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Abstract—Basic principles in biosensing and nanomaterials precede the intro-
duction of a novel fiber optic sensor. Software limitations in the biosensing do-
main are presented, followed by the development of a Python-based simulation
environment. Finally, the current state of spectral data analysis within the Python
ecosystem is discussed.
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Introduction

Because of their unique optical properties, metallic colloids, espe-
cially gold nanoparticles (AuNPs), have found novel applications
in biology. They are utilized in the domain of nanobiosensing as
platforms for biomolecule recognition. Nanobiosensing refers to
the incorporation of nanomaterials into biosensing instrumenta-
tion. Sensors whose primary signal transduction mechanism is the
interaction of light and metallic colloids are known as plasmonic
sensors.!

Plasmonic sensors are constructed by depositing metallic
layers (bulk or colloidal) onto a substrate such as glass, or in
our case, onto a stripped optical fiber. Upon illumination, they
relay continuous information about their surrounding physical and
chemical environment. These sensors behave similarly to con-
ventional assays with the added benefits of increased sensitivity,
compact equipment, reduced sample size, low cost, and real-time
data acquisition. Despite these benefits, nanobiosensing research
in general is faced with several hinderances.

It is often difficult to objectively compare results between
research groups, and sometimes even between experimental trials.
This is mainly because the performance of custom sensors is
highly dependent on design specifics as well as experimental
conditions. The extensive characterization process found in com-
mercial biosensors> exceeds the resources and capabilities of the
average research group. This is partially due to a disproportionate
investment in supplies and manpower; however, it is also due to a
dearth of computational resources. The ad-hoc nature of empirical
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1. This exposition is germane to plasmonic sensors, more so than to other
nanobiosensor subgroups.

biosensor characterization often leads to asystematic experimen-
tal designs, implementations and conclusions between research
groups. To compound matters, dedicated software is not evolving
fast enough keep up with new biosensing technology. This lends an
advantage to commercial biosensors, which use highly customized
software to both control the experimental apparatus and extract
underlying information from the data. Without a general software
framework to develop similar tools, it is unreasonable to expect
the research community to achieve the same breadth in application
when pioneering new nanobiosensing technology.

Publications on novel biosensors often belaud improvement in
sensitivity and cost over commercial alternatives; however, the
aforementioned shortcomings relegate many new biosensors to
prototype limbo. Until the following two freeware components
are developed, new biosensors, despite any technical advantages
over their commercial counterparts, will fall short in applicability:

1) A general and systematic framework for the development
and objective quantification of nanobiosensors.

2) Domain-tailored software tools for conducting simula-
tions and interpreting experimental data.

In regard to both points, analytical methods have been de-
veloped to interpret various aspects of plasmonic sensing; [R1]
however, they have yet to be translated into a general software
framework. Commercial software for general optical system de-
sign is available; however, it is expensive and not designed to
encompass nanoparticles and their interactions with biomolecules.
In the following sections, an effort to begin such computational
endeavors is presented. The implications are relevant to plasmonic
biosensing in general.

Optical Setup

We have developed an operational benchtop setup which records
rapid spectroscopic measurements in the reflected light from the
end of an AuNP-coated optical fiber. The nanoparticles are de-
posited on the flat endface of the fiber, in contrast to the commonly
encountered method of depositing the AuNPs axially® along an
etched region of the fiber [R2], [R3]. In either configuration, only
the near-field interaction affects the signal, with no interference
from far-field effects. The simple design is outlined in Fig. 1 (left).
Broadband emission from a white LED is focused through a 10x
objective (not shown) into the 125um core diameter of an optical
fiber. AuNP-coated probes are connected into the setup via an

2. Biacore® and ForteBio® are examples of prominent nanobiosensing
companies.


mailto:hugadams@gwmail.gwu.edu
http://www.biacore.com/lifesciences/Application_Support/index.html?viewmode=printer
http://www.fortebio.com/company_overview.html

A COMPUTATIONAL FRAMEWORK FOR PLASMONIC NANOBIOSENSING

Antibody

__— Antigen

LED

Coupler 2

Spectrometer Gold nanoparticles

Fig. 1: Left: Bench-top fiber optic configuration schematic, adapted
from [R4]. Right: Depiction from bottom to top of fiber endface,
APTMS monolayer, AuNPs, antibody-antigen coating.

optical splice. The probes are dipped into solutions containing
biomolecules, and the return light is captured by an OceanOptics®
USB2000 benchtop spectrometer and output as ordered series
data.

Fiber Surface Functionalization

16nm gold nanospheres are attached to the optical fiber via a linker
molecule, (3-Aminoptopropyl)trimethoxysilane, or APTMS.* The
surface chemistry of the gold may be further modified to the spec-
ifications of the experiment. One common modification is to co-
valently bind a ligand to the AuNPs using Dithiobis[succinimidyl
propionate] (Lomant’s reagent), and then use the fiber to study
specificity in antibody-antigen interactions. This is depicted in Fig.
1 (right).

Modeling the Optical System in Python

The simulation codebase may be found at http://github.com/
hugadams/fibersim.

Nanobiosensing resides at an intersection of optics, biology,
and material science. To simulate such a system requires back-
ground in all three fields and new tools to integrate the pieces
seamlessly. Nanobiosensor modeling must describe phenomena at
three distinct length scales. In order of increasing length, these
are:

1) A description of the optical properties of nanoparticles
with various surface coatings.

2) The properties of light transmission through multi-
layered materials at the fiber endface.

3) The geometric parameters of the optics (e.g. fiber diame-
ter, placement of nanoparticle monolayer, etc.).

The size regimes, shown in Fig. 2, will be discussed separately
in the following subsections. It is important to note that the
computational description of a material is identical at all three
length scales. As such, general classes have been created and inter-
faced to accommodate material properties from datasets [R5] and
models [R6]. This allows for a wide variety of experimental and
theoretical materials to be easily incorporated into the simulation
environment.

Modeling Nanoparticles

AuNPs respond to their surrounding environment through a phe-
nomenon known as surface plasmon resonance. Incoming light
couples to free electrons and induces surface oscillations on the

3. Axial deposition allows for more control of the fiber’s optical properties;
however, it makes probe creation more difficult and less reproducible.

4. APTMS is a heterobifunctional crosslinker that binds strongly to glass
and gold respectively through silane and amine functional groups.
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Fig. 2: Three size regimes of the optical setup. Top: Optical fiber
with an AuNP-coated endface. Left: Coarse approximation of a
multilayered material. Right: Individual nanoparticles with protein
shells.

nanoparticle. The magnitude and dispersion of these oscillations is
highly influenced by the dielectric media in direct contact with the
particle’s surface. As such, the scattering and absorption properties
of the gold particles will change in response to changes in solution,
as well as to the binding of biomolecules.

To model AuNPs, the complex dielectric function® of gold
is imported from various sources, both from material models
[R5] and datasets [R6]. The optical properties of bare and coated
spheroids are described analytically by Mie theory [R7]. Scat-
tering and absorption coefficients are computed using spherical
Bessel functions from the scipy.special library of mathematical
functions. Special routines and packages are available for com-
puting the optical properties of non-spheroidal colloids; however,
they have not yet been incorporated in this package.

AuNP modeling is straightforward; however, parametric anal-
ysis is uncommon. Enthought’s Traits and Chaco packages
are used extensively to provide interactivity. To demonstrate a use
case, consider a gold nanoparticle with a shell of protein coating.
The optical properties of the core-shell particle may be obtained
analytically using Mie Theory;® however, analysis performed at a
coarser scale requires this core-shell system to be approximated as
a single composite particle (Fig. 3). With Traits, itis very easy
for the user to interactively adjust the mixing parameters to ensure
that the scattering properties of the approximated composite are as
close as possible to those of the analytical core-shell particle. In
this example, and in others, interactivity is favorable over complex
optimization techniques.

Modeling Material Layers

The fiber endface at a more coarse resolution resembles a multi-
layered dielectric stack of homogeneous materials, also referred
to as a thin film (Fig. 5). In the limits of this approximation, the
reflectance, transmittance, and absorbance through the slab can

5. The dielectric function and shape of the particle are the only parameters
required to compute its absorption and scattering cross sections.

6. Assuming that the shell is perfectly modeled; however, in practice the
optical properties of protein mixtures are approximated by a variety of mixing
models and methods.


http://www.oceanoptics.com/
http://github.com/hugadams/fibersim
http://github.com/hugadams/fibersim
http://www.enthought.com/

=
=

Fig. 3: Left: A nanoparticle with heterogeneous core and shell
dielectrics (€1,€), of radius, r = ry + ra. Right: Composite approx-
imation of a homogeneous material, with effective dielectric €, and
radius, r'.
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Fig. 4: Screenshot of an interactive Trait sUI program for modeling
the scenario in Fig. 3: the extinction spectra of a protein-coated AuNP
(blue) compared to that of an equivalent core-shell composite (red).

be calculated recursively for n-layered systems [R8]. Thin film
optical software is commercially available and used extensively
in optical engineering, for example, in designing coatings for
sunglasses. Unfortunately, a free, user-friendly alternative is not
available.” In addition, these packages are usually not designed
for compatibility with nanomaterials; therefore, we have begun
development of an extensible thin film Python API that incorpo-
rates nanomaterials. This is ideal, for example, in simulating a
fiber immersed in a solvent with a variable refractive index (e.g. a
solution with changing salinity). The program will ensure that as
the solvent changes, the surrounding shell of the nanoparticle, and
hence its extinction spectra, will update accordingly.

Optical Configurations and Simulation Environment

With the material and multilayer APIs in place, it is straightfor-
ward to incorporate an optical fiber platform. The light source and
fiber parameters merely constrain the initial conditions of light

7. Open-source thin film software is often limited in scope and seldom
provides a user-interface, making an already complex physical system more
convoluted.
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Fig. 5: Left: Electromagnetic field components at each interface of
a dielectric slab [R7]. Right: Illustration of a multilayered material
whose optical properties would be described by such treatment.

entering the multilayer interface; thus, once the correct multilay-
ered environment is established, it easy to compare performance
between different fiber optic configurations. Built-in parameters
already account for the material makeup and physical dimensions
of many commercially available optical fibers. A phase angle has
been introduced to distinguish nanomaterial deposition on the fiber
endface from axial deposition. This amounts to a 90° rotation of
the incident light rays at the multilayered interface.’

The entire application was designed for exploratory analysis,
so adjusting most parameters will automatically trigger system-
wide updates. To run simulations, one merely automates setting
Trait attributes in an iterative manner. For example, by iter-
ating over a range of values for the index of refraction of the
AuNP shells, one effectively simulates materials binding to the
AuNPs. After each iteration, Numpy arrays are stored for the
updated optical variables such as the extinction spectra of the
particles, dielectric functions of the mixed layers, and the total
light reflectance at the interface. All data output is formatted as
ordered series to mimic the actual output of experiments; thus,
simulations and experiments can be analyzed side-by-side without
further processing. With this work flow, it is quite easy to run
experiments and simulations in parallel as well as compare a
variety of plasmonic sensors objectively.

Data Analysis

Our work flow is designed to handle ordered series spectra
generated from both experiment and simulation. The Python pack-
ages IPython, Traits, and Pandas synergistically facilitate
swift data processing and visualization. Biosensing results are
information-rich, both in the spectral and temporal dimensions.
Molecular interactions on the AuNP’s surface have spectral sig-
natures discernible from those of environmental changes. For
example, the slow timescale of protein binding events is orders of
magnitude less than the rapid temporal response to environmental
changes.

Fig. 6 illustrates a fiber whose endface has been coated with
gold nanoparticles and subsequently immersed in water. The top
left plot shows the reflected light spectrum function of time. When
submerged in water, the signal is very stable. Upon the addition of

8. The diameter of the optical fiber as well as the angle at which light
rays interact with the material interface has a drastic effect on the system
because each light mode contributes differently to the overall signal, which is
the summation over all modes.
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Fig. 6: Temporal evolution (top) and spectral absorbance (bottom)
of the light reflectance at the fiber endface due to a protein-protein
interaction (left) as opposed to the stepwise addition of glycerin
(right).

micromolar concentrations of Bovine Serum Albumin (BSA), the
signal steadily increases as the proteins in the serum bind to the
gold. About an hour after BSA addition, the nanoparticle binding
sites saturate and the signal plateaus.

Fig. 6 (top right) corresponds to a different situation. Again,
an AuNP-coated fiber is immersed in water. Instead of proteins,
glycerin droplets are added. The fiber responds to these refractive
index changes in an abrupt, stepwise fashion. Whereas the serum
binding event evolves over a timescale of about two hours, the
response to an abrupt environmental change takes mere seconds.
This is a simple demonstration of how timescale provides insights
to the physiochemical nature of the underlying process.

The dataset’s spectral dimension can be used to identify phys-
iochemical phenomena as well. Absorbance plots corresponding
to BSA binding and glycerin addition are shown at the bottom
of Fig. 6. These profiles tend to depend on the size of the
biomolecules in the interaction. The spectral profile of BSA-AuNP
binding, for example, is representative of other large proteins
binding to gold. Similarly, index changes from saline, buffers and
other viscous solutions are consistent with the dispersion profile
of glycerin. Small biomolecules such as amino acids have yet
another spectral signature (not shown), as well as a timestamp that
splits the difference between protein binding and refractive index
changes. This surprising relationship between the physiochemistry
of an interaction and its temporal and spectral profiles aids in the
interpretation of convoluted results in complex experiments.

Consistent binding profiles require similar nanoparticle cov-
erage between fibers. If the coating process is lithographic, it is
easier to ensure consistent coverage; however, many plasmonic
biosensors are created through a wet crosslinking process similar
to the APTMS deposition described here. Wet methods are more
susceptible to extraneous factors; yet remarkably, we can use
the binding profile as a tool to monitor and control nanoparticle
deposition in realtime.

Fig. 7 (top) is an absorbance plot of the deposition of gold
nanoparticles onto the endface of an optical fiber (dataset begins
at y = 1). As the nanoparticles accumulate, they initially absorb
signal, resulting in a drop in light reflectance; however, eventually
the curves invert and climb rapidly. This seems to suggest the ex-
istence of a second process; however, simulations have confirmed
that this inflection is merely a consequence of the nanoparticle
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Fig. 7: Top: Absorbance plot of the real-time deposition of AuNPs
onto an optical fiber. Bottom: Time-slice later in the datasets shows
that the signal is dominated by signal at the surface plasmon res-
onance peak for gold, Agpp =~ 520 nm. The exemplifies the correct
timescale over which spectral events manifest.

film density and its orientation on the fiber. The spectral signature
of the AuNP’s may be observed by timeslicing the data (yellow
curves) and renormalizing to the first curve in the subset. This is
plotted in Fig. 7 (bottom), and clearly shows spectral dispersion
with major weight around A = 520 nm, the surface plasmon
resonance peak of our gold nanoparticles.

This approach to monitoring AuNP deposition not only allows
one to control coverage,’ but also provides information on depo-
sition quality. Depending on various factors, gold nanoparticles
may tend to aggregate into clusters, rather than form a monolayer.
When this occurs, red-shifted absorbance profiles appear in the
timeslicing analysis. Because simple plots like Fig. 7 contain so
much quantitative and qualitative information about nanoparticle
coverage, we have begun an effort to calibrate these curves to
measured particle coverage using scanning electron microscopy
(SEM) (Fig. 8).

The benefits of such a calibration are two-fold. First, it turns
out that the number of AuNP’s on the fiber is a crucial parameter
for predicting relevant biochemical quantities such as the binding
affinity of two ligands. Secondly, it is important to find several
coverages that optimize sensor performance. There are situations
when maximum dynamic range at low particle coverage is desir-
able, for example in measuring non-equilibrium binding kinetics.
Because of mass transport limitations, estimations of binding
affinity tend to be in error for densely populated monolayers. In
addition, there are coverages that impair dynamic range. Thus, it
is important to optimize and characterize sensor performance at
various particle coverages. Although simulations can estimate this
relationship, it should also be confirmed experimentally.

Since most non-trivial biosensing experiments contain mul-
tiple phases (binding, unbinding, purging of the sensor surface,
etc.), the subsequent data analysis requires the ability to rescale,
resample and perform other manual curations on-the-fly. Pandas
provides a great tool set for manipulating series data in such a

9. The user merely removes the fiber from AuNP when the absorbance
reaches a preset value.



Fig. 8: SEM images of fiber endfaces with 25% (left) and 5% (right)
AuNP surface coverage at 30,000 X magnification.

manner. For example, slicing a set of ordered series data by rows
(spectral dimension) and columns (temporal dimension) is quite
simple:

## Read series data from tab-delimited

## file into a pandas DataFrame object

from pandas import read_csv

data=read_csv ('path to file', sep='\t'")

## Select data by column index
data[['timel', 'time2']]

## Slice data by row label (wavelength)
data.ix[500.0:750.0]

By interfacing to Chaco, and to the Pandas plotting interface,
one can slice, resample and visualize interesting regions in the
dataspace quite easily. Through these packages, it is possible for
non-computer scientists to not just visualize, but to dynamically
explore the dataset. The prior examples of BSA and glycerin
demonstrated just how much information could be extracted from
the data using only simple, interactive methods.

our interactive approach is in contrast to popular all-in-
one analysis methods. In Two-Dimensional Correlation Analysis
(2DCA), [R9] for example, cross correlations of the entire dataset
are consolidated into two contour plots. These plots tend to be
difficult to interpret,'” and become intractable for multi-staged
events. Additionally, under certain experimental conditions they
cannot be interpreted at all. It turns out that much of the same
information provided by 2DCA can be ascertained using the
simple, dynamic analysis methods presented here. This is not to
suggest that techniques like 2DCA are disadvantageous, merely
that some of the results may be obtained more simply. Perhaps
in the future, transparent, interactive approaches will constitute
the core of the spectral data analysis pipeline with sophisticated
techniques like 2DCA adopting a complimentary role.

Conclusions

A benchtop nanobiosensor has been developed for the realtime
detection of biomolecular interactions. It, as well as other emer-
gent biosensing technologies, is hindered by a lack of dedicated
open-source software. In an effort to remedy this, prototypical
simulation and analysis tools have been developed to assist with
our plasmonic sensor and certainly have the potential for wider
applicability. Scientific Python libraries, especially Chaco and
Pandas, reside at the core of our data analysis toolkit and are

10. 2DCA decomposes series data into orthogonal synchronous and asyn-
chronous components. By applying the so-called Noda’s rules, one can
then analyze the resultant contour maps and infer information about events
unfolding in the system.
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proving invaluable for interacting with and visualizing results.
Unexpected physiochemical identifiers appear consistently within
experimental results. These binding profiles not only provide new
qualitative insights, but with the help of SEM imaging, may soon
open new avenues towards the difficult task of quantifying biosen-
sor output. Python has proven invaluable to our research, and just
as it has suffused the domains of astronomy and finance, seems
primed to emerge as the de-facto design platform in biosensing
and its related fields.
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