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The Reference Model for Disease Progression
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Abstract—The Reference Model for disease progression is based on a model-
ing framework written in Python. It is a prototype that demonstrates the use of
computing power to aid in chronic disease forecast. The model uses references
to publicly available data as a source of information, hence the name for the
model. The Reference Model also holds this name since it is designed to be
used by other models as a reference. The model uses parallel processing
and computing power to create a competition among hypothesis of disease
progression. The system runs on a multi core machine and is scalable to a
SLURM cluster.

Index Terms—Disease Models, High Performance Computing, Simulation

Introduction

Disease modeling is a field where disease progression and its
impact are studied. The field combines clinical knowledge, bio
statistics, health economics, and computer science to create mod-
els. Such models are potential candidates for disease forecast
tasks.

Within chronic disease models, most models target high risk
diseases such as Coronary Heart Disease (CHD) and Stroke, espe-
cially with diabetes [McE10] , [Wil98], [Ste01], [Kot02], [Cla04],
[Ste04], [Hip08], [Zet11], [CDC02], [EBMI], [Mich], [Bar10],
[Edd03], [Par09]. Yet there are other models such as cancer
models [Urb97], models to asses antidepressant cost-effectiveness
[Ram12], infectious disease models [Gin09], and more complex
models for policy makers [Che11].

Although models differ from each other in structure and
implementation, most models can be defined as a function that
maps initial population to clinical outcomes after a certain number
of years. Once clinical outcomes are established, it is possible to
derive quality of life and costs [Cof02], [Bra03]. Hence chronic
disease models can predict economic impact or calculate cost
effectiveness and therefore be valuable tools for decision makers.

Never the less, past behavior does not ensure future behavior,
especially under different circumstances. Therefore the function
the model represents is hard to calculate. Not only it depends
on many factors such as biomarkers, health state, and treatment,
it may also change with time and with unknowns. Moreover,
models that work well on one population may work poorly on
another population. Therefore it is recommended to validate a
model against many populations [Her03]. It is interesting to see
how different models behave on the same population. The latter
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Fig. 1: The Reference Model structure.

procedure is accomplished at the Mount Hood conference where
diabetes models are compared [MH4]. Mount Hood 6 held in 2012
and included 8 models from around the world. The Reference
Model [Bar12] was a new model based on Python that joined the
challenge and it is the main topic of this paper.

The Reference Model

The prototype version of the model consists of three main
processes: CHD, Stroke, and Competing Mortality. The model
structure is shown in figure 1.

The Reference Model is composed from references to publicly
available literature. This is one reason for the name. Another
reason is since the model is designed to act as a reference for
model developers to test new populations or equations.

Equations are typically extracted from clinical trials and repre-
sent phenomena encountered in the trial populations. One equation
may perform differently on other populations where another equa-
tion may have better performance. Moreover, different equations
rely on different parameters as shown in Figure 2.

The Reference Model is a platform where different equations
can be tested on different populations to deduce fitness. Moreover,
the system combines equations from different sources and tests
the fitness of these equation combinations. Such a combination of
equations can include hypothesis, so the user can test "what if"
scenarios in case of uncertainty.

An example of uncertainty is biomarker progression during
the study. When a study is published it typically contains the
initial population statistics in it, see table 1 in [Cla10], [ACC10],
[Kno06]. These statistics are sufficient to recreate a population
without need to access private and restricted data. Yet this in-
formation does not always include information on biomarker
progression, so the modeler can create several hypothesis to see
which fits best with the equations and population information.

This approach of using secondary published data expands the
reach of the model. Instead of building a model on top of informa-
tion extracted from a single population such as UKPDS [UKP98],
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Fig. 2: Different risk equations found in the literature and parameters
they use. When an equation uses a specific parameter, it is highlighted.
Smoking status is highlighted to demonstrate the fact that the 6 first
equations test for smoking. The Reference Model uses these risk
equations.

the system uses models from multiple sources and compares
them to multiple populations to find fitness between the sources
of information. This enhances modeling capabilities significantly
beyond a single data set and allows access to more populations
overall. This is done while avoiding access to restricted individual
data.

The Reference Model accomplishes these tasks by using com-
puting power and a Python based disease modeling framework
[Bar10], [Bar], [Mich]. There are several main aspects of the
software that are important enablers of this work:

1) Simulation language
2) Population generator
3) Simulation engine
4) Simulation launcher

These components rely on the power of the Python language
and will be discussed in the following sections.

Simulation language

The Python language exposes itself to the degree that it can be
reused. The modeling framework takes advantage of this to create
a language that is a based on Python.

The modeling framework allows the user to define variables
and assemble expressions with a simple syntax. The syntax con-
sists of numerical operations and a limited set of system functions.
Users can also define their own functions.

Once an expression is entered to the system it is parsed to
check if it will compile well. Expression validness is established
by: 1) Check if tokens used are valid operators, system variables,
or reserved words and are not recursively cyclically used, 2) Check
if syntax is correct by parsing and evaluation.

The system uses the parser library to figure out grammar in
conjunction with the tokenize library to handle variable names.
The re library is used to figure out regular expression patterns
within the expression. The eval command is used by the system
as a validation tool by using an evaluation dictionary that consists
only of __builltins__, NaN, Inf to handle expressions
that support non finite values.

Errors reported during these checks are considered compilation
errors that the user receives as feedback. Since the Python inter-
preter provides good and meaningful error messages, the system

wraps Python error messages and returns these to the user, while
adding its own language specific error messages.

After passing validity checks the expression is stored in the
system database. This expression will be later reused once the
system compiles files for runtime Python script.

For example, consider the following definition of a user
defined function:

CappedGaussian3 is defined as:
Max(-3,Min(3,Gaussian(0,1)))

Once entered into the system the expression undergoes the follow-
ing stages:

1) The tokens Max, Min, and Gaussian are recognized as
system functions and therefore valid.

2) The parser library successfully parses the expression,
meaning there is no parenthesis mismatch or other syntax
error.

3) The expression is evaluated to make sure evaluation is
possible.

4) The expression is stored and whenever
CappedGaussian3 is used in the future, it will
be replaced with that expression.

Here is an example of another expression that reuses the user
defined function:
50+10*CappedGaussian3

This expression undergoes similar validity checks, yet
CappedGaussian3 is now recognized as a valid token rep-
resenting a function. Also, it is verified that there is no recursive
cyclic reuse of this token.

When this expression is compiled by the system into a Python
script that will run, the expression will become Python code
where the system will first calculate CappedGaussian3 and
then substitute the result in the expression that uses this token.
The system will also recognize Min, Max, and Gaussian as
system functions with Python implementation and will call those
functions.

The runtime language is Python that implements the modeling
language that is derived from Python. Keeping the languages close
allowed shortening development time considerably.

The compiled files are executed by the population generator
and by the simulation engine that will be discussed in the follow-
ing sections.

Population Generator

Constructing a population from published data is a key element.
The Reference Model cross validates against as many populations
as possible. Since populations typically hold restricted healthcare
data, full information on many populations is not available. Yet
summary statistics are available through the publication. The
modeling framework is designed to allow reconstruction of a
population from these statistics.

Typically a clinical trial will describe the initial population by
a table showing distributions. Table 1 will be used as a simplified
example:

To implement this simplified example, the system will use
the internal language previously discussed. Table 2 describes the
implementation.

Age is assumed to be distributed with normal distribution. The
user defined function we introduced previously is used to avoid
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Biomarker Distribution
Age Mean 65, SD 7
Male 48%
Smoke 30% for Age<50, 15% for Age>=50

TABLE 1: Simple example of population distributions.

Biomarker Implementation
Age 65+7*CappedGaussian3

Male Bernoulli(0.48)

Smoke Bernoulli(0.15+0.15*Ls(Age,50))

TABLE 2: Implementation of the distributions in table 1.

extreme outliers. Gender and Smoke use the Bernoulli distribution.
However, Smoke has a dependency on the Age parameter. The
system supports such dependencies in population creation by
allowing the user to reference other parameters in the population
and include these in expressions. The system raises an error in case
of recursive cyclic references. This is important if the population
is defined out of order, e.g. the Smoke formula uses Age before the
Age distribution is defined. Actually, the system resolves the order
by which calculations are performed when a population generation
script is compiled.

The compiled Python script has the expressions in correct
order and repeats the generation for each individual in the popula-
tion. The output of running this script is a list of individuals, each
with characteristics drawn from the given distributions. This mock
population represents the starting conditions for the simulation
engine to apply the model to.

Simulation Engine

The simulation engine has been described previously in [Bar10]
and in the system documentation [Bar], [Mich]. Therefore this
paper will only briefly relate to python related issues and many
aspects are simplified.

The simulation engine applies a function to a vector for each
simulation step for each individual. The function is complex and
composed of rules, and state transitions happening in parallel
in random order. The vector the function is applied to consists
of biomarkers, states indicators, treatment parameters, costs and
quality of life parameters. After each simulation step some values
in the vector change and this updated vector will become the
input for the same function in the next simulation step and so on.
This continues until the individual dies or a predefined number of
simulation steps is reached.

The modeling framework uses two mechanisms to compile
the simulation files. 1) rule expansion to code, 2) state processing
queue.

Rules are simple conditional assignments of the type
if Conditional and InState:

AffectedParameter = Expression

Both the Conditional and the Expression are general ex-
pressions using the simulation language. Each of these expressions
may contain user defined functions. The system compiles the
code so that value bound checks can be incorporated into every
calculated expression to maintain a strict simulation. Even though
calculations are expanded, the compiled code is still readable and

can be debugged since the compiled code uses the user defined
names instead of AffectedParameter as variable names.

State transitions are handled by a queue that processes events
of transition between states. The queue is loaded in random
order and changes within simulation. Random order of events is
important to allow scenarios where event 1 can happen before
event 2, or event 2 happens before event 1 at the same simulation
step. The Python implementation of the queue is such that the
queue consists of functions that define transitions to check. These
functions are automatically generated as Python code from the
model structure as defined by the user. The Python script pops
the next transition from the queue and calls it’s state transition
function. Each state transition function can change the queue or
state indicator values. If this results in more events, those are added
to the queue. For specific details, please consult the developer
guide that arrives with the software [Bar], [Mich].

Note that, state indicator names and variable names are read-
able to simplify debugging and controlled simulation reconstruc-
tion.

Actually the implementation initializes the vector upon which
the function is applied as a Python sequence of variables with
names such as:
[Age, Gender, Smoke, ...] =

_PopulationSetInfo.Data[IndividualID-1]

Where IndividualID is the loop counter and _Population
holds the population data created by the population generator after
merging it with the model.

Actually, the population sequence is pickled and embedded
within the code as well as all other data structures that created the
simulation file. This is done to allow reconstructing the simulation
conditions from the simulation file. This is also important for
clerical back tracing purposes and for debugging.

Another such back tracing feature is saving the random state to
file at the beginning of simulation. This is on top of allowing the
user to select a random seed. This method facilitates recreation of
a simulation even in the case of a random seed set by the system
timer rather than set by the user.

The simulation engine supports simulation control through
overrides. These overrides are essential to support multiple sce-
narios to run in parallel through the simulation launcher.

Simulation Launcher

Simulations can be launched through the WxPython [WxP] based
GUI. This is appropriate for testing and model development
purposes. Yet this is not sufficient for running many scenarios
or many repetitions to reduce the Monte Carlo error. Moreover,
running the same simulation with variations on populations or
equations cannot be accomplished in an automated way through
the GUI. Therefore the modeling framework offers an external
launcher for simulations that arrives with it as a Python script.

The script SlurmRun.py allows running multiple simula-
tions in a programmatic manner. The script controls the launch of
the simulations and also responsible for collecting the results and
creating csv reports and plots through matplotlib.

The SlurmRun.py script arrives as an example that runs a
self test scenario on a SLURM cluster [SLU]. It is setup to send
summary results by email to the developer once the simulation
ends.

The script holds placeholders for modifications so that it
can be adapted to new simulations. The basic idea behind the
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launch script is that the user provides the file name that holds the
simulation data definitions pickled an zipped. This file includes
the default simulation instructions. The system then sends this file
for actual simulation using sbatch SLURM commands. These
defaults are then overridden according to user instructions.

User instructions include definitions of variations around the
default simulation. Each such variation is described by a tuple
consisting of an override value and a unique variation name
string. The override value can be considered as an override for
a parameter the simulation function relies on. These overrides are
passed to the simulation engine in the command line as a vector.
Each component in this vector represents a different override and
taken from the value part of the tuple. Exchanging the override
value with the unique variation name string creates a unique
key sentence that can later be used to describe each simulation
variation.

The number of simulation variations is combinatorial depend-
ing on amount of options for each override in the vector. Many
combinations of variations may not be meaningful or desirable.
So the system contains 3 variables to restrict the number of
simulation variations: 1) Inclusions, 2) Exclusions, 3)
MaxDimensionsAllowedForVariations.

Inclusions is a sequence of tuples. Each tuple is composed
of a set of variation sub strings. If Inclusions in not empty
the system will include only variations that their variation key
sentence includes all the strings in any tuple.

Exclusions is also a sequence of tuples of strings. Yet the
system excludes any variation that includes all sub strings in a
tuple.

MaxDimensionsAllowedForVariations is the maxi-
mal Hamming distance from default allowed for simulation vari-
ations. In other words, it is an integer that holds the maximal
number of override vector components allowed to change from
the default.

These override mechanisms allow controlling the large number
of combinations generated. The following example demonstrates
the large number of variations.

The Reference Model calibration for the Mount Hood 6 Chal-
lenge used 16 populations and 48 equation/hypothesis variations.
Each such simulation was repeated 20 times to reduce Monte
Carlo error. This resulted in 15360 simulations that the system
launched. The launcher was modified to run these simulations
on a single 8 core desktop machine with Ubuntu using batch
command rather than using the SLURM sbatch command.
These computations took 4.5 days on this machine.

In the future more computing power will be needed to process
information since more populations and equation variations will
exist.

Conclusions

Previous work was focused on merging information that is avail-
able in the literature using statistical methods [Isa06], [Isa10],
[Ye12]. The Reference Model continues in the same spirit while
relying on the availability of computing power.

The Reference Model for disease progression relies on a
Python based framework that provides the computational support
needed for comparing a myriad of scenarios.

The state of the art in the field of chronic disease models
is such that different groups offer different models. Each such
model is built from equations that depend on different parameters.
Therefore equation performance differs on different populations.

So far only a few groups have addressed the issues of compar-
ing equation performance over populations [Sim09], [Par09]. Val-
idation of the same model with multiple populations is more com-
mon [Edd03]. Comparisons of multiple Models against multiple
populations traditionally happens at the Mount Hood conference
[MH4]. Yet this comparison involves manual labor from multiple
groups and much of the modeling remains closed. The Reference
Model on the other hand performs this comparison automatically
under controlled conditions. The Reference Model depends on
availability of published information. It relies on existing equa-
tions and human guidance. Even with the automation it offers,
modelers will still need to work on extracting new equations. Yet
it’s availability provides advantages such as: 1) a testing facility
for new equations/hypothesis. 2) similarity identifier in data sets
through fitness. 3) common framework for modeling information
that can be reused in other ways.

From an implementation point of view, relying on paralleliza-
tion and on the regular increase in computing speed [Moo65]
may be enhanced by using compiled languages. Such needs have
been identified in the disease modeling field [McE10] and by the
Python community [Sel09], [Fri09]. So future implementations
may include a python front end, while simulations will run in a
compiled language to improve speed. Never the less, the use of
the Python languange was a good selection for this project since
it allowed rapid progress and many suitable tools.

Software Availability

The latest version of the GPL modeling framework is available for
download from the author’s personal website at: [Bar]. Previous
versions are available at [Mich].

The Reference Model is not released at the time this paper is
written.
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