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A Tale of Four Libraries

Alejandro Weinstein®*, Michael Wakin*

Abstract—This work describes the use some scientific Python tools to solve
information gathering problems using Reinforcement Learning. In particular,
we focus on the problem of designing an agent able to learn how to gather
information in linked datasets. We use four different libraries—RL-Glue, Gensim,
NetworkX, and scikit-learn—during different stages of our research. We show
that, by using NumPy arrays as the default vector/matrix format, it is possible to
integrate these libraries with minimal effort.

Index Terms—reinforcement learning, latent semantic analysis, machine learn-
ing

Introduction

In addition to bringing efficient array computing and standard
mathematical tools to Python, the NumPy/SciPy libraries provide
an ecosystem where multiple libraries can coexist and interact.
This work describes a success story where we integrate several
libraries, developed by different groups, to solve some of our
research problems.

Our research focuses on using Reinforcement Learning (RL) to
gather information in domains described by an underlying linked
dataset. We are interested in problems such as the following: given
a Wikipedia article as a seed, find other articles that are interesting
relative to the starting point. Of particular interest is to find articles
that are more than one-click away from the seed, since these
articles are in general harder to find by a human.

In addition to the staples of scientific Python computing
NumPy, SciPy, Matplotlib, and IPython, we use the libraries RL-
Glue [Tan(09], NetworkX [Hag08], Gensim [Reh10], and scikit-
learn [Ped11].

Reinforcement Learning considers the interaction between
a given environment and an agent. The objective is to design
an agent able to learn a policy that allows it to maximize its
total expected reward. We use the RL-Glue library for our RL
experiments. This library provides the infrastructure to connect an
environment and an agent, each one described by an independent
Python program.

We represent the linked datasets we work with as graphs.
For this we use NetworkX, which provides data structures to
efficiently represent graphs, together with implementations of
many classic graph algorithms. We use NetworkX graphs to
describe the environments implemented using RL-Glue. We also
use these graphs to create, analyze and visualize graphs built from
unstructured data.
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One of the contributions of our research is the idea of rep-
resenting the items in the datasets as vectors belonging to a
linear space. To this end, we build a Latent Semantic Analysis
(LSA) [Dee90] model to project documents onto a vector space.
This allows us, in addition to being able to compute similarities
between documents, to leverage a variety of RL techniques that
require a vector representation. We use the Gensim library to build
the LSA model. This library provides all the machinery to build,
among other options, the LSA model. One place where Gensim
shines is in its capability to handle big data sets, like the entirety of
Wikipedia, that do not fit in memory. We also combine the vector
representation of the items as a property of the NetworkX nodes.

Finally, we also use the manifold learning capabilities of
sckit-learn, like the ISOMAP algorithm [Ten00], to perform some
exploratory data analysis. By reducing the dimensionality of the
LSA vectors obtained using Gensim from 400 to 3, we are able
to visualize the relative position of the vectors together with their
connections.

Source code to reproduce the results shown in this work is
available at https://github.com/aweinstein/a_tale.

Reinforcement Learning

The RL paradigm [Sut98] considers an agent that interacts with
an environment described by a Markov Decision Process (MDP).
Formally, an MDP is defined by a state space 2, an action space
27/, a transition probability function P, and a reward function r. At
a given sample time r =0, 1,... the agent is at state x, € 2, and
it chooses action a, € . Given the current state x and selected
action a, the probability that the next state is x’ is determined by
P(x,a,x"). After reaching the next state x’, the agent observes an
immediate reward r(x'). Figure 1 depicts the agent-environment
interaction. In an RL problem, the objective is to find a function
. Z — of, called the policy, that maximizes the total expected
reward

R—E 2)/}’()6;) ,

where ¥ € (0,1) is a given discount factor. Note that typically
the agent does not know the functions P and r, and it must
find the optimal policy by interacting with the environment. See
Szepesvari [Szel0] for a detailed review of the theory of MDPs
and the different algorithms used in RL.

We implement the RL algorithms using the RL-Glue library
[Tan09]. The library consists of the RL-Glue Core program and
a set of codecs for different languages' to communicate with
the library. To run an instance of a RL problem one needs to
write three different programs: the environment, the agent, and
the experiment. The environment and the agent programs match
exactly the corresponding elements of the RL framework, while
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Fig. 1: The agent-environment interaction. The agent observes the
current state x and reward r; then it executes action T(x) = a.

the experiment orchestrates the interaction between these two. The
following code snippets show the main methods that these three
programs must implement:

class env (Environment) :
def env_start (self):

# Set the current
# oel thne currentc

environment.py

state
return current_state

action):

the new state according to
s

def env_step(self,
# Set

# the current =1

tate and given action.

return reward

def agent_start (self, state):

# First step of an experiment

return action

reward, obs):
of the RL algorithm

def agent_step(self,

# Execute a step

return action

FH#A#AH#F#AAH experimen
RLGlue.init ()
RLGlue.RL_start ()
RLGlue.RL_episode (100)

# Run an episode

Note that RL-Glue is only a thin layer among these programs,
allowing us to use any construction inside them. In particular, as
described in the following sections, we use a NetworkX graph to
model the environment.

Computing the Similarity between Documents

To be able to gather information, we need to be able to quantify
how relevant an item in the dataset is. When we work with
documents, we use the similarity between a given document and
the seed to this end. Among the several ways of computing
similarities between documents, we choose the Vector Space
Model [Man08]. Under this setup, each document is represented
by a vector. The similarity between two documents is estimated
by the cosine similarity of the document vector representations.

The first step in representing a piece of text as a vector is
to build a bag of words model, where we count the occurrences
of each term in the document. These word frequencies become
the vector entries, and we denote the term frequency of term t
in document d by tf; ;. Although this model ignores information
related to the order of the words, it is still powerful enough to
produce meaningful results.

1. Currently there are codecs for Python, C/C++, Java, Lisp, MATLAB, and
Go.

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

In the context of a collection of documents, or corpus, word
frequency is not enough to asses the importance of a term. For this
reason, we introduce the quantity document frequency df;, defined
to be the number of documents in the collection that contain term
t. We can now define the inverse document frequency (idf) as

N
idf; = log —
1df; og dft7

where N is the number of documents in the corpus. The idf is a
measure of how unusual a term is. We define the tf-idf weight of
term ¢ in document d as

ti-idf, 4 = tf, 4 x idf, .

This quantity is a good indicator of the discriminating power of a
term inside a given document. For each document in the corpus
we compute a vector of length M, where M is the total number of
terms in the corpus. Each entry of this vector is the tf-idf weight
for each term (if a term does not exist in the document, the weight
is set to 0). We stack all the vectors to build the M x N term-
document matrix C.

Note that since typically a document contains only a small
fraction of the total number of terms in the corpus, the columns of
the term-document matrix are sparse. The method known as Latent
Semantic Analysis (LSA) [Dee90] constructs a low-rank approx-
imation Cj of rank at most k of C. The value of k, also known
as the latent dimension, is a design parameter typically chosen
to be in the low hundreds. This low-rank representation induces
a projection onto a k-dimensional space. The similarity between
the vector representation of the documents is now computed after
projecting the vectors onto this subspace. One advantage of LSA
is that it deals with the problems of synonymy, where different
words have the same meaning, and polysemy, where one word has
different meanings.

Using the Singular Value Decomposition (SVD) of the term-
document matrix C = UXV7, the k-rank approximation of C is
given by

Ce =UZV,

where Uy, X, and Vi are the matrices formed by the k first
columns of U, X, and V, respectively. The tf-idf representation
of a document ¢ is projected onto the k-dimensional subspace as

aw=2"Ulq.

Note that this projection transforms a sparse vector of length M
into a dense vector of length k.

In this work we use the Gensim library [Reh10] to build the
vector space model. To test the library we downloaded the top 100
most popular books from project Gutenberg.> After constructing
the LSA model with 200 latent dimensions, we computed the
similarity between Moby Dick, which is in the corpus used to
build the model, and 6 other documents (see the results in Table
1). The first document is an excerpt from Moby Dick, 393 words
long. The second one is an excerpt from the Wikipedia Moby
Dick article. The third one is an excerpt, 185 words long, of The
Call of the Wild. The remaining two documents are excerpts from
Wikipedia articles not related to Moby Dick. The similarity values
we obtain validate the model, since we can see high values (above
0.8) for the documents related to Moby Dick, and significantly
smaller values for the remaining ones.

2. As per the April 20, 2011 list, http://www.gutenberg.org/browse/scores/
top.
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Text description LSA similarity
Excerpt from Moby Dick 0.87

Excerpt from Wikipedia Moby Dick article 0.83

Excerpt from The Call of the Wild 0.48

Excerpt from Wikipedia Jewish Calendar  0.40

article

Excerpt from Wikipedia Oxygen article 0.33

TABLE 1: Similarity between Moby Dick and other documents.

Next, we build the LSA model for Wikipedia that allows us to
compute the similarity between Wikipedia articles. Although this
is a lengthy process that takes more than 20 hours, once the model
is built, a similarity computation is very fast (on the order of 10
milliseconds). Results in the next section make use of this model.

Note that although in principle it is simple to compute the
LSA model of a given corpus, the size of the datasets we are
interested in make doing this a significant challenge. The two
main difficulties are that in general (i) we cannot hold the vector
representation of the corpus in RAM memory, and (ii) we need to
compute the SVD of a matrix whose size is beyond the limits of
what standard solvers can handle. Here Gensim does stellar work
by being able to handle both these challenges.

Representing the State Space as a Graph

We are interested in the problem of gathering information in
domains described by linked datasets. It is natural to describe such
domains by graphs. We use the NetworkX library [Hag08] to build
the graphs we work with. NetworkX provides data structures to
represent different kinds of graphs (undirected, weighted, directed,
etc.), together with implementations of many graph algorithms.
NetworkX allows one to use any hashable Python object as a node
identifier. Also, any Python object can be used as a node, edge, or
graph attribute. We exploit this capability by using the LSA vector
representation of a Wikipedia article, which is a NumPy array, as
a node attribute.

The following code snippet shows a function® used to build a
directed graph where nodes represent Wikipedia articles, and the
edges represent links between articles. Note that we compute the
LSA representation of the article (line 11), and that this vector
is used as a node attribute (line 13). The function obtains up to
n_max articles by breadth-first crawling the Wikipedia, starting
from the article defined by page.

def crawl (page, n_max) :

1
2 G = nx.DiGraph ()

3 n =0

4 links = [(page, -1, None)]

5 while n < n_max:

6 link = links.pop ()

7 page = 1link[0]

8 dist = link[1] + 1

9 page_text = page.edit () .encode('utf-8")
10 # LSI representation of page_ text

1 v_1lsi = get_1lsi (page_text)

12 # Add node to the graph

13 G.add_node (page.name, v=v_1lsi)

14 if link[2]:

15 source = link[2]

16 dest = page.name

17 if G.has_edge (source, dest):

18 # Link already exists

19 continue

20 else:
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Fig. 2: Graph for the "Army" article in the simple Wikipedia with
97 nodes and 99 edges. The seed article is in light blue. The size of
the nodes (except for the seed node) is proportional to the similarity.
In red are all the nodes with similarity greater than 0.5. We found
two articles ("Defense" and "Weapon") similar to the seed three links
ahead.

21 sim = get_similarity (page_text)
22 self.G.add_edge (source,

23 dest,

24 weight=sim,
25 d=dist)

26 new_links = [(l1, dist, page.name)
27 for 1 in page.links ()]
28 links = new_links + links

29 n += 1

30

31 return G

We now show the result of running the code above for two
different setups. In the first instance we crawl the Simple English
Wikipedia® using "Army" as the seed article. We set the limit on
the number of articles to visit to 100. The result is depicted® in Fig.
2, where the node corresponding to the seed article is in light blue
and the remaining nodes have a size proportional to the similarity
with respect to the seed. Red nodes are the ones with similarity
bigger than 0.5. We observe two nodes, "Defense" and "Weapon",
with similarities 0.7 and 0.53 respectively, that are three links away
from the seed.

In the second instance we crawl Wikipedia using the article
"James Gleick"® as seed. We set the limit on the number of
articles to visit to 2000. We show the result in Fig. 3, where,
as in the previous example, the node corresponding to the seed
is in light blue and the remaining nodes have a size proportional
to the similarity with respect to the seed. The eleven red nodes
are the ones with similarity greater than 0.7. Of these, 9 are more
than one link away from the seed. We see that the article with the
biggest similarity, with a value of 0.8, is about "Robert Wright
(journalist)", and it is two links away from the seed (passing
through the "Slate magazine" article). Robert Wright writes books
about sciences, history and religion. It is very reasonable to
consider him an author similar to James Gleick.

Another place where graphs can play an important role in the
RL problem is in finding basis functions to approximate the value-

3. The parameter page is a mwclient page object. See http://sourceforge.
net/apps/mediawiki/mwclient/.

4. The Simple English Wikipedia (http://simple.wikipedia.org) has articles
written in simple English and has a much smaller number of articles than the
standard Wikipedia. We use it because of its simplicity.

5. To generate this figure, we save the NetworkX graph in GEXF format,
and create the diagram using Gephi (http://gephi.org/).

6. James Gleick is "an American author, journalist, and biographer, whose
books explore the cultural ramifications of science and technology".
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Fig. 3: Graph for the "James Gleick" Wikipedia article with 1975
nodes and 1999 edges. The seed article is in light blue. The size of the
nodes (except for the seed node) is proportional to the similarity. In
red are all the nodes with similarity bigger than 0.7. There are several
articles with high similarity more than one link ahead.

function. The value-function is the function V7" : 2" + R defined
as

=

Vi(x)=E Z}/r(x,)|x0:x,a,:ﬂ:(x,) ,

t=1

and plays a key role in many RL algorithms [Szel0]. When the
dimension of 2" is significant, it is common to approximate V7 (x)
by

where @ is an n-by-k matrix whose columns are the basis functions
used to approximate the value-function, » is the number of states,
and w is a vector of dimension k. Typically, the basis functions
are selected by hand, for example, by using polynomials or radial
basis functions. Since choosing the right functions can be difficult,
Mahadevan and Maggioni [MahO7] proposed a framework where
these basis functions are learned from the topology of the state
space. The key idea is to represent the state space by a graph and
use the £ smoothest eigenvectors of the graph laplacian, dubbed
Proto-value functions, as basis functions. Given the graph that
represents the state space, it is very simple to find these basis
functions. As an example, consider an environment consisting of
three 16 x 20 grid-like rooms connected in the middle, as shown
in Fig. 4. Assuming the graph is stored in G, the following code’
computes the eigenvectors of the laplacian:

L = nx.laplacian (G, sorted(G.nodes()))
evalues, evec = np.linalg.eigh(L)

Figure 5 shows® the second to fourth eigenvectors. Since in general
value-functions associated to this environment will exhibit a fast
change rate close to the room’s boundaries, these eigenvectors
provide an efficient approximation basis.

7. We assume that the standard import numpy as np and import
networkx as nx statements were previously executed.

8. The eigenvectors are reshaped from vectors of dimension 3 x 16 x 20 =
960 to a matrix of size 16-by-60. To get meaningful results, it is necessary to
build the laplacian using the nodes in the grid in a row major order. This is
why the nx.laplacian function is called with sorted (G.nodes () ) as
the second parameter.
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Fig. 4: Environment described by three 16 x 20 rooms connected
through the middle row.

Fig. 5: Second to fourth eigenvectors of the laplacian of the three
rooms graph. Note how the eigendecomposition automatically cap-
tures the structure of the environment.

Visualizing the LSA Space

We believe that being able to work in a vector space will allow us
to use a series of RL techniques that otherwise we would not be
available to use. For example, when using Proto-value functions,
it is possible to use the Nystrom approximation to estimate the
value of an eigenvector for out-of-sample states [MahO6]; this is
only possible if states can be represented as points belonging to a
Euclidean space.

How can we embed an entity in Euclidean space? In the
previous section we showed that LSA can effectively compute
the similarity between documents. We can take this concept one
step forward and use LSA not only for computing similarities, but
also for embedding documents in Euclidean space.

To evaluate the soundness of this idea, we perform an ex-
ploratory analysis of the simple Wikipedia LSA space. In order
to be able to visualize the vectors, we use ISOMAP [Ten00] to
reduce the dimension of the LSA vectors from 200 to 3 (we use
the ISOMAP implementation provided by scikit-learn [Ped11]).
We show a typical result in Fig. 6, where each point represents the
LSA embedding of an article in R?, and a line between two points
represents a link between two articles. We can see how the points
close to the "Water" article are, in effect, semantically related
("Fresh water", "Lake", "Snow", etc.). This result confirms that the
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Fig. 6: ISOMAP projection of the LSA space. Each point represents
the LSA vector of a Simple English Wikipedia article projected
onto R3 using ISOMAP. A line is added if there is a link between
the corresponding articles. The figure shows a close-up around the
"Water" article. We can observe that this point is close to points
associated to articles with a similar semantic.

LSA representation is not only useful for computing similarities
between documents, but it is also an effective mechanism for
embedding the information entities into a Euclidean space. This
result encourages us to propose the use of the LSA representation
in the definition of the state.

Once again we emphasize that since Gensim vectors are
NumPY arrays, we can use its output as an input to scikit-learn
without any effort.

Conclusions

We have presented an example where we use different elements of
the scientific Python ecosystem to solve a research problem. Since
we use libraries where NumPy arrays are used as the standard
vector/matrix format, the integration among these components is
transparent. We believe that this work is a good success story that
validates Python as a viable scientific programming language.

Our work shows that in many cases it is advantageous to use
general purposes languages, like Python, for scientific computing.
Although some computational parts of this work might be some-
what simpler to implement in a domain specific language,® the
breadth of tasks that we work with could make it hard to integrate
all of the parts using a domain specific language.
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