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Abstract—Many physical processes are modeled by unspecified functions.
Here, we introduce the F_UNCLE project which uses the Python ecosystem
of scientific software to develop and explore techniques for estimating such
unknown functions and our uncertainty about them. The work provides ideas
for quantifying uncertainty about functions given the constraints of both laws
governing the function’s behavior and experimental data. We present an analy-
sis of pressure as a function of volume for the gases produced by detonating an
imaginary explosive, estimating a best pressure function and using estimates
of Fisher information to quantify how well a collection of experiments constrains
uncertainty about the function. A need to model particular physical processes
has driven our work on the project, and we conclude with a plot from such a
process.

Index Terms—python, uncertainty quantification, Bayesian inference, convex
optimization, reproducible research, function estimation, equation of state, in-
verse problems

Introduction

Some tasks require one to quantitatively characterize the accuracy
of models of physical material properties which are based on
existing theory and experiments. If the accuracy is inadequate, one
must then evaluate whether or not proposed experiments or the-
oretical work will provide the necessary information. Faced with
several such tasks, we have chosen to first work on the equation of
state (EOS) of the gas produced by detonating an explosive called
PBX-9501 because it is relatively simple. In particular Hixson
et al. [hixson2000] describe a model form that roughly defines
its properties in terms of an unknown one dimensional function
(pressure as a function of volume on a special path) and simple
constraints. This EOS estimation problem shares the following
challenges with many of the other material models that we must
analyze:

1) The uncertain object is a function. In principal it has an
infinite number of degrees of freedom. In order to imple-
ment a Bayesian analysis one must define and manipulate
probability measures on sets in function space. We do
not know how to define a probability measure on sets in
function space, and we do not know how to compare the
utility of different families of parametric approximations.
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2)  Understanding the constraints on the unknown function
and the connection between it and experimental measure-
ments requires understanding some detailed physics.

3) Simulations of some of the experiments run for more than
a few minutes on high performance computers. The job
control is unwieldy as are the mechanisms for expressing
trial instances of the unknown functions and connecting
them to the simulations.

We are organizing our efforts to address those challenges under
the title F_UNCLE (Functional UNcertainty Constrained by Law
and Experiment). We work in two parallel modes as we develop
ideas and algorithms. We write code for a surrogate problem that
runs in a fraction of a minute on a PC, and we write code for
fitting a model to PBX-9501 in a high performance computing
environment. Our focus shifts back and forth as we find and
resolve problems. As we have progressed, we have found that
improving our software practices makes it easier to express ideas,
test them on PCs and implement them on the HPCs. In this paper,
we introduce the [F_UNCLE] code, the surrogate problem we
have developed for the EOS and our analysis of that problem.

We are also using the project to learn and demonstrate Best
Practices for Scientific Computing (eg, [wilson2014]) and Repro-
ducible Research (eg, [fomel2009]). The work is designed to be
modular, allowing a wide range of experiments and simulations
to be used in an analysis. The code is self documenting, with full
docstring coverage, and is converted into online documentation
using [sphinx]. Each class has a test suite to allow unit testing.
Tests are collected and run using [nose]. Each file is also tested
using [pylint] with all default checks enabled to ensure it adheres
to Python coding standards, including PEP8. Graphics in this
paper were generated using [matplotlib] and the code made use of
the [numpy] and [scipy] packages. Among the reasons we chose
the Python/SciPy ecosystem, the most important are:

Readable
Writing in Python helps us implement the most im-
portant point in [wilson2014] : "Write programs for
people, not computers."

Versatile
The Python Standard Library lets us easily connect
our scripts to other code, eg, submitting HPC jobs
and wrapping libraries written in other languages.

Community support
Because of the large number of other users, it is easy
to get answers to questions.

Numerical packages
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We use a host of modules from Numpy, SciPy and
other sources.

Portable
With the Python/SciPy ecosystem, it is easy to write
code that runs on our desktops and also runs in our
HPC environment.

The task of mapping measurements to estimates of the charac-
teristics of models for the physical processes that generated them
is called an inverse problem. Classic examples include RADAR,
tomography and image estimation. Our problems differ from
those in the diverse and indirect nature of the measurements, the
absence of translation invariance and in the kinds of constraints.
[F_UNCLE] uses constrained optimization and physical models
with many degrees of freedom to span a large portion of the
allowable function space while strictly enforcing constraints. The
analysis determines the function that maximizes the a posteriori
probability (the MAP estimate) using simulations to match K
data-sets. We characterize how each experiment constrains our
uncertainty about the function in terms of its Fisher information.

As a surrogate problem, we have chosen to investigate the
equation of state (EOS) for the products-of-detonation of a hypo-
thetical High Explosive (HE). The EOS relates the pressure to the
specific volume of the products-of-detonation mixture. We follow
traditional practice (eg, [ficket2000]) and constrain the function to
be positive, monotonically decreasing and convex. To date we have
incorporated two examples of experiments: the detonation velocity
of a rate stick of HE, and the velocity of a projectile driven by HE.
The behavior of both these experiments depend sensitively on the
EOS function.

The following sections describe the choices made in modeling
the EOS function, the algorithm used for estimating the func-
tion and the use of the Fisher information to characterize the
uncertainty about the function. Results so far indicate optimization
can find good approximations to the unknown functions and that
analysis of Fisher information can quantify how various experi-
ments constrain uncertainty about their different aspects. While
these preliminary results are limited to an illustration of the ideas
applied to synthetic data and simple models, the approach can be
applied to real data and complex simulations. A plot from work
on estimating the EOS of the high explosive PBX-9501 appear in
the concluding section.

Fisher Information and a Sequence of Quadratic Programs

Our analysis is approximately Bayesian and Gaussian. We suppose
that:

1) Experiments provide data x = [xo,...,x,], where x; is the
data from the k" experiment

2)  We have a likelihood function p;(x|0) = [T px(x«|€) in
which the data from different experiments are condition-
ally independent given the parameters 6

3) We have a prior on the parameters p,(0)

From those assumptions, one can write the a posteriori distri-
bution of the parameters as
Pi(x]6)pp(6)

p(Olx) = =

I pi(x[0)pp(9)de

Rather than implement Equation (1) exactly, we use a Gaussian
approximation calculated at

6]

6 = argmax,p(0|x). ()
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Since 6 does not appear in the denominator on the right hand side
of Equation (1), in a Taylor series expansion of the log of the a
posteriori distribution about @ the denominator only contributes a
constant added to expansions of the log of the likelihood and the
log of the prior, and

1 dzlog(p,(x\q))) d*log (pp(9))
+§<9*9)( d¢? * d¢2p )¢_é
+R
=C+- (e 6) H(6-6)+R.

Dropping the higher order terms in the remainder R in leaves the
normal or Gaussian approximation

0|x ~
I DA PR
p(Blx) = (2n)dim|):\e p( 2(9 0)'£'(0 9))

N (0,2=H")

With this approximation, experiments constrain the a posteriori
distribution by the second derivative of their log likelihoods.
Quoting Wikipedia: “If p(x|0) is twice differentiable with respect
to O, and under certain regularity conditions, then the Fisher
information may also be written as

92
Z(0)=—-E

9) X162
[...] The Cramér—-Rao bound states that the inverse of the Fisher
information is a lower bound on the variance of any unbiased
estimator”

Our simulated measurements have Gaussian likelihood func-
tions in which the unknown function only influences the mean.
Thus we calculate the second derivative of the log likelihood as
follows:

log p(X; 9)‘ 9} 3)

= - u(O) = (-

JL 1 du
%—(X*#(G)) T

9’ ou\" ., (du T
WL**(%) z (ﬁ))+(x7u(6)) Y5l

and
9 ou\' i (du
EW“%%) (%)’

2
because X! 37% is independent of X and Ex (x —

u(e))+c

1(6)) =0.

Iterative Optimization

We maximize the log of the a posteriori probability as the
objective function which is equivalent to 2. Dropping terms that
do not depend on 6, we write the cost function as follows:

C(6) =—log(p Zlog (xx]0))

Zlog

where k is an index over a set of independent experiments. We
use the following iterative procedure to find 6, the Maximum A
posteriori Probability (MAP) estimate of the parameters:

= 1(9 )T

> (x£10)),

(6-96)
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1) Seti=0 and 6;[j] = u[j], where i is the index of the
iteration and j is index of the components of 6.

2) Increment i

3) Estimate P; and g; defined as

d
T _
q = —5C(0)
de 0=0,_,
d2
P=—C(6
d6? ( )9:9,,71

Since the experiments are independent, the joint likeli-
hood is the product of the individual likelihoods and the
log of the joint likelihood is the sum of the logs of the
individual likelihoods, ie,

_ d
gl =61 —w)E ' +Y] %log(P(XkW)
k

= (61— )z’ +qu?:k

0=06;_1

P=X +Zd6210g p(x|0)

=X +2Pi-,k
k

0=06;_;

where in P and gy, i is the iteration number and k is
the experiment number.

4) Calculate the matrix G; and the vector h; to express the
appropriate constraints.

5) Calculate 6; = 6;_1 +d by solving the quadratic program

1
Minimize 5d%d +q7d
Subject to G;d =< h;

where < means that for each component the left hand
side is less than or equal to the right hand side.
6) If not converged go back to step 2.

This algorithm differs from modern SQP methods as each QP
sub-problem is has no knowledge of the previous iteration. This
choice is justified as the algorithm converges in less than 5 outer
loop iterations. This unconventional formulation helps accelerate
convergence as the algorithm does not need multiple outer loop
iterations to obtain a good estimate of the Hessian, as in modern
SQP methods.

The assumption that the experiments are statistically indepen-
dent enables the calculations for each experiment k in to be done
independently. In the next few sections, we describe both the data
from each experiment and the procedure for calculating P, ; and

qik-

Equation of State

For our surrogate problem, we say that the thing we want to
estimate, 6, represents the equation of state (EOS) of a gas.
We also say that the state of the gas in experiments always lies
on an isentrope’ and consequently the only relevant data is the
pressure as a function of specific volume (cm>/gram) of the gas.

2. For our surrogate problem, we constrain the function at the last knot to be
positive and have negative slope. We also constrain the second derivative to be
positive at every knot. See the [F_UNCLE] code and documentation for more
details.

10° ; T T

10° |

104 |

Negative a posteori log likelihood

103 ] ]
0 1 2 3

Iteration number

Fig. 1: Convergence history of a typical solution to the MAP opti-
mization problem

For physical plausibility, we constrain the function to have the
following properties:

o Positive
« Monotonic
« Convex

Here, let us introduce the following notation:

« v Specific volume

e p Pressure

« f An EOS that maps specific volume to pressure, f: v+ p.
e vo The minimum relevant volume.

e v; The maximum relevant volume.

o % The set of possible EOS functions, p(v),vo <v < v

Cubic Splines

While no finite dimensional coordinate scheme can represent every
element of .%, the flexibility of cubic splines lets us get close
to any element of .% using a finite number of parameters. (An
analysis of the efficiency of various representations is beyond the
scope of this paper.)

Constraining f to be positive and to be a convex function of
v is sufficient to ensure that it is also monotonic. Although we
are working on a definition of a probability measure on a sets of

functions that obeys those constraints and is further constrained by

% < A, for now, we characterize the prior as Gaussian. As

we search for the mean of the a posteriori distribution, we enforce
the constraints, and the result is definitely not Gaussian. For the
remainder of the present work we ignore that inconsistency and
use a prior defined in terms of spline coefficients. We start with a
nominal EOS

fv) = 5 Where F 4 2.56 % 10°Pa at one cm’g ™! (4)

3. In an isentropic expansion or compression there is no heat conduction.
Our isentropic approximation relies on the expansion being so rapid that there
is not enough time for heat conduction.
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and over a finite domain we approximate it by a cubic spline with
coefficients {c} [/] } Thus c, the vector of spline coefficients, is the
set of unknown parameters that we have previously let 6 denote.
Then we assign a variance to each coefficient:

. a2
o’ = (eslila)” )
We set A = 0.05. These choices yield:

pyp < {e(jl}
Zrli j) = 67118
Thus we have the following notation for splines and a prior
distribution over .%.

o cy,by Vector of coefficients and cubic spline basis func-
tions that define an EOS. We will use cy[j] and by[j] to
denote components.

e Ur, Xy Mean and covariance of prior distribution of EOS.
In a context that requires coordinates, we let py =

(crl0],es 1], oerfm]) "

The Nominal and True EOS

For each experiment, data comes from a simulation using a true
function and each optimization starts from the nominal EOS which
is the mean of the prior given in 4. We’ve made the true EOS differ
from the nominal EOS by a sum of Gaussian bumps. Each bump
is characterized by a center volume v, a width wy and a scale s,

with:
(V — Vk)2
F 2
bi(v) = Sk—ge 2wy
Vi

Throughout the remainder of this paper, the true EOS that we have
used to generate pseudo-experimental data is:

F) = 35+ bo(s) + by (1) ©

1 1 1

where: vy = .4cm3g_ , Wo= .1cm3g_ , S0=.25,vi = .5cm3g_ s

wi| = .1cm3g*1, and s; = —.3.

A Rate Stick

The data from this experiment represent a sequence of times that a
detonation shock is measured arriving at locations along a stick of
HE that is so thick that the detonation velocity is not reduced by
curvature. The code for the pseudo data uses the average density
and sensor positions given by Pemberton et al. [pemberton2011]
for their Shot 1.

Implementation

The only property that influences the ideal measurements
of rate stick data is the HE detonation velocity. Code in
F_UNCLE.Experiments.Stick calculates that velocity following
Section 2A of Fickett and Davis [ficket2000] (entitled The Sim-
plest Theory). The calculation solves for conditions at what is
called the Chapman Jouguet (CJ) state. The CJ state is defined im-
plicitly by a line (called the Rayleigh line) in the (p,v) plane that
goes through (pg,vo), the pressure and volume before detonation,
and (pcy,vey)- The essential requirement is that the Rayleigh line
be tangent to the isentrope or EOS curve in the (p,v) plane. The
slope of the Rayleigh line that satisfies those conditions defines
the CJ velocity, V in terms of the following equation:

sz pbcy —Po

Vi vo—va
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Fig. 2: The prior and nominal true equation of state function. The two
models differ most at a specific volume of 0.4 cm3g~!
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Fig. 3: The rate stick experiment showing the detonation wave
propagating through the rate stick at the CJ velocity. Detonation
velocity is measured by the arrival time of the shock at the sensors
placed along the stick.

For each trial EOS, the F UNCLE code uses the
scipy.optimize.brentq method in a nested loop to solve for
(pcy,vey). Figure 4 shows the EOS and both the Rayleigh line
and the CJ point that the procedure yields.

Comparison to Pseudo Experimental Data

The previous section explained how to calculate the detonation
velocity, Vey(f), but the experimental data are a series of times
when the shock reached specified positions on the rate-stick. The
simulated detonation velocity is related to these arrival times by:

]

0= Vei (f)
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Fig. 4: Isentropes, a Rayleigh line and the CJ conditions. Starting
from the isentrope labeled Prior EOS and using data from simu-
lated experiments based on the isentrope labeled True EOS, the
optimization algorithm described in the Algorithm section produced
the estimate labeled Fit EOS. Solving for the CJ state of Fit EOS
isentropes yields a Rayleigh line. The data constrains the isentrope
only at v¢y.

where x[i] are the locations of each sensor measuring arrival time.
We let D denote the sensitivity of the set of simulated arrival
times to the spline coefficients governing the equation of state, and

write: .
Dli,j] = gg E]}

‘We use finite differences to estimate D.

The Gun
The data from this experiment are a time series of measurements of

a projectile’s velocity as it accelerates along a gun barrel driven by
the expanding products-of-detonation of HE. Newton’s equation

F =ma

determines the velocity time series. The product of the pressure
from the EOS and the area of the barrel cross section is the force.

Implementation

The position and velocity history of the projectile is generated
by the scipy.integrate.odeint algorithm. This method solves the
differential equation for the projectile position and velocity as it is
accelerated along the barrel.

dx(r)
O v(t) (7
dv(r) A (x(t)A>

da mprojf MHE ®

where:

e t is time from detonation (assuming the HE burns in-
stantly)

mass HE

m
area

N

Projectile
Gun

High explosive

—>» +X

Fig. 5: The gun experiment. The projectile of a given mass and
cross-sectional area is accelerated along the barrel by the expanding
products of combustion from the high explosives in the barrel.

o x(t) is the position of the projectile along the barrel

o v(¢) is the velocity of the projectile

e A is the cross-sectional area of the barrel

e mpyg is the mass of high explosives

e Mpp; is the mass of the projectile

o fis the equation of state which relates the pressure to the
specific volume of the HE products-of-detonation

The acceleration is computed based the projectile’s mass
and the force resulting from the uniform pressure acting on the
projectile. This pressure is related to the projectile’s position by
the EOS, assuming that the projectile perfectly seals the barrel so
the mass of products-of-detonation behind the projectile remains
constant.

Comparison to Pseudo Experimental Data

We generated experimental data using our simulation code with
the nominal frue EOS described previously. These experimental
data were a series of times and corresponding velocities. To
compare the experiments to simulations, which may use a different
time discretization, the simulated response was represented by a
spline, and was compared to the experiments at each experimental

time stamp.
IV (texpli])

P =3¢, ®

where:

o 7 is the velocity given from the spline fit to simulated v(¢)
data
e e is the times where experimental data were available

Numerical Results

The algorithm was applied to the sets of simulation results and
pseudo experimental data for both the rate-stick and gun models.
Figure 6 shows the improved agreement between the simulated
and experimental arrival times for the rate-stick after the algorithm
adjusts the equation of state. Similar results are shown in Figure
7 for the gun experiment, where the significant error in velocity
history at early times is reduced by an order of magnitude with
the optimized EOS model.
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Fig. 6: Fitting an isentrope to rate stick data. Green +’s denote
measured shock arrival time at various positions. The blue line
represents the shock velocity calculated from the prior EOS, and the
black line is the result of the optimization algorithm described in the
text.

Fisher Information Matrix

The Fisher information matrix characterizes how tightly the ex-
perimental data constrain the spline coefficients. This matrix can
be better understood through a spectral decomposition to show the
magnitude of the eigenvalues and the eigenvector behavior.

Figure 8 illustrates the spectral decomposition of the Fisher
information matrix for the rate-stick experiment. To machine
precision, there is only one nonzero eigenvalue. We expect that
because only the CJ point on the EOS influences the forecast data,
u(c). The eigenvector corresponding to this eigenvalue is most
influential about the specific volume corresponding to the CJ state.

The Fisher information matrix of the gun experiment is more
complex as changes to the EOS affect the entire time history of
the projectile velocity. In Figure 9 There is no clear dominating
eigenvalue, the largest eigenvalue corresponds to an eigenvector
which is more influential at smaller projectile displacements while
the next three largest eigenvalues correspond to eigenvectors
which are more influential across the range of displacements.

These preliminary investigations of the Fisher information
matrix show how this matrix can be informative in describing the
uncertainty associated with the optimal EOS function determined
by the [F_UNCLE] algorithm. Notice that the eigenvectors of the
matrix describe functions that are zero for states not visited by the
gun experiment.

Conclusion, Caveats and Future Work

We have described an iterative procedure for estimating functions
based on experimental data in a manner that enforces chosen
constraints. The [F_UNCLE] code implements the procedure, and
we used it to make the figures in the previous sections. The code
runs on a modest desktop computer and makes the figures in a
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Fig. 7: Estimation of the maximum a posteriori probability parameters
of the gun experiment. The True EOS appears in the upper plot, and
the optimization starts with the Prior EOS and ends with Fit EOS. The
corresponding velocity for the gun as a function of position appears
in the lower plot. The estimation also used experimental data from the
rate stick.

fraction of a minute. That speed and simplicity allows one to easily
try out new ideas and code. We have relied on the [F_UNCLE]
code to guide work with real experimental data and simulations on
high performance computers that use proprietary software. Figure
10 is the result of applying the ideas presented here to the physical
experiments described in [pemberton2011].

The [F_UNCLE] code has been useful for us, and while we
believe it could be useful for others, we emphasize that it is a work
in progress. In particular:

o The prior is inconsistent. We hope to analyze and perhaps
mitigate the effects of that inconsistency in future work.

o The choice of splines is not justified. We plan to compare
the performance of coordinate system options in terms of
quantities such as bias and variance in future work.

o The optimization procedure is ad hoc and we have not con-
sidered convergence or stability. We have already begun to
consider other optimization algorithms.

We have designed the [F_UNCLE] code so that one can easily
use it to model any process where there is a simulation which
depends on a model with an unknown functional form. The self
documenting capabilities of the code and the test suites included
with the source code will help others integrate other existing
models and simulations into this framework to allow it to be
applied to many other physical problems.
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Fig. 10: Improvement of match between true experiments on PBX-
9501 and simulations on a high performance computer. The mean of
the experimental data is labeled |1, and the optimization scheme yields
the EOSs that produce the traces labeled fit,.
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