = match
if choice != tag:
errors += 1
return errors / len( emails )

def reduce bootstraps( bootstraps ):
mean = 0.0
for bootstrap in bootstraps:
mean += bootstrap
return mean / len(bootstraps)

def average( subsamples ):

mean =
for subsample in subsamples:
mean += subsample
return mean / len( subsamples )
classifier.
Figure 1. User-supplied code for model verification applica-
tion using BLB specializer.

The Specializer: A Compiler for the BLB DSEL

The BLB specializer combines various tools, as well as compo-
nents of the ASP framework and a few thousand lines of custom
code, to inspect and lower productivity code at run time.

The BLB DSEL is accessed by creating a new Python class
which uses the base specializer class, blb.BLB, as a parent.
Specific methods corresponding to the estimator and reducer
functions are written with the DSEL, allowing the productivity
programmer to easily express aspects of a BLB computation which
can be difficult to write efficiently. Though much of this code is
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converted faithfully from Python to C++ by the specializer, two
important sets of constructs are intercepted and rewritten in an
optimized way when they are lowered to efficiency code. The
first such construct is the for loop. In the case of the estimator
theta, these loops must be re-written to co-iterate over a weight
set. As mentioned above, the bootstrap step of the algorithm
samples with replacement a number of data points exponentially
larger than the size of the set. A major optimization of this
operation is to re-write the estimator to work with a weight set
the same size as the subsample, who’s weights sum to the size
of the original data set. This is accomplished within the DSEL
by automatically converting for loops over subsampled data sets
into weighted loops, with weight sets drawn from an appropriate
multinomial distribusion for each bootstrap. When this is done, the
specializer converts all the operations in the interior of the loop to
weighted operations, which is why only augmented assignments
are permitted in the interior of loops Appendix A. The other set of
constructs handled specially by the specializer are operators and
function calls. These constructs are specialized as described in the
previous section.

Introspection begins when a specializer object is instantiated.
When this occurs, the specializer uses Python’s inspect module
to extract the source code from the specializer object’s methods
named compute_estimate, reduce_bootstraps, and
average. The specializer then uses Python’s ast module to
generate a Python abstract syntax tree for each method.

The next stage of specialization occurs when the specialized
function is invoked. When this occurs, the specializer extracts
salient information about the problem, such as the size and data
type of the inputs, and combines it with information about the
platform gleaned using ASP’s platform detector. Along with this
information, each of the three estimator ASTs is passed to a
converter object, which transforms the Python ASTs to C++ equiv-
alents, as well as performing optimizations. The converter objects
referred to above perform the most radical code transformations,
and more so than any other part of the specializer might be called
a run-time compiler (with the possible exception of the C++
compiler invoked later on). Once each C++ AST is produced,
it is converted into a python string whose contents are a valid
C++ function of the appropriate name. These functions-strings,
along with platform and problem-specific data, are used as inputs
to Mako templates to generate a C++ source file tailored for the
platform and problem instance. Finally, CodePy is used to compile
the generate source file and return a reference to the compiled
function to Python, which can then be invoked.

In addition to code lowering and parallelization, the specializer
is equipped to make pattern-level optimization decisions. These
optimizations change the steps of the execution pattern, but do
not affect the user’s code. The best example of this in the BLB
specializer is the decision of whether or not to load in subsamples.
Subsamples of the full data set can be accessed by indirection to
individual elements (a subsample is an array of pointers) or by
loading the subsampled elements into a new buffer (loading in).
Loading in subsamples encourages caching, and our experiments
showed performance gains of up to 3x for some problem/platform
combinations using this technique. However, as data sizes grow,
the time spent moving data or contending for shared resources
outweighs the caching benefit. Because the specializer has some
knowledge of the platform and of the input data sizes, it is able to
make predictions about how beneficial loading in will be, and can
modify the efficiency level code to decide which inputs should
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be loaded in and which should not. The specializer determines
this by comparing the size of a subsample to the size of the
shared L2 cache; if the memory needed for a single thread would
consume more than 40% of the resources, then subsamples will
not be loaded in. The value of 40% is empirical, and determined
for the particular experiments herein. In the future, this and
other architecture-level optimizations will be made automatically
by specializers by comparing the performance effects of such
decisions on past problem instances.

The other major pattern-level decision for a BLB computation
is choice of sampling parameters. These constitute the major
efficiency/accuracy trade-off of the BLB approach. By default, the
specializer sets these parameters conservatively, favoring accuracy
heavily over efficiency; The default sampling parameters are n =
25 subsamples, m = 100 bootstraps per subsample, and y = 0.7.
Though each of these values has clear performance implications,
the specializer does not adjust them based on platform parameters
because it does not include a mechanism to evaluate acceptable
losses in accuracy.

Empirical evidence shows that accuracy declines sharply using
v less than 0.5 [BLB], though does not increase much more
using a higher value than 0.7. A change of .1 in this value
leads to an order-of-magnitude change in subsample size for data
sets in the 10-100 GB range, so the smallest value which will
attain the desired accuracy should be chosen. The number of
subsamples taken also has a major impact on performance. The
run time of a specialized computation in these experiments could
be approximated to within 5% error using the formula r = [2]s ,
where t is the total running time, c is the number of cores in use,
and s is the time to compute the bootstraps of a single subsample
in serial. Though the result from bootstraps of a given subsample
will likely be close to the true estimate, at least 20 subsamples
were needed in the experiments detailed here to reduce variance
in the estimate to an acceptable level. Finally, the number of
bootstraps per subsample determines how accurate an estimate
is produced for each subsample. In the experiments described
below, 40 bootstraps were used. In experiments not susceptible
to noise, as few as 25 were used with acceptable results. Because
the primary effect of additional bootstraps is to reduce the effect
of noise and improve accuracy, care should be taken not to use too
few.

Evaluation

We evaluated the performance gains from using our SEJITS
specializer by performing model verification of a SVM classifier
on a subset of the Enron email corpus [ENRON]. We randomly
selected 10% (Approximately 120,000 emails) from the corpus to
serve as our data set. From each email, we extracted the counts
of all words in the email, as well as the user-defined directory
the email was filed under. We then aggregated the word counts
of all the emails to construct a Bag-of-Words model of our data
set, and assigned classes based upon directory. In the interest of
classification efficiency, we filtered the emails to use only those
from the 20 most common classes, which preserved approximately
98% of our original data set. In the final count, our test data
consisted of approximately 126,000 feature vectors and tags,
with each feature vector composed of approximately 96,000 8-
bit features. Using the SVM-Multiclass [SVM] library, we trained
a SVM classifier to decide the likeliest storage directory for an
email based upon its bag of words representation. We trained the
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classifier on 10% of our data set, reserving the other 90% as a
test set. We then applied the specialized code shown in figure 1
to estimate the accuracy of the classifier. We benchmarked the
performance and accuracy of the specializer on a system using 4
Intel X7560 processors.

Our experiments indicate that our specialized algorithm
was able to achieve performance gains of up to 31.6x with
regards to the serial version of the same algorithm, and
up to 22.1x with respect to other verification techniques.
These gains did not come at the cost of greatly reduced
accuracy; the results from repeated runs of the specialized
code were both consistent and very close to the true population

Strong Scaling of BLE on Enron Email Corpus
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Figure 2. Efficiency gains from specialized code.

As is visible from figure 2 above, our specialized code
achieved near-perfect strong scaling. In the serial case, the com-
putation took approximately 3478 seconds. By comparison, when
utilizing all 32 available hardware contexts, the exact same pro-
ductivity level code returned in just under 110 seconds.

We also used SVM Multiclass’ native verification utility to in-
vestigate the relative performance and accuracy of the specializer.
SVM Multiclass’ utility differs critically from our own in several
ways: The former uses an optimized sparse linear algebra system,
whereas the latter uses a general dense system; the former provides
only a serial implementation; and the algorithm (traditional cross-
validation) is different from ours. All of these factors should be
kept in mind as results are compared. Nevertheless, the special-
izer garnered order-of-magnitude performance improvements once
enough cores were in use. SVM Multiclass’ utility determined the
true population statistic in approximately 2200 seconds, making
it faster than the serial incarnation of our specializer, but less
efficient than even the dual-threaded version.

The native verification utility determined that the true error
rate of the classifier on the test data was 67.86%. Our specializers
estimates yielded a mean error rate of 67.24%, with a standard
deviation of 0.36 percentage points. Though the true statistic was
outside one standard deviation from our estimate’s mean, the
specializer was still capable of delivering a reasonably accurate
estimate very quickly.

Limitations and Future Work

Some of the limitations of our current specializer are that the tar-
gets are limited to OpenMP and Cilk. We would like to implement
a GPU and a cloud version of the BLB algorithm as additional
targets for our specializer. We’d like to explore the performance of
a GPU version implemented in CUDA. A cloud version will allow
us to apply the BLB sepcializer to problems involving much larger
data sets than are currently supported. Another feature we’d like
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to add is the ability for our specializer to automatically determine
targets and parameters based on the input data size and platform
specifications.

Conclusion

Using the SEJITS framework, productivity programmers are able
to easily express high level computations while simultaneously
gaining order-of-magnitude performance benefits. Because the
parallelization strategy for a particular pattern of computation and
hardware platform is often similar, efficiency expert programmers
can make use of DSLs embedded in higher level languages, such
as Python, to provide parallel solutions to large families of similar
problems.

We were able to apply the ASP framework and the BLB

:m:fl‘:ﬂﬁttern of computation to efficiently perform the high level task of

model verification on a large data set. This solution was simple to
develop with the help of the BLB specializer, and efficiently took
advantage of all available parallel resources.

The BLB specializer provides the productivity programmer not
only with performance, but with performance portability. Many
techniques for bringing performance benefits to scientific pro-
gramming, such as pre-compiled libraries, autotuning, or parallel
framework languages, tie the user to a limited set of platforms.
With SEJITS, productivity programmers gain the performance
benefits of a wide variety of platforms without changes to source
code.

This specializer is just one of a growing catalogue of such
tools, which will bring to bear expert parallelization techniques
to a variety of the most common computational patterns. With
portable, efficient, high-level interfaces, domain expert program-
mers will be able to easily create and maintain code bases in the
face of evolving parallel hardware and networking trends.
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Appendix A: Formal Specification of DSEL

## NAME indicates a valid python name, with the added
## stipulation it not start with '_blb_'

## INT and FLOAT indicate decimal representations of
## 64 bit integers and IEEE floating point numbers,
## respectively

## NEWLINE, INDENT,
## whitespace elements

P ::= OUTER_STMT* RETURN_STMT

AUG ::= "+="' \ '"—==' | 'x=' | '/="'

NUM ::= INT | FLOAT

OP :t:= "+"' | "= | k' | U/ tax!

COMP ::= '>' | '<' | '==' | 'I=' | ‘'<=' | '>=!
BRANCH ::= 'if' NAME COMP NAME':'

RETURN_STMT ::= 'return' NAME | 'return' CALL

and DEDENT stand for the respective
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CALL ::= 'sqgrt (' NAME ')'
| 'len(' NAME ')'
| '"mean (' NAME ')'
| 'pow(' NAME',' INT ')'
| 'dim(' NAME [',' INT ] ')'
| 'dtype (' NAME ')'
| 'MV_solve(' NAME',' NAME',' NAME ')'
| NAME OP CALL | CALL OP NAME
| CALL OP CALL | NAME OP NAME
| NAME 'x' NUM | CALL 'x' NUM
| NAME '/' NUM | CALL '/' NUM
| NAME 'x%' NUM | CALL 'x%' NUM

INNER_STMT ::= NAME '=' NUM |
| NAME = 'vector (' INT [',' INT]x', type='NAME ')'
NAME AUG CALL
NAME '=' 'index('[INT]')' OP NUM

|

I

| NAME = NUM OP 'index('[INT]')'"

| BRANCH NEWLINE INDENT INNER_STMT* DEDENT
|

'for' NAME[',' NAME]x 'in' NAME[',' NAME]x':' NEWLINE INDENT INNER_STMT% DEDENT
OUTER_STMT ::= NAME '=' NUM
| NAME '=' 'vector(' INT [',' INT]=*', type='NAME ')'
| NAME '=' CALL | NAME AUG CALL
| 'for' NAME[',' NAME]x 'in' NAME[',' NAME]x':' NEWLINE INDENT INNER_STMT% DEDENT
|

BRANCH NEWLINE INDENT OUTER_STMTx DEDENT
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