
56 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

QuTiP: A framework for the dynamics of open
quantum systems using SciPy and Cython

Robert J. Johansson‡∗, Paul D. Nation‡

F

Abstract—We present QuTiP (http://www.qutip.org), an object-oriented, open-
source framework for solving the dynamics of open quantum systems. Written
in Python, and using a combination of Cython, NumPy, SciPy, and matplotlib,
QuTiP provides an environment for computational quantum mechanics that
is both easy and efficient to use. Arbitrary quantum systems, including time-
dependent systems, may be built up from operators and states defined by a
quantum object class, and then passed on to a choice of unitary or dissipative
evolution solvers. Here we give an overview of the basic structure for the
framework, and the techniques used in its implementation. We also present
a few selected examples from current research on quantum mechanics that
illustrate the strengths of the framework, as well as the types of calculations
that can be performed. This framework is particularly well suited to the fields of
quantum optics, superconducting circuit devices, nanomechanics, and trapped
ions, while also being ideal as an educational tool.

Index Terms—quantum mechanics, master equation, monte-carlo

Introduction

One of the main goals of contemporary physics is to control the
dynamics of individual quantum systems. Starting with trapped-
ion experiments in the 1970s [Hor97], the ability to manipulate
single realizations, as opposed to ensembles, of quantum systems
allows for fundamental tests of quantum mechanics [Har06] and
quantum computation [Lad10]. Traditionally, the realm of quan-
tum mechanics has been confined to systems with atomic and
molecular characteristic length scales with system properties fixed
by nature. However, during the last two decades, advances in
experimental and manufacturing techniques have opened up the
possibility of producing man-made micro and nanometer scale
devices with controllable parameters that are governed by the
laws of quantum mechanics. These engineered systems can now
be realized with a wide range of different technologies such
as quantum optics [Obr09], superconducting circuits [You11],
semiconducting quantum dots [Han08], nanomechanical devices
[Oco10], and ion traps [Bla12], and have received considerable
experimental and theoretical attention.

With the increasing interest in engineered quantum devices,
the demand for efficient numerical simulations of open quantum
dynamics has never been greater. By definition, an open quantum
system is coupled to an environment, also called a reservoir or

* Corresponding author: robert@riken.jp
‡ Advanced Science Institute, RIKEN, Wako-shi, 351-0198 Japan

Copyright © 2012 Robert J. Johansson et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

6/14/12 3:35 PMQuTiP Organization

Page 1 of 1file:///Volumes/dml.riken.jp/public_html/qutip_org.html

Q
uT
iP

ab
ou
t

ab
ou
t

Bl
oc
h

Bl
oc
h

bl
oc
h-
re
df
ie
ld

br
m
es
ol
ve

blo
ch
_r
ed
fie
ld_
te
ns
or

cle
bs
ch

cle
bs
ch

co
rre
lat
ion

co
rre
lat
ion

sp
ec
tru
m_
ss

de
mo
s

de
mo
s

ent
rop
y

co
nc
urr
en
ce

en
tro
py
_c
on
dit
ion
al

en
tro
py_
line
ar

ent
rop
y_m

utu
al

ent
rop
y_v
n

con
cur
ren
ce

ese
ries

ese
ries

esso
lve

esso
lve

ode2
es

expect

expect

fileio

file_data_r
ead

file_data_store
qload
qsave

floquet fmmesolve
gates cnotfredkinphasegatesnotswaptoffoli

graph

hinton

istests

isbraischeck
isequal

isherm
isketisoper

issuper

mcsolve

mcsolve

mesolve

mesolve

odesolve

m
etrics

fidelity
tracedist

O
dedata

O
dedata

O
deoptions

O
deoptions

op
er
at
or
s

create

de
st
ro
y

di
sp
la
ce

jm
at

jp
lu
sjz

nu
m

qe
ye

qu
tri
t_
op
s

sig
m
am

sig
m
ap

sig
m
ax

sig
ma
y

sig
ma
z

sq
ue
ez

orb
ita
l

orb
ita
l

pa
rfo
r

pa
rfo
r

pro
pag

ato
r

pro
pag

ato
r

pro
pag

ato
r_s
tea
dys
tate

Qob
j

dagdim
sptra

ceQobj
shap

e

qstate

qstate

rand

rand_dm
rand_herm
rand_ket

rand_unitary
rhs_generate

rhs_generate
simdiag

simdiag sparse

sp_eigs sphereplot

sphereplot states

basis

coherent

coherent_dm
fock

fock_dm

ket2dm

projection

qutrit_basis

thermal_dm

steady

steady

steadystate

superoperator

liouvillian
spost
spre

tensor

tensor

three_level_atom

three_level_basis
three_level_ops

wigner
wigner
qfunc

Fig. 1: The organization of user available functions in the QuTiP
framework. The inner circle represents submodules, while the outer
circle gives the public functions and classes contained in each
submodule.

bath, where the complexity of the environmental dynamics renders
the combined evolution of system plus reservoir analytically
intractable and must therefore be simulated numerically. With a
quantum computer out of reach for the foreseeable future, these
simulations must be performed using classical computing tech-
niques, where the exponentially increasing dimensionality of the
underlying Hilbert space severely limits the size of system that can
be efficiently simulated [Fey82]. Fortunately, recent experimental
advances have lead to quantum systems fabricated from a small
number of oscillator and spin components, containing only a few
quanta, that lend themselves to simulation in a truncated state
space.

Here we introduce QuTiP [Joh12], a framework designed for
simulating open quantum systems using SciPy and Cython. Al-
though other software solutions exist [Sch97], [Vuk07], [Tan99],
QuTiP goes beyond these earlier tools by providing a completely
open-source solution with an easy to read syntax and extended

http://www.qutip.org
mailto:robert@riken.jp

QUTIP: A FRAMEWORK FOR THE DYNAMICS OF OPEN QUANTUM SYSTEMS USING SCIPY AND CYTHON 57

functionality, such as built-in multiprocessing. Our objective with
QuTiP is to provide a thoroughly tested and well documented
generic framework that can be used for a diverse set of quantum
mechanical problems, that encourages openness, verifiability, and
reproducibility of published results in the computational quantum
mechanics community.

Numerical quantum mechanics

In quantum mechanics, the state of a system is represented by
the wavefunction Ψ, a probability amplitude that describes, for
example, the position and momentum of a particle. The wavefunc-
tion is in general a function of space and time, and its evolution
is ideally governed by the Schrödinger equation, −i∂tΨ = ĤΨ,
where Ĥ is the Hamiltonian that describes the energies of the
possible states of the system (total energy function). In general,
the Schrödinger equation is a linear partial differential equation.
For computational purposes, however, it is useful to expand the
wavefunction, Hamiltonian, and thus the equation of motion, in
terms of basis functions that span the state space (Hilbert space),
and thereby obtain a matrix and vector representation of the
system. Such a representation is not always feasible, but for many
physically relevant systems it can be an effective approach when
used together with a suitable truncation of the basis states that
often are infinite. In particular, systems that lend themselves to
this approach includes resonator modes and systems that are well
characterized by a few quantum states (e.g., the two quantum
levels of an electron spin). These components also represent the
fundamental building blocks of engineered quantum devices.

In the matrix representation the Schrödinger equation can be
written as

− i
d
dt
|ψ〉= H(t) |ψ〉 , (1)

where |ψ〉 is a state vector and H is the Hamiltonian matrix.
Note that the introduction of complex values in (1) is a fun-
damental property of evolution in quantum mechanics. In this
representation, the equations of motion are a system of ordinary
differential equations (ODEs) in matrix form with, in general,
time-dependent coefficients. Therefore, to simulate the dynamics
of a quantum system we need to obtain the matrix representation
of the Hamiltonian and the initial state vector in the chosen
basis. Once this is achieved, we have a numerically tractable
problem, that involves solving systems of coupled ODEs defined
by complex-valued matrices and state vectors.

The main challenge in numerical simulation of quantum sys-
tems is that the required number basis states, and thus the size of
the matrices and vectors involved in the numerical calculations,
quickly become excessively large as the size of the system un-
der consideration is increased. In a composite system, the state
space increases exponentially with the number of components.
Therefore, in practice only relatively small quantum systems can
be simulated on classical computers with reasonable efficiency.
Fortunately, in essentially all experimentally realizable systems,
the local nature of the physical interactions gives rise to system
Hamiltonians containing only a few nonzero elements that are
thus highly sparse. This sparsity plays a fundamental role in the
efficiency of simulations on quantum computers as well [Aha03].
The exact number of states that can be managed depends on
the detailed nature of the problem at hand, but the upper limit
is typically on the order of a few thousand quantum states.
Many experimentally relevant systems fall within this limit, and

numerical simulations of quantum systems on classical computers
is therefore an important subject.

Although the state of an ideal quantum systems is completely
defined by the wavefunction, or the corresponding state vector,
for realistic systems we also need to describe situations where the
true quantum state of a system is not fully known. In such cases,
the state is represented as a statistical mixture of state vectors
|ψn〉, that can conveniently be expressed as a state (density) matrix
ρ = ∑n pn |ψn〉〈ψn|, where pn is the classical probability that the
system is in the state |ψn〉. The need for density matrices, instead
of wavefunctions, arises in particular when modeling open quan-
tum system, where the system’s interaction with its surrounding
is included. In contrast to the Schrödinger equation for closed
quantum systems, the equation of motion for open systems is not
unique, and there exists a large number of different equations
of motion (e.g., Master equations) that are suitable for different
situations and conditions. In QuTiP, we have implemented many
of the most common equations of motion for open quantum
systems, and provide a framework that can be extended easily
when necessary.

The QuTiP framework

As a complete framework for computational quantum mechanics,
QuTiP facilitates automated matrix representations of states and
operators (i.e. to construct Hamiltonians), state evolution for
closed and open quantum systems, and a large library of common
utility functions and operations. For example, some of the core
functions that QuTiP provides are: tensor for constructing
composite states and operators from its fundamental components,
ptrace for decomposing states into their components, expect
for calculating expectation values of measurement outcomes for
an operator and a given state, an extensive collection of functions
for generating frequently used states and operators, as well as
additional functions for entanglement measures, entropy measures,
correlations and much more. A visual map of the user-accessible
functions in QuTiP is shown in Fig. 1. For a complete list of
functions and their usage, see the QuTiP user guide [Nat12].

The framework is designed so that its syntax and procedures
mirror, as closely as possible, the standard mathematical formu-
lation of a quantum mechanical problem. This is achieved thanks
to the Python language syntax, and an object-oriented design that
is centered around the class Qobj, used for representing quantum
objects such as states and operators.

In order to simulate the quantum evolution of an arbitrary
system, we need an object that not only incorporates both states
and operators, but that also keeps track of important properties
for these objects, such as the composite structure (if any) and
the Hermicity. This later property is especially important as all
physical observables are Hermitian, and this dictates when real
values should be returned by functions corresponding to mea-
surable quantities. In QuTiP, the complete information for any
quantum object is included in the Qobj class. This class is the
fundamental data structure in QuTiP. As shown in Fig. 2, the
Qobj object can be thought of as a container for the necessary
properties need to completely characterize a given quantum object,
along with a collection of methods that act on this operator alone.

A typical simulation in QuTiP takes the following steps:

• Specify system parameters and construct Hamiltonian,
initial state, and any dissipative quantum (Qobj) objects.

58 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

Data

Type

Hermitian?

Dimensions

Shape

self.dims

If other is Qobj:Manipulatin
Addition

Subtraction
Multiplication

Division
Dagger

Diagonal
Exponentiation

Full
Norm
Sqrt
Trace
Unit

Fig. 2: Qobj class used for defining quantum objects. The class
properties include the sparse matrix representation of the object
(data), the type of object represented, a nested list describing the
composite structure (dimensions), whether the object is Hermitian,
and the shape of the underlying data matrix. Also included is a lengthy
set of operations acting on the Qobj, a list of which can be found at
[Nat12].

• Calculate the evolution of the state vector, or density
matrix, using the system Hamiltonian in the appropriate
solver.

• Post-process output Qobj and/or arrays of return values,
including visualization.

Given the generality of this process, we highlight each of these
steps below by demonstrating the setup and simulation of select
real-world examples.

Constructing Hamiltonians and states

The first step in any QuTiP simulation is the creation of the
Hamiltonian that describes the system of interest, initial state, and
any possible operators that characterize the interaction between
the system and its environment. Although it is possible to directly
input a system Hamiltonian into a Qobj class object, QuTiP
includes a number of predefined operators for oscillator and spin
systems out of which a large collection of Hamiltonians can
be composed. The simplest, and most common, example is the
so-called Jaynes-Cummings model for a two-level atom (qubit)
interacting with a single harmonic oscillator [Jay63]

Ĥ = h̄ωcâ†â+ h̄ωqσ̂z/2+ h̄g/2
(
âσ̂++ â†

σ̂−
)

(2)

where the first term in (2) describes the oscillator in terms of cre-
ation operators, the second gives the bare qubit Hamiltonian, and
the final term characterizes the interaction between oscillator and
qubit. Here, ωc is the oscillator frequency, ωq is the qubit energy
splitting frequency, and g gives the strength of the oscillator-qubit
coupling. Typically one is interested in the exchange of a single
excitation between the qubit and oscillator. Although the oscillator
has an infinite number of states, in this case, we can truncate the
Hilbert space. For the initial state with the excitation in the qubit,
this state may be written in QuTiP as (we omit the from qutip
import * statement):
N = 4 # number of oscillator levels to consider
psi_osc = basis(N)
psi_qubit = basis(2,1)
psi_sys = tensor(psi_osc,psi_qubit)

where basis(N,m) creates a basis function of size N with a
single excitation in the m level, and the tensor function creates
the composite initial state from the individual state vectors for

the oscillator and qubit subsystems. The total Hamiltonian (2) can
be created in a similar manner using built-in operators and user
defined system parameters:
wc = wq = 1.0
g = 0.1
a = tensor(destroy(N),qeye(2))
sz = tensor(qeye(N),sigmaz())
sp = tensor(qeye(N),sigmap())
sm = tensor(qeye(N),sigmam())
H = wc*a.dag()*a + wq/2.*sz + g/2.*(a*sp+a.dag()*sm)

This final Hamiltonian is a Qobj class object representing the
Jaynes-Cummings model and is created with a syntax that closely
resembles the mathematical formulation given in Eq. (2). Using
the print function, we can list all of the properties of H (omitting
the underlying data matrix):
Quantum object: dims = [[4, 2], [4, 2]],
shape = [8, 8], type = oper, isHerm = True

showing the composite (4× 2) structure, the type of object, and
verifying that indeed the Hamiltonian is Hermitian as required.
Having created collapse operators, if any, we are now in a position
to pass the Hamiltonian and initial state into the QuTiP evolution
solvers.

Time-evolution of quantum systems

The time-evolution of an initial state of a closed quantum system
is completely determined by its Hamiltonian. The evolution of
an open quantum system, however, additionally depends on the
environment surrounding the system. In general, the influence of
such an environment cannot be accounted for in detail, and one
need to resort to approximations to arrive at a useful equation
of motion. Various approaches to this procedure exist, which
results in different equations of motion, each suitable for certain
situations. However, most equations of motion for open quan-
tum systems can be characterized with the concept of collapse
operators, which describe the effect of the environment on the
system and the rate of those processes. A complete discussion of
dissipative quantum systems, which is outside the scope of this
paper, can be found in [Joh12] and references therein.

QuTiP provides implementations of the most common equa-
tions of motion for open quantum systems, including the Lindblad
master equation (mesolve), the Monte-Carlo quantum trajectory
method (mcsolve), and certain forms of the Bloch-Redfield
(brmesolve) and Floquet-Markov (fmmesolve) master equa-
tions. In QuTiP, the basic type signature and the return value
are the same for all evolution solvers. The solvers take following
parameters: a Hamiltonian H, an initial state psi_sys, a list of
times tlist, an optional list of collapse operators c_ops and an
optional list of operators for which to evaluate expectation values.
For example,
c_ops = [sqrt(0.05) * a]
expt_ops = [sz, a.dag() * a]
tlist = linspace(0, 10, 100)
out = mesolve(H, psi_sys, tlist, c_ops, expt_ops)

Each solver returns (out) an instance of the class Odedata that
contains all of the information about the solution to the problem,
including the requested expectation values, in out.expect. The
evolution of a closed quantum system can also be computed using
the mesolve or mcsolve solvers, by passing an empty list
in place of the collapse operators in the fourth argument. On
top of this shared interface, each solver has a set of optional
function parameters and class members in Odedata, allowing

QUTIP: A FRAMEWORK FOR THE DYNAMICS OF OPEN QUANTUM SYSTEMS USING SCIPY AND CYTHON 59

for modification of the underlying ODE solver parameters when
necessary.

Visualization

In addition to providing a computational framework, QuTiP also
implements of a number of visualization methods often employed
in quantum mechanics. It is of particular interest to visualize the
state of a quantum system. Quantum states are often complex
superpositions of various basis states, and there is an important
distinction between pure quantum coherent superpositions and
statistical mixtures of quantum states. Furthermore, the set of all
quantum states also includes the classical states, and it is therefore
of great interest to visualize states in ways that emphasize the
differences between classical and quantum states. Such properties
are not usually apparent by inspecting the numerical values of
the state vector or density matrix, thus making quantum state
visualization techniques an important tool.

Bloch sphere

A quantum two-level system (qubit), can not only occupy the two
classical basis states, e.g., "0" and "1", but an arbitrary complex-
valued superposition of those two basis states. Such states can
conveniently be mapped to, and visualized as, points on a unit
sphere, commonly referred to as the Bloch sphere. QuTiP provides
a class Bloch for visualizing individual quantum states, or lists
of data points, on the Bloch sphere. Internally it uses matplotlib to
render a 3D view of the sphere and the data points. The following
code illustrates how the Bloch class can be used

bs = Bloch()
bs.add_points([x, y, z])
bs.show()

where x, y, and z are the expectation values for the operators
σx, σy, and σz, respectively, for the given states. The expectation
values can be obtained from the Odedata instance returned by a
time-evolution solver, or calculated explicitly for a particular state,
for example

psi = (basis(2,0) + basis(2,1)).unit()
op_axes = sigmax(), sigmay(), sigmaz()
x, y, z = [expect(op, psi) for op in op_axes]

In Fig. 5, the time-evolution of a two-level system is visualized on
a Bloch sphere using the Bloch class.

Quasi-probability distributions

One of goals in engineered quantum systems is to manipulate the
system of interest into a given quantum state. Generating quantum
states is a non-trivial task as classical driving fields typically lead
to classical system states, and the environment gives rise to noise
sources that destroy the delicate quantum superpositions and cause
unwanted dissipation. Therefore, it is of interest to determine
whether the state of the system at a certain time is in a non-
classical state. One way to verify that the state of a system is
indeed quantum mechanical is to visualize the state of the system
as a Wigner quasi-probability distribution. This Wigner function
is one of several quasi-probability distributions that are linear
transformations of the density matrix, and thus give a complete
characterization of the state of the system [Leh10]. The Wigner
function is of particular interest since any negative Wigner values
indicate an inherently quantum state. Here we demonstrate the
ease of calculating Wigner functions in QuTiP by visualizing

Fig. 3: Wigner function for the state |Ψ〉 = 1√
3
[|0〉 + |3〉 + |6〉] as

reconstructed experimentally in [Hof09] . Negative (blue) values
indicate that this state is inherently quantum mechanical. The x- and
y-axes represent the oscillator position and momentum, respectively.

the quantum oscillator state |Ψ〉 = 1√
3
[|0〉 + |3〉 + |6〉] recently

generated in a superconducting circuit device [Hof09]:
psi = (basis(10)+basis(10,3)+basis(10,6)).unit()
xvec = linspace(-5,5,250)
X,Y = meshgrid(xvec, xvec)
W = wigner(psi,xvec,xvec)

Again, the quantum state is written in much the same manner
as the corresponding mathematical expression with the basis
functions representing the Fock states |0〉 , |3〉 , and |6〉 in a trun-
cated Hilbert space with N = 10 levels. Here, the unit method
of the Qobj class automatically normalizes the state vector. The
wigner then takes this state vector (or a density matrix) and
generates the Wigner function over the requested interval. The
result in shown in Fig. 3.

Example: Multiple Landau-Zener transitions

To demonstrate additional features in QuTiP, we now consider a
quantum two-level system, with static tunneling rate ∆ and energy-
splitting ε , that is subject to a strong driving field of amplitude A
coupled to the σz operator. In recent years, this kind of system
has been actively studied experimentally [Oli05], [Sil06], [Ste12]
for its applications in amplitude spectroscopy and Mach-Zehnder
interferometry. The system is described by the Hamiltonian

Ĥ =−∆

2
σ̂x−

ε

2
σ̂z−

A
2

cos(ωt)σ̂z, (3)

and the initial state |ψ(t = 0)〉 = |0〉. This is a time-dependent
problem, and we cannot represent the Hamiltonian with a single
Qobj instance. Instead, we can use a nested list of Qobj instances
and their time-dependent coefficients. In this notation (referred to
as list-string notation in QuTiP), the Hamiltonian in Eq. 3 can be
defined as
H0 = -delta/2 * sigmax() - epsilon/2 * sigmaz()
H1 = sigmaz()
H_td = [H0, [H1, 'A/2 * cos(omega * t)']]
args = {'omega': omega, 'A': A}

The QuTiP time-evolution solvers, as well as other functions
that use time-dependent operators, then know how to evaluate

60 PROC. OF THE 11th PYTHON IN SCIENCE CONF. (SCIPY 2012)

0 20 40 60 80 100 120 140 160
t

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

E
ne

rg
yl

ev
el

s

0.0

0.2

0.4

0.6

0.8

1.0

O
cc

up
at

io
n

pr
ob

ab
ili

ty

Fig. 4: Repeated Landau-Zener-like transitions in a quantum two-
level system. In each successive sweep through the avoided-level
crossing, a small additative change in the occupation probability
occurs, and after many crossings a nearly complete state transfer
has been achieved. This is an example of constructive interference.

the nested list H_td to the appropriate operator expression. In
this list-string format, this nested list is converted into a Cython
source file and compiled. Here, the dictionary args is used for
passing values of variables that occur in the expression for the
time-dependent coefficients. Given this QuTiP representation of
the Hamiltonian 3, we can evolve an initial state, using for example
the Lindblad master equation solver, with the following lines of
code:

psi0 = basis(2,0)
tlist = linspace(0, 160, 500)
output = mesolve(H_td, psi0, tlist, [], [], args)

Note that here we passed empty lists as fourth and and fifth
arguments to the solver mesolve, that indicates that we do not
have any collapse operators (that is, a closed quantum system) and
we do not request any expectation values to be calculated directly
by the solver. Instead, we will obtain a list output.states that
contains the state vectors for each time specified in tlist.

These states vectors can be used in further calculations, or
for example to visualizing the occupation probabilities of the two
states, as show in Figs. 4 and 5. In Fig. 5 we used the previously
discussed Bloch class to visualize the trajectory of the two-level
system.

Implementation and optimization techniques

In implementing the QuTiP framework, we have relied heavily on
the excellent Scipy and Numpy packages for Python. Internally,
in the class for representing quantum objects, Qobj, and in the
various time-evolution solvers, we use the sparse matrix from
Scipy (in particular the compressed-row format), and in some
special cases dense Numpy arrays, for the matrix and vector
representation quantum operators and states. Most common quan-
tum mechanics operations can be mapped to the linear algebra
operations that are implemented in Scipy for sparse matrices, in-
cluding matrix-matrix and matrix-vector multiplication, outer and
inner products of matrices and vectors, and eigenvalue/eigenvector
decomposition. Additional operations that do not have a direct

Fig. 5: Bloch-sphere visualization of the dynamics of a quantum
two-level system subject to repeated Landau-Zener-like avoided-level
crossings. All the points lay on the surface of the Bloch sphere, so we
can immediately conclude that the dynamics is the unitary evolution of
a closed quantum system (we did not include any collapse operators
in this example).

correspondence in matrix algebra, such as the ptrace function
for decomposing composite states, have been implemented mostly
in Python and NumPy. Note that in quantum mechanics it is essen-
tial that all matrix and vector elements are complex numbers, and
Scipy’s thorough support for complex-valued sparse matrices has
been a fundamental prerequisite for using Scipy in QuTiP. Overall,
Scipy’s sparse matrices, and the corresponding functions, have
delivered excellent performance. However, we have found that
by replacing the built-in matrix-vector multiplication in selected
locations with a less general Cython implementation (without, for
example type and out-of-bounds checks) we can obtain additional
speed-ups.

The ordinary differential equation solver is another feature in
Scipy that is used extensively in QuTiP, as most time-evolution
solvers use the scipy.integrate.ode interface at some
level. The configurability and flexibility of Scipy’s ODE solver
has significantly simplified the implementation of many time-
evolution solvers in QuTiP. The Monte-Carlo solver in particular,
which is a hybrid method that mixes evolution according to an
ODE with stochastic processes, uses some of the more advanced
modes of operating Scipy’s ODE solver including the high level of
control of step size, selectively stopping and restarting the solver,
etc.

In a typical simulation using QuTiP, the vast majority of the
elapsed time is devoted to evolving ODEs. Fine-tuning Scipy’s
ODE solver and ensuring that we obtain optimal performance from
it has therefore been a priority. Among the optimization measures
we have used, the largest impact has been gained by implementing
the callback function for the right-hand side (RHS) of the ODE in
standard form using Cython. By doing so, a significant amount of
overhead related to Python function calls can be avoided, and with
the additional speed-up that is gained by evaluating the callback
using Cython, this technique has given speed-up factors of up
to an order of magnitude or greater [Joh12]. Given this level
of speed-up, for any computational problem using Scipy’s ODE
solver, we would recommend investigating if the callback function

QUTIP: A FRAMEWORK FOR THE DYNAMICS OF OPEN QUANTUM SYSTEMS USING SCIPY AND CYTHON 61

can be implemented in Cython as one of the first performance
optimization measures.

One complicating factor that prevents using static Cython
implementations for the RHS function with Scipy’s ODE, is that
in QuTiP the ODEs are generated dynamically by the QuTiP
framework. For time-independent problems the RHS function for
the ODEs reduce to matrix-vector multiplication, and can be
delegated to a pre-compiled Cython function, but in a general
time-dependent problem this is not possible. To circumvent this
problem, we have employed a method of dynamically generating,
compiling and loading Cython code for the RHS callback function.
This approach allows us to benefit from the speed-ups gained with
a Cython implementation with nontrivial time-dependent RHS
functions.

Finally, in implementing QuTiP we have used the Python
multiprocessing package to parallellize of many time-
consuming tasks using the QuTiP parfor function, ensuring
efficient use of the resources commonly available on modern
multicore systems. The Monte-Carlo solver, which requires the
evolution of many hundreds of independent ODE systems, is
particularly easy to parallelize and has benefited greatly from the
multiprocessing package, and its good scaling properties as
a function of the number of CPU cores.

Conclusions

The Python, Numpy/Scipy and matplotlib environment provides
and encourages a unique combination of intuitive syntax and good
coding practices, rapid code development, good performance, tight
integration between the code and its documentation and testing.
This has been invaluable for the QuTiP project. With the additional
selective optimization using Cython, QuTiP delivers performance
that matches and in many cases exceeds those of natively compiled
alternatives [Tan99], accessible through an easy to use environ-
ment with a low learning curve for quantum physicists. As a result,
sophisticated quantum systems and models can be programmed
easily and simulated efficiently using QuTiP.

Acknowledgements

We would like to thank all of the contributors who helped test
and debug QuTiP. RJJ and PDN were supported by Japanese
Society for the Promotion of Science (JSPS) Fellowships P11505
and P11202, respectively. Additional support comes from Kakenhi
grant Nos. 2302505 (RJJ) and 2301202 (PDN).

REFERENCES

[Aha03] D. Aharonov and A. Ta-Shma, Adiabatic quantum state generation
and statistical zero knowledge, ACM Symposium on Theory of
Computing 20, 2003, available at quant-ph/0301023.

[Bla12] R. Blatt and C. F. Roos, Quantum simulations with trapped ions, Nat.
Physics, 8:277, 2012.

[Fey82] R. Feynman, Simulating Physics with Computers, Int. J. Theor. Phys.,
21(6):467, 1982.

[Han08] R. Hanson and D. D. Awschalom, Coherent manipulation of single
spins in semiconductors, Nature, 453:1043, 2008.

[Har06] S. Haroche and J-M. Raimond, Exploring the Quantum: Atoms,
Cavities, and Photons, Oxford University Press, 2006.

[Hof09] M. Hofheinz et al., Synthesizing arbitrary quantum states in a
superconducting resonator, Nature, 459:546, 2009.

[Hor97] G. Z. K. Horvath et al., Fundamental physics with trapped ions,
Contemp. Phys., 38:25, 1997.

[Jay63] E. T. Jaynes and F. W. Cummings, Comparison of quantum and
semiclassical radiation theories with application to the beam maser,
Proc. IEEE 51(1):89 (1963).

[Joh12] J. R. Johansson et al., QuTiP: An open-source Python framework
for the dynamics of open quantum systems, Comp. Phys. Commun.,
183:1760, 2012, available at arXiv:1110.0573.

[Lad10] T. D. Ladd et al., Quantum computers, Nature, 464:45, 2010.
[Leh10] U. Leonhardt, Essential Quantum Optics, Cambridge, 2010.
[Nat12] P. D. Nation and J. R. Johansson, QuTiP: Quantum Toolbox in

Python, Release 2.0, 2012, available at www.qutip.org.
[Obr09] J. L. O’Brien et al., Photonic quantum technologies, Nat. Photonics,

3:687, 2009.
[Oco10] A. D. O’Connell et al., Quantum ground state and single-phonon

control of a mechanical resonator, Nature, 464:697, 2010.
[Sch97] R. Schack and T. A. Brun, A C++ library using quantum trajectories

to solve quantum master equations, Comp. Phys. Commun., 102:210,
1997.

[Tan99] S. M. Tan, A computational toolbox for quantum and atomic optics,
J. Opt. B: Quantum Semiclass. Opt., 1(4):424, 1999.

[Vuk07] A. Vukics and H. Ritsch, C++QED: an object-oriented framework
for wave-function simulations of cavity QED systems, Eur. Phys. J.
D, 44:585, 2007.

[You11] J. Q. You and F. Nori, Atomic Physics and Quantum Optics Using
Superconducting Circuits, Nature, 474:589, 2011.

[Oli05] W. D. Oliver et al., Mach-Zehnder Interferometry in a Strongly
Driven Superconducting Qubit, Science. 310:1653, 2005.

[Sil06] M. Sillanpää et al., Continuous-Time Monitoring of Landau-Zener
Interference in a Cooper-Pair Box, Phys. Rev. Lett., 96:187002,
2006.

[Ste12] J. Stehlik et al., Landau-Zener-Stuckelberg Interferometry of a Single
Electron Charge Qubit, ArXiv:1205.6173, 2012.

http://arxiv.org/abs/quant-ph/0301023v2
http://arxiv.org/abs/1110.0573
http://www.qutip.org

	Introduction
	Numerical quantum mechanics
	The QuTiP framework
	Constructing Hamiltonians and states
	Time-evolution of quantum systems

	Visualization
	Bloch sphere
	Quasi-probability distributions

	Example: Multiple Landau-Zener transitions
	Implementation and optimization techniques
	Conclusions
	Acknowledgements
	References

