PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

23

Python’s Role in Vislt

Cyrus Harrison**, Harinarayan Krishnan®

Abstract—Vislt is an open source, turnkey application for scientific data anal-
ysis and visualization that runs on a wide variety of platforms from desktops to
petascale class supercomputers. Vislt’'s core software infrastructure is written in
C++, however Python plays a vital role in enabling custom workflows. Recent
work has extended Python’s use in Vislt beyond scripting, enabling custom
Python Uls and Python filters for low-level data manipulation. The ultimate
goal of this work is to evolve Python into a true peer to our core C++ plugin
infrastructure. This paper provides an overview of Python’s role in Vislt with a
focus on use cases of scripted rendering, data analysis, and custom application
development.

Index Terms—visualization, hpc, python

Introduction

Vislt [VisIt05], like EnSight [EnSight09] and ParaView
[ParaView(05], is an application designed for post processing of
mesh based scientific data. VisIt’s core infrastructure is written
in C++ and it uses VTK [VTK96] for its underlying mesh data
model. Its distributed-memory parallel architecture is tailored to
process domain decomposed meshes created by simulations on
large-scale HPC clusters.

Early in development, the Vislt team adopted Python as the
foundation of Vislt’s primary scripting interface. The scripting
interface is available from both a standard Python interpreter and
a custom command line client. The interface provides access to
all features available through VisIt’s GUL It also includes support
for macro recording of GUI actions to Python snippets and full
control of windowless batch processing.

While Python has always played an important scripting role
in Vislt, two recent development efforts have greatly expanded
Vislt’s Python capabilities:

1) We now support custom Ul development using Qt via
PySide [PySide]. This allows users to embed Vislt’s
visualization windows into their own Python applications.
This provides a path to extend VislIt’s existing GUI and
for rapid development of streamlined Uls for specific use
cases.

2) We recently enhanced Vislt by embedding Python in-
terpreters into our data flow network pipelines. This
provides fine grained access, allowing users to write
custom algorithms in Python that manipulate mesh data

Corresponding author: cyrush@lInl.gov
Lawrence Livermore National Laboratory
§ Lawrence Berkeley National Laboratory

Copyright© 2012 Cyrus Harrison et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Python
Clients

GUI CLI

Viewer
(State Manager)

State Control
> (Python Client
Interface)

Local Components

¢ Direct Data
a Manipulation
Compute .
= L - (Python Filter
Engine Runtime)

Parallel Cluster

o
Fig. 1: Python integration with Vislt’s components.

via VTK’s Python wrappers and leverage packages such
as NumPy [NumPy] and SciPy [SciPy]. Current support
includes the ability to create derived mesh quantities and
execute data summarization operations.

This paper provides an overview of how Vislt leverages Python
in its software architecture, outlines these two recent Python
feature enhancements, and introduces several examples of use
cases enabled by Python.

Python Integration Overview

Vislt employs a client-server architecture composed of several
interacting software components:

e A viewer process coordinates the state of the system and
provides the visualization windows used to display data.

o A set of client processes, including a Qt-based GUI and
Python-based command line interface (CLI), are used to
setup plots and direct visualization operations.

e A parallel compute engine executes the visualization
pipelines. This component employs a data flow network
design and uses MPI for communication in distributed-
memory parallel environments.

Client and viewer proceses are typically run on a desktop ma-
chine and connect to a parallel compute engine running remotely

mailto:cyrush@llnl.gov

24

on a HPC cluster. For smaller data sets, a local serial or parallel
compute engine is also commonly used.

Figure 1 outlines how Python is integrated into VisIt’s compo-
nents. Vislt both extends and embeds Python. State control of
the viewer is provided by a Python Client Interface, available
as Python/C extension module. This interface is outlined in the
Python Client Interface section, and extensions to support custom
Uls written in Python are described in the Custom Python Uls
section. Direct access to low-level mesh data structures is provided
by a Python Filter Runtime, embedded in Vislt’s compute engine
processes. This runtime is described in the Python Filter Runtime
section.

Python Client Interface

Vislt clients interact with the viewer process to control the state of
visualization windows and data processing pipelines. Internally
the system uses a collection of state objects that rely on a
publish/subscribe design pattern for communication among com-
ponents. These state objects are wrapped by a Python/C extension
module to expose a Python state control API. The function calls
are typically imperative: Add a new plot, Find the maximum value
of a scalar field, etc. The client API is documented extensively in
the Vislt Python Interface Manual [VisItPyRef]. To introduce the
API in this paper we provide a simple example script, Listing
1, that demonstrates VisIt’s five primary visualization building
blocks:

« Databases: File readers and data sources.

« Plots: Data set renderers.

« Operators: Filters implementing data set transformations.

« Expressions: Framework enabling the creation of derived
quantities from existing mesh fields.

o Queries: Data summarization operations.

Listing 1: Trace streamlines along the gradient of a scalar field.

Open an example file

OpenDatabase ("noise.silo")

Create a plot of the scalar field
AddPlot ("Pseudocolor", "hardyglobal™)
Slice the volume to show only three
external faces.

AddOperator ("ThreeSlice™)

"hardyglobal'

tatts = ThreeSliceAttributes/()

tatts.x = -10

tatts.y = -10

tatts.z = -10

SetOperatorOptions (tatts)

DrawPlots ()

Find the maximum value of the field 'hardyglobal'
Query ("Max")

val = GetQueryOutputValue ()

print "Max value of 'hardyglobal' = ", wval

Create a streamline plot that follows

the gradient of 'hardyglobal'
DefineVectorExpression("g", "gradient (hardyglobal)"
AddPlot ("Streamline","g")

satts = StreamlineAttributes ()

satts.sourceType = satts.SpecifiedBox
satts.sampleDensity0 = 7

satts.sampleDensityl = 7

satts.sampleDensity2 = 7

satts.coloringMethod = satts.ColorBySeedPointID
SetPlotOptions (satts)

DrawPlots ()

In this example, the Silo database reader is automatically selected
to read meshes from the input file 'noise.silo’. A Pseudocolor

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

DB: noise.silo
Cycle: 0

Pseudocolor
Var: hardyglobal
units: Joules -

Width/kgarsec}
@ -10
.

Fig. 2: Pseudocolor and Streamline plots setup using the script in
Listing 1.

plot is created to display the scalar field named ’hardyglobal’.
The mesh is transformed by a ThreeSlice operator to limit the
volume displayed by the Pseudocolor plot to three external faces.
We use a query to obtain and print the maximum value of the
’hardyglobal’ field. An expression is defined to extract the gradient
of the "hardyglobal’ scalar field. Finally, this gradient vector is
used as the input field for a second plot, which traces streamlines.
Figure 2 shows the resulting visualization which includes both the
Pseudocolor and Streamline plots.

Accessing the Python Client Interface

For convenience, you can access the client interface from a custom
binary or a standalone Python interpreter.

Vislt provides a command line interface (CLI) binary that
embeds a Python interpreter and automatically imports the client
interface module. There are several ways to access this binary:

e From Vislt’s GUI you can start a CLI instance from the
"Launch CLI" entry in the "Options" menu.

o Invoking Vislt from the command line with the -cli
option starts the CLI and launches a connected viewer
process:

>visit -cli
For batch processing, the —nowin option launches the
viewer in an offscreen mode and you can select a Python
script file to run using the —s option:

. >visit

<script_file.py>

-cli -nowin -s

You can also import the interface into a standalone Python
interpreter and use the module to launch and control a new
instance of Vislt. Listing 2 provides example code for this use
case. The core implementation of the VisIt module is a Python/C
extension module, so normal caveats for binary compatibly with
your Python interpreter apply.

PYTHON’'S ROLE IN VISIT

The features of the Vislt interface are dependent on the version
of Vislt selected, so the import process is broken into two steps.
First, a small front end module is imported. This module allows
you to select the options used to launch Vislt. Examples include:
using -nowin mode for the viewer process, selecting a specific
version of Vislt, —v 2.5.1, etc. After these options are set
the Launch() method creates the appropriate Visit components.
During the launch, the interfaces to the available state objects are
enumerated and dynamically imported into the visit module.

Listing 2: Launch and control Vislt from a standalone Python inter-
preter.

import sys

import os

from os.path import join as pjoin

vpath = "path/to/visit/<ver>/<arch>/"

or for an OSX bundle version

"path/to/VisIt.app/Contents/Resources/<ver>/<arch>"
vpath = pjoin(vpath,"lib","site-packages")
sys.path.insert (0, vpath)

import visit

visit.Launch ()

use the interface

visit.OpenDatabase ("noise.silo")

visit.AddPlot ("Pseudocolor", "hardyglobal™)

Macro Recording

VisIt’s GUI provides a Commands window that allows you to
record GUI actions into short Python snippets. While the client in-
terface supports standard Python introspection methods (dir (),
help (), etc), the Commands window provides a powerful learn-
ing tool for VisIt’s Python API. You can access this window from
the "Commands" entry in the "Options" menu. From this window
you can record your actions into one of several source scratch pads
and convert common actions into macros that can be run using the
Marcos window.

Custom Python Uls

Vislt provides 100+ database readers, 60+ operators, and over 20
different plots. This toolset makes it a robust application well
suited to analyze problem sets from a wide variety of scientific
domains. However, in many cases users would like to utilize
only a specific subset of Vislt’s features and understanding the
intricacies of a large general purpose tool can be a daunting task.
For example, climate scientists require specialized functionality
such as viewing information on Lat/Long grids bundled with
computations of zonal averages. Whereas, scientists in the fusion
energy science community require visualizations of interactions
between magnetic and particle velocity fields within a tokomak
simulation. To make it easier to target specific user communities,
we extended Vislt with ability to create custom Uls in Python.
Since we have an investment in our existing Qt user interface,
we choose PySide, an LGPL Python Qt wrapper, as our primary
Python UI framework. Leveraging our existing Python Client
Interface along with new PySide support allows us to easily and
quickly create custom user interfaces that provide specialized
analysis routines and directly target the core needs of specific user
communities. Using Python allows us to do this in a fraction of
the time it would take to do so using our C++ APIs.

Vislt provides two major components to its Python UI inter-
face:

o The ability to embed Vislt’s render windows.

25

o The ability to reuse Vislt’s existing set of GUI widgets.

The ability to utilize renderers as Qt widgets allows Vislt’s
visualization windows to be embedded in custom PySide GUIs
and other third party applications. Re-using Vislt’s existing generic
widget toolset, which provides functionally such as remote filesys-
tem browsing and a visualization pipeline editor, allows custom
applications to incorporate advanced features with little difficulty.

One important note, a significant number of changes went
into adding Python UI support into Vislt. Traditionally, Vislt
uses a component-based architecture where the Python command
line interface, the graphical user interface, and the viewer exist
as separate applications that communicate over sockets. Adding
Python UI functionality required these three separate components
to work together as single unified application. This required
components that once communicated only over sockets to also
be able to directly interact with each other. Care is needed when
sharing data in this new scenario, we are still refactoring parts of
Vislt to better support embedded use cases.

To introduce Vislt’s Python Ul interface, we start with Listing
3, which provides a simple PySide visualization application that
utilizes Vislt under the hood. We then describe two complex
applications that use Vislt’s Python UI interface with several
embedded renderer windows.

Listing 3: Custom application that animates an Isosurface with a
sweep across Isovalues.

class IsosurfaceWindow (QWidget) :
def _ init_ (self):
super (IsosurfaceWindow, self) .__init__ ()
self.__init_widgets()
Setup our example plot.
OpenDatabase ("noise.silo")
AddPlot ("Pseudocolor", "hardyglobal™)

AddOperator ("Isosurface")
self.update_isovalue (1.0)
DrawPlots ()

def __ _init_widgets (self):

Create Qt layouts and widgets.

vlout = QVBoxLayout (self)
glout = QGridLayout ()
self.title = QLabel ("Iso Contour Sweep Example")

self.title.setFont (QFont ("Arial", 20,
self.sweep = QPushButton ("Sweep")
self.lbound = QLineEdit("1.0"
self.ubound QLineEdit ("99.0"
self.step = QLineEdit ("2.0"
self.current = QLabel ("Current % =")
f = QFont ("Arial",bold=True,italic=True)
self.current.setFont (f)

self.rwindow = pyside_support.GetRenderWindow (1)

Add title and main render
vlout.addWidget (self.title)
vlout.addWidget (self.rwindow, 10)
glout.addWidget (self.current, 1, 3)

Add sweep controls.
glout.addWidget (QLabel ("Lower %"),2,
glout.addWidget (QLabel ("Upper %"), 2,
glout .addWidget (QLabel ("Step %"),2,3
glout.addWidget (self.lbound, 3,1)
(
(
(

winodw.

)
)

- e

glout.addWidget (self.ubound, 3, 2)
glout.addWidget (self.step, 3, 3)
glout .addWidget (self.sweep, 4, 3)
vlout.addLayout (glout, 1)
self.sweep.clicked.connect (self.exe_sweep)
self.resize (600,600)
update_isovalue (self,perc) :

Change the % value used by

the isosurface operator.

iatts = IsosurfaceAttributes ()
iatts.contourMethod = iatts.Percent

def

bold=True))

26

iatts.contourPercent (perc)
SetOperatorOptions (iatts)
txt "Current % =" + "30
self.current.setText (txt)
exe_sweep (self) :

Sweep ¢ value accoording to
the GUI inputs.

def

lbv = float (self.lbound.text())
ubv = float (self.ubound.text ())
stpv = float (self.step.text())

v = lbv

while v < ubv:
self.update_isovalue (v)
vt=stpv

Create and show our custom window.
main IsosurfaceWindow ()
main.show ()

In this example, a Vislt render window is embedded in a QWidget
to provide a Pseudocolor view of an Isosurface of the scalar field
“hardyglobal’. We create a set of Ul controls that allow the user
to select values that control a sweep animation across a range of
Isovalues. The sweep button initiates the animation. To run this
example, the ~-pysideviewer flag is passed to Vislt at startup
to select a unified viewer and CLI process.

> visit -cli -pysideviewer

This example was written to work as standalone script to
illustrate the use of the PySide API for this paper. For most custom
applications, developers are better served by using QtDesigner for
Ul design, in lieu of hand coding the layout of Ul elements. Listing
4 provides a small example showing how to load a QtDesigner Ul
file using PySide.

Listing 4: Loading a custom Ul file created with Qt Designer.

from PySide.QtUiTools import =
example slot
def on_my_button_click():
print "myButton was clicked"

Load a
loader =
uifile

UI file created with QtDesigner
QUiLoader ()

QFile ("custom_widget.ui™)
uifile.open (QFile.ReadOnly)

main loader.load (uifile)

Use a string name to locate

objects from Qt UI file.

button main.findChild (QPushButton,
After loading the UI, we want to
connect Qt slots to Python functions
button.clicked.connect (on_my_button_click)
main.show ()

"myButton")

Advanced Custom Python Ul Examples

To provide more context for VisIt’s Python Ul interface, we now
discuss two applications that leverage this new infrastructure: the
Global Cloud Resolving Model (GCRM) [GCRM] Viewer and
Ultra Visualization - Climate Data Analysis Tools (UV-CDAT)
[UVCDAT],

Vislt users in the climate community involved with the global
cloud resolving model project (GCRM) mainly required a custom
NetCDF reader and a small subset of domain specific plots and
operations. Their goal for climate analysis was to quickly visualize
models generated from simulations, and perform specialized anal-
ysis on these modules. Figure 3 shows two customized skins for
the GCRM community developed in QtDesigner and loaded using

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Active Window ® Viewer 1 @ Viewer 6

3]
Variables
vorticity_19010115_000000.nc:Contour - Elevate(Transform(Transf
temperature_19010113_000000.nc:Pseudocolor - Elevate(Transfor,
land-sea-mask-v2.nc:Contour - Transform(Transform(mask))

controls @

W W . % A %

Add” Operators™ Delete Hide/Show Draw Variables™

" Confours of Voricity Fiekd

Viewer_3

)
e,

(GCRM Controls

 Grid (On/oOff)
& outlines (On/Off)

M setviewExtents

General Options | Lat/Long Slices | 2D/3D Contour | Expré«{»

(
Active.

GCRM Controls | GCRM Plots

Viewer_4

®® Viewer 2

Layer: 0% (Bottom), 100% (Top)

N

Temperature: <-- Low -~ High > <-- North Pole --- South Pole -->

800 Visit 2.5.0b,

File Controls Options Windows Plot Attributes Operator Attributes _Help

Source) Viewerl

(Toag Daa)

land-sea-mask-v2.nc Bl

GCRM Plots. -]

(msk W) (0 W
™ C

Advanced ()

[Lat/Long (Contour)

[Viewer 1 Add Plot

1 T5) ()Auto apply.

B ressocior

Timesiier

) Apply operators t al pots .
L Apply subset selections to all plots. o

GCRM Controls | Advanced

«1 <

Fig. 3: Climate Skins for the Global Cloud Resolving Model Viewer.

TEMP (52, 2400, 3500)

[y
[|

Fig. 4: Example showing integration
CDAT.

of Vislt’s components in UV-

PYTHON’'S ROLE IN VISIT

PySide from Vislt’s Python UI client. The customized skins embed
Vislt rendering windows and reuse several of Vislt’s GUI widgets.
We also wrote several new analysis routines in Python for custom
visualization and analysis tasks targeted for the climate com-
munity. This included providing Lat/Long grids with continental
outlines and computing zonal means. Zonal mean computation
was achieved by computing averages across the latitudes for each
layer of elevation for a given slice in the direction of the longitude.

UV-CDAT is a multi-institutional project geared towards ad-
dressing the visualization needs of climate scientists around the
world. Unlike the GCRM project which was targeted towards
one specific group and file format, for UV-CDAT all of Vislt’s
functionality needs to be exposed and embedded alongside several
other visualization applications. The goal of UV-CDAT is to bring
together all the visualization and analysis routines provided within
several major visualization frameworks inside one application.
This marks one of the first instances where several separate fully-
featured visualization packages, including Vislt, ParaView, DV3D,
and VisTrails all function as part of one unified application. Figure
4 shows an example of using Vislt plots, along with plots from
several other packages, within UV-CDAT. The core UV-CDAT
application utilizes PyQt [PyQt] as its central interface and Python
as the intermediate bridge between the visualization applications.
The infrastructure changes made to Vislt to support custom Python
Uls via PySide also allowed us to easily interface with PyQt.
Apart from creating PyQt wrappers for the project, we also made
significant investments in working out how to effectively share
resources created within Python using NumPy & VTK Python
data objects.

Python Filter Runtime

The Python Client Interface allows users to assemble visualization
pipelines using Vislt’s existing building blocks. While Vislt pro-
vides a wide range of filters, there are of course applications that
require special purpose algorithms or need direct access to low-
level mesh data structures. Vislt’s Database, Operator, and Plot
primitives are extendable via a C++ plugin infrastructure. This
infrastructure allows new instances of these building blocks to be
developed against an installed version of Vislt, without access to
Vislt’s full source tree. Whereas, creating new Expression and
Query primitives in C++ currently requires Vislt’s full source
tree. To provide more flexibility for custom work flows and
special purpose algorithms, we extended our data flow network
pipelines with a Python Filter Runtime. This extension provides
two important benefits:

« Enables runtime prototyping/modification of filters.
o Reduces development time for special purpose/one-off
filters.

To implement this runtime, each MPI process in Vislt’s com-
pute engine embeds a Python interpreter. The interpreter coordi-
nates with the rest of the pipeline using Python/C wrappers for
existing pipeline control data structures. These data structures also
allow requests for pipeline optimizations, for example a request
to generate ghost zones. Vislt’s pipelines use VTK mesh data
structures internally, allowing us to pass VTK objects zero-copy
between C++ and the Python interpreter using Kitware’s existing
VTK Python wrapper module. Python instances of VTK data
arrays can also be wrapped zero-copy into ndarrays, opening up
access to the wide range of algorithms available in NumPy and
SciPy.

27

To create a custom filter, the user writes a Python script that
implements a class that extends a base filter class for the desired
Vislt building block. The base filter classes mirror Vislt’s existing
C++ class hierarchy. The exact execution pattern varies according
the to selected building block, however they loosely adhere to the
following basic data-parallel execution pattern:

« Submit requests for pipeline constraints or optimizations.

« Initialize the filter before parallel execution.

« Process mesh data sets in parallel on all MPI tasks.

« Run a post-execute method for cleanup and/or summariza-
tion.

To support the implementation of distributed-memory algo-
rithms, the Python Filter Runtime provides a simple Python MPI
wrapper module, named mpicom. This module includes support
for collective and point-to-point messages. The interface provided
by mpicom is quite simple, and is not as optimized or extensive as
other Python MPI interface modules, as such mpi4py [Mpi4Py].
We would like to eventually adopt mpi4py for communication,
either directly or as a lower-level interface below the existing
mpicom APL

Vislt’s Expression and Query filters are the first constructs
exposed by the Python Filter Runtime. These primitives were
selected because they are not currently extensible via our C++
plugin infrastructure. Python Expressions and Queries can be
invoked from Vislt’s GUI or the Python Client Interface. To
introduce these filters, this paper will outline a simple Python
Query example and discuss how a Python Expression was used to
research a new OpenCL Expression Framework.

Listing 5: Python Query filter that calculates the average of a cell
centered scalar field.

class CellAverageQuery (SimplePythonQuery) :
def _ init__ (self):

basic initialization
super (CellAverageQuery,self) .__init__ ()
self.name = "Cell Average Query"

self.description =
def pre_execute (self):
called just
self.local_ncells = 0
self.local_sum = 0.0
def execute_chunk (self,ds_in,domain_id) :
called pe

prior to main execution

esh chunk assigned to

the local MPI task.
ncells = ds_in.GetNumberOfCells ()
if ncells ==
return
vname = self.input_var_names[0]
varray = ds_in.GetCellData () .GetArray (vname)

self.local_ncells += ncells
for i in range(ncells):

self.local_sum += varray.GetTuplel (i)
def post_execute (self):
called after all mesh chunks on all

processors have been processed.
tot_ncells = mpicom.sum(self.local_ncells)
tot_sum = mpicom.sum(self.local_sum)
avg = tot_sum / float (tot_ncells)
if mpicom.rank () == 0:
vname = self.input_var_names[0]
msg = "Average value of =
msg = msg % (vname,str (avg))
self.set_result_text (msqg)
self.set_result_value (avg)

n

Tell the Python Filter Runtime which class to use
as the Query filter.
py_filter = CellAverageQuery

"Calculating scalar average."

28

Listing 6: Python Client Interface code to invoke the Cell Average
Python Query on a example data set.

Open an example data set.

OpenDatabase ("multi_rect3d.silo")

Create a plot to query

AddPlot ("Pseudocolor","d")

DrawPlots ()

Execute the Python query

PythonQuery (file="1listing 5 cell average.vpg",
vars=["default"])

Listing 5 provides an example Python Query script, and Listing 6
provides example host code that can be used to invoke the Python
Query from Vislt’s Python Client Interface. In this example, the
pre_execute method initializes a cell counter and a variable to hold
the sum of all scalar values provided by the host MPI task. After
initialization, the execute_chunk method is called for each mesh
chunk assigned to the host MPI task. execute_chunk examines
these meshes via VTK’s Python wrapper interface, obtaining
the number of cells and the values from a cell centered scalar
field. After all chunks have been processed by the execute_chunk
method on all MPI tasks, the post_execute method is called. This
method uses MPI reductions to obtain the aggregate number of
cells and total scalar value sum. It then calculates the average
value and sets an output message and result value on the root MPI
process.

Using a Python Expression to host a new OpenCL Expression
Framework.

The HPC compute landscape is quickly evolving towards ac-
celerators and many-core CPUs. The complexity of porting ex-
isting codes to the new programming models supporting these
architectures is a looming concern. We have an active research
effort exploring OpenCL [OpenCL] for visualization and analysis
applications on GPU clusters.

One nice feature of OpenCL is the that it provides runtime
kernel compilation. This opens up the possibility of assembling
custom kernels that dynamically encapsulate multiple steps of a
visualization pipeline into a single GPU kernel. A subset of our
OpenCL research effort is focused on exploring this concept, with
the goal of creating a framework that uses OpenCL as a backend
for user defined expressions. This research is joint work with
Maysam Moussalem and Paul Navritil at the Texas Advanced
Computing Center, and Ming Jiang at Lawrence Livermore Na-
tional Laboratory.

For productivity reasons we chose Python to prototype this
framework. We dropped this framework into VisIt’s existing data
parallel infrastructure using a Python Expression. This allowed
us to test the viability of our framework on large data sets in
a distributed-memory parallel setting. Rapid development and
testing of this framework leveraged the following Python modules:

e PLY [PLY] was used to parse our expression language
grammar. PLY provides an easy to use Python lex/yacc
implementation that allowed us to implement a front-end
parser and integrate it with the Python modules used to
generate and execute OpenCL kernels.

e PyOpenCL [PyOpenCL] was used to interface with
OpenCL and launch GPU kernels. PyOpenCL provides a
wonderful interface to OpenCL that saved us an untold
amount of time over the OpenCL C-API. PyOpenCL also
uses ndarrays for data transfer between the CPU and GPU,
and this was a great fit because we can easily access our

PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

data arrays as ndarrays using the VTK Python wrapper
module.

We are in the process of conducting performance studies and
writing a paper with the full details of the framework. For this
paper we provide a high-level execution overview and a few
performance highlights:

Execution Overview:

An input expression, defining a new mesh field, is parsed
by a PLY front-end and translated into a data flow network
specification. The data flow network specification is passed to
a Python data flow module that dynamically generates a single
OpenCL kernel for the operation. By dispatching a single kernel
that encapsulates several pipeline steps to the GPU, the framework
mitigates CPU-GPU I/O bottlenecks and boosts performance over
both existing CPU pipelines and a naive dispatch of several small
GPU kernels.

Performance Highlights:

o Demonstrated speed up of up to ~20x vs an equivalent
Vislt CPU expression, including transfer of data arrays to
and from the GPU.

« Demonstrated use in a distributed-memory parallel setting,
processing a 24 billion zone rectilinear mesh using 256
GPUs on 128 nodes of LLNL’s Edge cluster.

Python, PLY, PyOpenCL, and Vislt’s Python Expression capa-
bility allowed us to create and test this framework with a much
faster turn around time than would have been possible using
C/C++ APIs. Also, since the bulk of the processing was executed
on GPUs, we were able to demonstrate impressive speedups.

Conclusion

In this paper we have presented an overview of the various roles
that Python plays in Vislt’s software infrastructure and a few ex-
amples of visualization and analysis use cases enabled by Python
in VisIt. Python has long been an asset to Vislt as the foundation
of Vislt’s scripting language. We have recently extended our
infrastructure to enable custom application development and low-
level mesh processing algorithms in Python.

For future work, we are refactoring Vislt’s component infras-
tructure to better support unified process Python UI clients. We
also hope to provide more example scripts to help developers
bootstrap custom Python applications that embed Vislt. We plan
to extend our Python Filter Runtime to allow users to write
new Databases and Operators in Python. We would also like to
provide new base classes for Python Queries and Expressions that
encapsulate the VTK to ndarray wrapping process, allowing users
to write streamlined scripts using NumPy.

For more detailed info on Vislt and its Python interfaces, we
recommend: the Vislt Website [VisltWeb], the VisIt Users’ Wiki
[VisItWiki], VisIt’s user and developer mailing lists, and the Vislt
Python Client reference manual [VisItPyRef].

Acknowledgments

This work performed under the auspices of the U.S. DOE by
Lawrence Livermore National Laboratory under Contract DE-
AC52-07NA27344. LLNL-CONF-564292.

PYTHON’'S ROLE IN VISIT

REFERENCES

[VisIt05]

[ParaView05]
[EnSight09]
[OpenCL]
[PLY]
[NumPy]
[SciPy]
[PyOpenCL]
[PySide]
[Mpi4Py]

[VTK96]

[VisItPyRef]

[PyQt]
[UVCDAT]
[GCRM]
[VisItWiki]

[VisItWeb]

Childs, H. et al, 2005. A Contract Based System For Large
Data Visualization. VIS ’05: Proceedings of the conference on
Visualization ’05

Abhrens, J. et al, 2005. Visualization in the ParaView Frame-
work. The Visualization Handbook, 162-170

EnSight User Manual. Computational Engineering Interna-
tional, Inc. Dec 2009.

Kronos Group, OpenCL parallel programming framework.
http://www.khronos.org/opencl/

Beazley, D., Python Lex and Yacc.
http://www.dabeaz.com/ply/

Oliphant, T., NumPy Python Module.

http://numpy.scipy.org

Scientific Tools for Python.

http://www.scipy.org.

Klockner, A., Python OpenCL Module.
http://mathema.tician.de/software/pyopencl

PySide Python Bindings for Qt.

http://www.pyside.org/

Dalcin, L., mpi4py: MPI for Python.
http://mpidpy.googlecode.com/

Schroeder, W. et al, 1996. The design and implementation of
an object-oriented toolkit for 3D graphics and visualization. VIS
’96: Proceedings of the 7th conference on Visualization 96
Whitlock, B. et al. VisIt Python Reference Manual.
http://portal.nersc.gov/svn/visit/trunk/releases/2.3.0/
VisItPythonManual.pdf

PyQt Python Bindings for Qt.
http://www.riverbankcomputing.co.uk/software/pyqt/

Ultra Visualization - Climate Data Analysis Tools.
http://uv-cdat.llnl.gov

Global Cloud Resolving Model.
http://kiwi.atmos.colostate.edu/gcrm/

Vislt Users” Wiki.

http://www.visitusers.org/

Vislt Website.

https://wci.llnl.gov/codes/visit/

29

http://www.khronos.org/opencl/
http://www.dabeaz.com/ply/
http://numpy.scipy.org
http://www.scipy.org
http://mathema.tician.de/software/pyopencl
http://www.pyside.org/
http://mpi4py.googlecode.com/
http://portal.nersc.gov/svn/visit/trunk/releases/2.3.0/VisItPythonManual.pdf
http://portal.nersc.gov/svn/visit/trunk/releases/2.3.0/VisItPythonManual.pdf
http://www.riverbankcomputing.co.uk/software/pyqt/
http://uv-cdat.llnl.gov
http://kiwi.atmos.colostate.edu/gcrm/
http://www.visitusers.org/
https://wci.llnl.gov/codes/visit/

	Introduction
	Python Integration Overview
	Python Client Interface
	Listing 1: Trace streamlines along the gradient of a scalar field.
	Accessing the Python Client Interface
	Listing 2: Launch and control VisIt from a standalone Python interpreter.
	Macro Recording

	Custom Python UIs
	Listing 3: Custom application that animates an Isosurface with a sweep across Isovalues.
	Listing 4: Loading a custom UI file created with Qt Designer.
	Advanced Custom Python UI Examples

	Python Filter Runtime
	Listing 5: Python Query filter that calculates the average of a cell centered scalar field.
	Listing 6: Python Client Interface code to invoke the Cell Average Python Query on a example data set.
	Using a Python Expression to host a new OpenCL Expression Framework.

	Conclusion
	Acknowledgments
	References

