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Launching Python Applications on Peta-scale
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Abstract—We introduce a method to launch Python applications at near native
speed on large high performance computing systems. The Python run-time and
other dependencies are bundled and delivered to computing nodes via a broad-
cast operation. The interpreter is instructed to use the local version of the files on
the computing node, removing the shared file system as a bottleneck during the
application start-up. Our method can be added as a preamble to the traditional
job script, improving the performance of user applications in a non-invasive
way. Furthermore, we find it useful to implement a three-tier system for the
supporting components of an application, reducing the overhead of runs during
the development phase of an application. The method launches applications on
Cray XC30 and Cray XT systems up to full machine capacity with an overhead
of typically less than 2 minutes. We expect the method to be portable to similar
applications in Julia or R. We also hope the three-tier system for the supporting
components provides some insight for the container based solutions for launch-
ing applications in a development environment. We provide the full source code
of an implementation of the method at https.//github.com/rainwoodman/python-
mpi-bcast. Now that large scale Python applications can launch extremely
efficiently on state-of-the-art super-computing systems, it is time for the high
performance computing community to seriously consider building complicated
computational applications at large scale with Python.

Index Terms—Python, high performance computing, development environ-
ment, application

Introduction

The use of a scripting or interpreted programming language in
high performance computing has the potential to go beyond post-
processing and plotting results. Modern super-computers support
dynamic linking and shared libraries, and thus, are capable of
running the interpreters of a scripting programming language.
Modern interpreters of scripting languages are equipped with the
Just-In-Time (JIT) compilation technique that compiles the script
in-time to achieve performances close to C or Fortran [LPS15],
[BEKS14], [Aut06]. The Python programming language is of
particular interest due to its large number of libraries and its
wide user base. There are several Python bindings of the Message
Passing Interface (MPI)! [DPKC11], [Mil02]. Bindings for higher
level abstractions, e.g. [Spo12] also exist, allowing one to write
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complex parallel applications with MPI for simulations and data
analysis.

However, it is still traditionally believed that Python does
not coexist with large scale high performance computing. The
major barrier is due to the slow and unpredictable amount of
time required to launch Python applications on such systems.
For example, it has been shown that the start-up time sometimes
increases to hours for jobs with a relative small scale (a hundred
ranks ..[#rank]). Some quantitative benchmarks can be see in
[Fro13], [Lan12b].

The issue is an interplay between the current file system
architecture on Peta-scale systems and the behavior of the Python
interpreter. Peta-scale systems are typically equipped with a shared
file system that is suitable for large band-width operations. The
meta-data requests are handled by the so-called metadata servers,
and usually, at most one master meta-data server serves all
requests to a large branch of the file system; then, the data files are
replicated to several data storage nodes [Sch03]. As an example,
the Phase-I Cray XC 40 system Cori at NERSC is connected to
5 metadata servers (MDT) [NER15]. Because the file system is a
shared resource with a limited throughput, it is relatively easy for
an application to flood the file systems with requests and nearly
bring an entire file system to a halt -- a phenomona most users to
HPC systems are very familiar with.

Unfortunately, the Python interpreter is such an application, as
has been repeatedly demonstrated in previous studies [Lanl2a],
[Lan12b], [Frol3], [ERSMI11]. During start-up, a Python appli-
cation will generate thousands of file system requests to locate
and import files for scripts and compiled extension modules. We
demonstrate the extent of the problematic behavior in Figure 1,
where we measure the number of file system requests associated
with several fairly commonly used Python packages on a typical
system (Anaconda 2 and 3 in this case). The measurement is
performed with strace -ff -e file. For either Python 2
or Python 3, the number of file system operations increases
linearly with the number of entries in sys.path (controlled
by the PYTHONPATH environment variable). Importing the scipy
package with 10 additional paths requires 5,000+ operations on
Python 2 and 2,000 operations on Python 3. Extrapolating to 1,000
instances or MPI ranks, the number of requests reaches 2 ~ 5
million. On a system that can handle 10,000 file system requests

1. Message Passing Interface (MPI) is the standard programming model on
high performance computing. For readers that are unfamiliar with such topics,
we recommend [Qui03] for an introduction to parallel programming and MPL.

2. A rank is defined as one of the concurrent processes of the application.
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Fig. 1: Number of file system requests during Python start-up. Solid
lines: Python 2. Dashed lines: Python 3. We increase the number of
entries in PYTHONPATH to simulate the number of packages installed
in user directory or loaded via modules command commonly used
on HPC systems.

per second, consuming these requests takes 200 ~ 500 seconds of
the full capacity of the entire system. Furthermore, the application
becomes extremely sensitive to the load on the shared file system:
when the file system is heavily loaded, the application will start
extremely slowly.

It is worth pointing out that although the number of requests
per rank can be significantly reduced, the total number of requests
still increases linearly with the number of MPI ranks, and will
become a burden at sufficiently large scale. For example, due to
improvements in the importing system, the number of requests per
rank is reduced by 50% in Python 3 as compared to Python 2 (seen
in Figure 1). Therefore, a plain Python 3 application will handle
twice as many ranks as Python 2 does.

In this paper, we present a solution (which we name
python-mpi-bcast) that addresses the start-up speed without
introducing a burden on the users. We have been using this method
to launch data analysis applications in computational cosmology
(e.g. [FH16]) at National Energy Research Scientific Computing
Center (NERSCO).

In Section 2, we collect and overview the previous solutions
developed over the years. In Section 3, we describe our solution
python-mpi-bcast. In Section 4, we discuss the management of
the life-cycles of components. In Section 5, we demonstrate
the cleanness of python-mpi-bcast with an example script. We
conclude this paper and discuss possible extensions of this work
in Section 6.

Previous Solutions

Given the importance and wide-adoption of the Python pro-
gramming language, the application launch time issue has been
investigated by several authors. We briefly review them in this
section. These solutions either do not fully solve the problem
or introduce a burden on the users to maintain the dependency
packages.

The application delivery mechanism on a super-computer can
deliver the full binary executable to the computing nodes. In fact,
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older systems can only deliver one statically linked executable
file to the computing nodes during the job launch. The support
of dynamic libraries on Cray systems was once very limited
[ZDA"12] -- a significant amount of work has been invested to
solve this limitation in the context of shared library objects (e.g.
[AA14]).

One can take advantage of the standard delivery mechanism
and launch the application at an optimal speed, by bundling the
entire support system of the Python application as one stati-
cally compiled executable. [Frol3], [PM12] both fall into this
category. We also note that the yt-project has adopted some
similar approaches for their applications [TSO™ 11]. While being
a plausible solution, the technical barrier of this approach is
very high. Statically compiled Python is not widely used by
the mainstream community, and special expertise is required to
patch and incorporate every dependency package for individual
applications. Although the steps are documented very well, the
effort is beyond the knowledge of a typical Python developer.

Fortunately, in recent years the support for dynamic libraries
on high performance computing systems has significantly im-
proved, as super-computing vendors began to embrace a wider
user base for general, data-intensive analysis. On these platforms,
the main bottleneck has shifted from the lack of support for
dynamic libaries to the vast number of meta-data requests to
import the full python runtime library.

A particularly interesting approach is to eliminate the meta-
data requests altogether via caching. Caching can happen at the
user level or operation system level. On the user level, mpiim-
port [Lanl2b] and Scalable Python cite:scalablepython attempt
to cache the meta-data requests with an import hook. After the
hooks are enabled, the user application are supposed to run as
is. Unfortunately, these methods are not as fully opaque as they
appear to be. With import hooks, because the meta-data requests
are cached, they have to be calculated by the root rank first.
Therefore, an implicit synchronization constraint is imposed in
order to ensure the cache is evaluated before the requests from
the non-root ranks. All of the import operations must be made
either collectively or un-collectively at the same time. We find
that the collective importing scheme breaks site.py in the Python
standard library and the un-collective importing scheme breaks
most MPI-enabled scripts. At the system level, users can file a
ticket to mark a branch of the file system as immutable, allowing
the computing nodes to cache the requests locally. This requires
special requirements from the administrators, and in practice the
relief has been limited.

Finally, one can locally mount a full application image on the
computing node via a container-based solution [JCGBI15]. The
loopback mount adds a layer of caching to reduce the number of
requests to the global file system. The drawback of the container-
based solution is due to the requirement that the entire application
is built as one image. Each time the application code is modified,
the entire image needs to be re-generated before the job is ready to
run. On super computing systems, it takes a long (and fluctuating)
amount of time to build a non-trivial software package. Some
of our support libraries (e.g. pfft-python) usually takes 10 to 20
minutes to rebuild from scratch. This waiting time can become an
additional burden during code development. Furthermore, the user
may need special privileges on the computing nodes in order to
mount the images, requiring changes in the system security policy
that can be challenging to implement for administration reasons;
though we note that shifter has solved this problem at NERSC.
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Our Solution: python-mpi-bcast

In this section, we show that the shared file system bottleneck can
be solved with a much simpler approach that maintains a high
level of compatibility with the main stream usage of the Python
programming language.

Compatibility is maintained if one uses the vanilla C im-
plementation of Python without any modifications to the import
mechanism. A large number of file system requests during appli-
cation start-up will be made, but we will reroute all shared file
system requests to local file systems on the computing nodes,
away from the limited shared file-system.

This is possible because the package search path of a Python
interpreter is fully customizable via a few environment variables,
a feature widely used in the community to provide support for
“environments’ [LMR15], [Conl5]. With python-mpi-bcast, we
make use of this built-in relocation mechanism to fully bypass
the scalability bottleneck of the shared file system. We note that
none of the previous solutions make extensive use of this feature.

Because all file operations for importing packages are local
after the re-routing, the start-up time of a Python application
becomes identical to that of a single rank, regardless of the number
of ranks used.

The only additional cost of our approach results from the
delivery of the packages to the local file systems. In order to
efficiently deliver the packages, we bundle the packages into tar
files. The MPI broadcast function is used for the delivery. The tar
files are uncompressed automatically with the tool bcast . ¢ that
could be linked into a static executable.

We will describe the steps in the following subsections:

1) Create bundles for dependencies and the application.

2) Deliver the bundles via broadcasting. The destination
shall be a local file system on the computing nodes. (e.g.
/dev/shm or /tmp)

3) Reroute Python search path (including shared library
search path) to the delivery destination, bypassing the
shared file system.

4)  Start the Python application the usual way.

Creating bundles

We define a bundle as a compressed tar file that contains the full
file system branch of a package or several packages, starting from
the relative Python home directory. Three examples are:

1) The bundle file of a conda environment consists of all files
in the bin, lib, include, and share directories of the environment.
We provide a script (tar-anaconda.sh) for generating such a bundle
from a conda environment. The size of a bundle for a typical conda
environment is close to 300 MB.

2) The bundle file of a PIP installed package consists of all files
installed by the pip command. We provide a wrapper command
bundle-pip for generating a single bundle from a list of PIP
packages.

3) The bundle file of basic system libraries includes those
shared library files that are loaded by the dynamic linker for the
Python interpreter. We provide three sample job scripts to generate
these bundles for three Cray systems: XC30, XC40, and XT. The
system bundle addresses the shared library bottleneck investigated
in [ZDA™ 12] (DLFM) but without requiring an additional wrapper
of the system dynamic linker.

The bundles only need to be updated when the dependencies
of an application are updated.

Variable Action

PYTHONHOME Set to broadcast destination
PYTHONPATH Purge

PYTHONUSERBASE Purge

LD_LIBRARY_PATH Prepended by /11ib of the broadcast destination

TABLE 1: Environment Variable used in python-mpi-bcast

Delivery via broadcasting

Before launching the user application, the bundles built in the
previous step must be delivered to the computing nodes -- we
provide a tool for this task. On Cray systems, we make use of the
memory file system mounted at /dev/shm. On a system with
local scratch, /tmp may be used as well, although this has not
been tested.

We use the broadcast function of MPI for the delivery. The tool
first elects one rank per node to receive and deploy the bundles to
a local storage space. The bundle is then uncompressed by the
elected rank per computing node.

The new files are marked globally writable. Therefore, even if
some of the files are not properly purged from a node, they can
be overwritten by a different user when the same node is allocated
to a new job. We note that this may pose a security risk in shared
systems.

When several bundles are broadcast in the same job, the later
ones will overwrite the former ones. This overwriting mechanism
provides a way to deliver updates as additional bundles.

We also register an exit handler to the job script that purges the
local files to free up the local file system. This step is necessary
on systems where the local storage space is not purged after a job
is completed.

Rerouting file system requests

We list the environment variables that are relevant to the relocation
in Table 1. After the relocation, all of the file system requests
(meta-data and data) are rerouted to the packages in the local file
system. As a result, the start-up time of the interpreter drops to
that of a single rank.

We note that the variable PYTHONUSERBASE is less well-
known, documented only in the site package, but not in the
Python command-line help or man pages. If the variable is
not set, Python will search for packages from the user’s home
directory SHOME / . 1local/. Unfortunately, the home file-system
is typically the slowest one in a Peta-scale system. This directory
is not part of the application, therefore we purge this variable
by setting it to an invalid location on the local file system, the
root of the broadcast destination. We also purge PYTHONPATH
in the same manner, since all packages are located at the same
place. The variable PYTHONPATH can be very long on systems
where each Python package is provided as an individual module
of the modules system. This negtively impacts the performance
of launching Python applications, as we see in Figure 1, which
clearly shows that the length of PYTHONPATH has a huge impact
on the number of file system operations that occur during start-up.

Launching the Python application

We launch the Python application via the standard python-mpi
wrapper provided by mpi4py. We emphasize that no modifica-
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Fig. 2: Three tiers of bundles. The most stable component (bottom of
the pyramid, Tier 1) takes the most effort to build. The least stable
component (top of the pyramid, Tier 3), takes the least effort to
bundle. The split into three tiers allows the developers to save time in
maintaining the bundles.

tions to the python-mpi wrapper or to the user application are
needed in our approach.

It is important to be aware that Python prepends the parent
directory of the start-up script to the search path. If the start-up
script of the application resides on a shared file system, the access
to this directory will slow down the application launch. As an
alternative, the application script (along with the full directory
tree) can also be bundled and delivered via python-mpi-bcast
before the launch. This is demonstrated in the example in Section
5, and we will discuss this case in more detail in the next section.

On a Cray system, the Python interpreter (usually
python-mpi) must reside in a location that is accessible by the
job manager node, because it will be delivered via the standard
application launch process.

Three-tiers of bundles

Building bundles takes time and shifts the focus of the developer
from application development to interfacing with the system. We
therefore recommend to organize the components of an application
into a three-tier system to minimize the redundant efforts required
to to create bundles. The three-tier system is illustrated in Figure
2, and we describe the rationale and definitions in the following
sections.

Tier 1 components

Tier 1 components consist of the Python interpreter, standard
runtime libraries, and stable dependencies (dependencies that
changes infrequently, for example, numpy, scipy, mpi4py, hSpy).
On a conda based Python distribution, the Tier 1 components
map to the packages included in a conda environment. These
components provide a basic Python computing environment, take
the most time to install, yet barely change during the life-cycle of
a project. Most super-computing facilities already maintain some
form of these packages with the modules system, e.g. NCSA has
a comprehensive set of Python packages [Ms14], and NERSC has
the anaconda 2 and 3 based Python distribution.

It is straightforward to create bundles of these pre-installed
components. We provide the bundle command with python-mpi-
bcast for creating a bundle from a pre-installed 'modules’ path. It
is a good practice to create one bundle for each 'modules’ path.
The process can be time consuming, even though it does not invole
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compiling any source code packages. For example, creating a Tier
1 bundle from a full binary anaconda installation typically takes 5
minutes at NERSC facilities.

Tier 2 components

Tier 2 components consist of unstable dependencies of the appli-
cation. These include packages used or developed specifically for
the particular application, which are usually neither part of the
conda distribution nor deployed at the computing system by the
facility. Tier 2 components update frequently during the life-cycle
of a project.

The difference in update-frequency means that Tier 2 compo-
nents should not be bundled with the Tier 1 components. Since
Tier 2 components are usually much smaller and thus faster to
bundle than Tier 1 components, bundling them separately reduces
the overhead for running and testing the application live at the
supercomputing facility.

We provide a pip wrapper script bundle-pip with python-
mpi-bcast to build bundles for the Tier 2 components. A good
practice is to create a single bundle for all of the Tier 2 components
with one invocation to the tar-pip.sh wrapper.

Tier 3 components

Tier 3 components are the application itself and other non-package
dependencies. These include the main script and files in the same
directory as the main script. The Tier 3 components change most
frequently among the three tiers during the life cycle of a project.
As Tier 3 components mature and receive less frequent changes
they should be migrated into Tier 2, following the usual software
refactoring practices.

We implement two strategies for Tier 3 components. The
simple strategy is to leave these files at the original location
in the shared file system. In this case, Python will prepend the
parent directory of the main script to the search path, not fully
bypassing the shared file system. We find that the extra cost due to
this additional search is usually small. However, when the system
becomes highly congested (an ironic example is when another user
attempts to start a large Python job without using our solution),
the start-up time can observe a significant slow down.

A consistently reliable start-up time is obtained if Tier 3
components are also bundled and delivered to the local file system
(mirror strategy). The location of the main script in the job script
should be modified to reflect this change. Because the Tier 3 com-
ponents are the most lightweight, typically consisting of only a few
files, a good practice is to create the bundle automatically in the job
script, without requiring the developer to manually create a bundle
before every job submission. We provide a helper command mirror
that implementes the strategy. The mirror strategy is demonstrated
in the next section with examples.

Example Scripts
Generic Cray Systems

In this section, we show an example SLURM job script on a Cray
XC 30 system. The script demonstrates the non-invasive nature
of our method. After the bundles are built, a few extra lines are
added to the job script to enable python-mpi-bcast and deliver the
three tiers of components. The user application does not need to be
specifically modified for python-mpi-bcast. We emphasize that the
job script runs in the user’s security context, without any special
requirements from the facility.
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# Script without NERSC
# Modify and adapt to use on a general
# HPC system

integration

#! /bin/bash

#SBATCH —-n 2048

#SBATCH -p debug

export PBCAST=/usr/common/contrib/bccp/python-mpi-bcast
source SPBCAST/activate.sh \

/dev/shm/local "srun -n 1024"

# Tier 1 : anaconda

bcast -v 5T/2.7-anaconda.tar.gz \
ME/fitsio-0.9.8.tar.gz

# Tier 2 : cC

nly used packages
# e.g. installed in $PYTHONUSERBASE
bcast-userbase

# Tier 3 : User application
mirror /home/mytestapp/ \
testapp bin

# Launch
time srun -n 1024 python-mpi
/dev/shm/local/bin/main.py

Integration with NERSC Facilities

On the NERSC systems where python-mpi-bcast was

originally developed, we also provide a default installation of

python-mpi-bcast that is integrated with the modules

system and the Anaconda based Python installations. The full

integration source code is hosted together in the main python-

mpi-bcast repository and can be easily adapted to other systems.
The following script provides an example for using

python-mpi-bcast in a pre-configured system. Note that the

Python runtime environment (along with shared libraries from the

Cray Linux Environment) are automatically delivered. The impact

on the user application is limited to two lines in the job script: one

line for enabling python-mpi-bcast and the other line to mirror the

application to a local file system with the mirror command.

#! /bin/bash

-N 2048

#SBATCH -p debug

#SBA

# select the Python environment
module load python/3.4-anaconda

# NERSC integration
PBCAST=/usr/common/contrib/bccp/python-mpi-bcast
source S$PBCAST/nersc/activate.sh

# Directly deliver the user application
mirror /home/mytestapp/ \
testapp bin

the
time srun -n 1024 python-mpi \
/dev/shm/local/bin/main.py

# launch mirrored application

Benchmark and Performance

In Figure 3 and 4, we show the measurement of wall clock time
of python-mpi-bcast for a dummy Python 2 application on the
Cray XC30 system Edison at NERSC and the Cray XT system
BlueWaters at NCSA. The dummy application imports the scipy
package on all ranks before exiting. We point out that in the
benchmark it is important to import Python packages as done in

103 | . import scipy i
* * bcast ]
[ X X bcast/MPI_Bcast
L + + bcast/tar xzvf * ¢
102 | # ¢ total nl
0 F P *
> : ”Q . it
£ [ XX XS4 *
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Fig. 3: Time measurements of python-mpi-bcast on Edison, a Cray XC
30 system at NERSC. We perform tests launching a dummy Python 2
application (that imports scipy) with up to 127,440 MPI ranks. The
total time in the bcast job step is shown in stars. The two major time
consuming components of bcast, the call to MPI_Bcast (X ) and the
call to the tar command, are also shown (+). Note that large jobs
incur a large overhead in the job step such that the sum of the latter
differs from the job step times. The total time of the job step that
launches the dummy application is shown in squares. The total time
of both job steps is shown in diamonds.

a real application, because most of the metadata requests are to
locate the Python scripts of packages rather than dynamic libraries
associated with extension modules. Therefore, a benchmark based
on performance of simulating dynamic libraries [LAdS™14]
does not properly represent the true launch time of a realistic
Python application. We do not perform another set of benchmarks
for Python 3, but note that the stream-lined import system in
Python 3 could perform better than Python 2. [van(2]

The job includes two steps: the first involves the statically
linked bcast program that delivers the bundles to the computing
nodes (which does not involve Python), and the second launches
the Python application.

The bcast step consists of two major components, a call to
MPI_Bcast and a call to 1ibarchive[Tim09] to inflate the
tar ball. We observe that the scaling in the MPI_Bcast function
is consistent with the expected O[logN] scaling of a broadcast
algorithm. The call to inflate the tar ball remains roughly constant,
but shows fluctuations for larger runs on the XC30 system. This is
likely because the job has hit a few nodes that are in a non-optimal
state, which is a common effect in jobs running near the capacity
of the system.

As a further evidence, the fluctuation in the large jobs corre-
lates with an increase in the time spent in the ’tar’ stage of the
bcast time step, as seen by comparing the tests with 49,152 ranks
(2048 nodes), 98,304 ranks( 4096 nodes), and 127,440 ranks (5310
nodes).

The time spent in the Python application (second job step)
increases slowly as well, but the increase becomes more significant
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Fig. 4: Time measurements of python-mpi-bcast on BlueWaters. a
Cray XT system at NCSA. We perform tests launching a dummy Python
2 application (that imports scipy) with up to 127,440 MPI ranks. The
total time in the bcast job step is shown in stars. The two major time
consuming components of bcast, the call to MPI_Bcast (X ) and the
call to the 'tar’ command, are also shown (+). Note that large jobs
incur a large overhead in the job step such that the sum of the latter
differs from the job step times. The total time of the job step that
launches the dummy application is shown in squares. The total time
of both job steps is shown in diamonds.

as the size of the job approaches the capacity of the system. An
additional cause of the increase can be attributed to the remaining
few requests to the shared file system for unbundled shared
libraries and Python configuration files that are not rerouted. For
example, the configuration of mpidpy package is hard coded on
the shared file system.

For jobs with less than 1024 nodes, the timing is close to
1 minute. In any case, the largest test on Edison that employs
127,440 MPI ranks (5310 nodes), spent 4 minutes in total for
launching the application. We note that the slightly smaller job
that employs 98,304 ranks (4096 nodes) spent less than 2 minutes
in total.

Conclusions

We introduce python-mpi-bcast, a solution to start native
Python applications on large, high-performance computing sys-
tems.

We summarize and review a set of previous solutions devel-
oped over the years and with varying usage in the community.
Their limitations in terms of practical usability and efficiency are
discussed.

Our solution python-mpi-bcast does not suffer from any
of the drawbacks of previous solutions. Using our tool, the runtime
environment of the Python application on Peta-scale systems is
fully compatible with the the mainstream Python environment.
The entire solution can be added as a preamble to a user job
script to enhance the speed and reliability of launching Python
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applications on any scales, from a single rank to thousands of
ranks.

Our solution makes use of the established infrastructure of
the mainstream Python community to reroute support packages of
an application from the shared file system to local file systems
per node via bundles. The solution is compatible with Python 2
and 3 at the same time. Almost all accesses to the shared file
system are eliminated, which avoids the main bottleneck typically
encountered during the start-up stage of a Python application.
We have performed tests up to 127,440 ranks on a Cray XC 30
system (limited by the available cores on the Edison system at
NERSC) and on a Cray XT system BlueWaters at NCSA. There
is no fundamental reason that the method does not scale to even
larger jobs, given that the only non-local operation is a broadcast
operation.

We introduce a three-tier bundling system that reflects the
evolutionary nature of an application. Different components of
an application are bundled separately, reducing the preparation
overhead for launching an application during the development
stage. The three-tier system is an improvement from the all-in-
one approaches such as [Frol13] or [JCGB15]. We in fact advocate
adopting a similar system in general-purpose, images-based ap-
plication deployment infrastructure (e.g. in cloud computing). We
note that a large burden from the users can be further removed if
the computing facilities maintain the Tier 1 bundle(s) in parallel
with their existing modules system. Further integration into
the job system is also possible to provide a fully opaque user
experience.

Finally, with few modifications, python-mpi-bcast can
be easily generalized to support applications written in other
interpreted languages such as Julia and R. In addition, we highly
welcome reimplementing the stratagies documented in the pa-
per as an extension of the Conda package distribution system,
and provide the full source code of python-mpi-bcast at
https://github.com/rainwoodman/python-mpi-bcast.

Given that large-scale Python applications can be launched
extremely efficiently on state-of-the-art super-computing systems,
it is the time for the high-performance computing community to
begin serious development of complex computational applications
at large scale with Python.
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