PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

25

PyEDA: Data Structures and Algorithms for Electronic
Design Automation

Chris Drake**

https://www.youtube.com/watch?v=cl jDuKOouRs

Abstract—This paper introduces PyEDA, a Python library for electronic design
automation (EDA). PyEDA provides both a high level interface to the repre-
sentation of Boolean functions, and blazingly-fast C extensions for fundamental
algorithms where performance is essential. PyEDA is a hobby project which has
the simple but audacious goal of improving the state of digital design by using
Python.

Introduction

Chip design and verification is a complicated undertaking. You
must assemble a large team of engineers with many different
specialties: front-end design entry, logic verification, power op-
timization, synthesis, place and route, physical verification, and
so on. Unfortunately, the tools, languages, and work flows offered
by the electronic design automation (EDA) industry are, in this
author’s opinion, largely a pit of despair. The languages most
familiar to chip design and verification engineers are Verilog
(now SystemVerilog), C/C++, TCL, and Perl. Flows are patched
together from several proprietary tools with incompatible data rep-
resentations. Even with Python’s strength in scientific computing,
it has largely failed to penetrate this space. In short, EDA needs
more Python!

This paper surveys some of the features and applications
of PyEDA, a Python library for electronic design automation.
PyEDA provides both a high level interface to the representation
of Boolean functions, and blazingly-fast C extensions for funda-
mental algorithms where performance is essential.

PyEDA is a hobby project, but in the past year it has seen
some interesting adoption from University students. For example,
students at Vanderbilt University used it to model system reliabil-
ity [Nan14], and students at Saarland University used as part of a
fast DQBF Refutation tool [Fin14].

Even though the name "PyEDA" implies that the library is
specific to EDA, it is actually general in nature. Some of the
techniques used for designing and verifying digital logic are
fundamental to computer science. For example, we will discuss
applications of Boolean satisfiability (SAT), the definitive NP-
complete problem.

PyEDA’s repository is hosted at https://github.com/cjdrake/
pyeda.git, and its documentation is hosted at http://pyeda.rtfd.org.

x Corresponding author: cjdrake @ gmail.com
1 Drake Enterprises

Copyright © 2015 Chris Drake. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Note About Code Blocks

This document contains several Python code blocks. For the sake
of simplicity, we assume you have PyEDA installed, and have
prepared an interactive terminal by executing:

>>> from pyeda.inter import =

Boolean Variables and Functions

At its core, PyEDA provides a powerful API for creating and
manipulating Boolean functions.

First, let us provide the standard definitions.

A Boolean variable is an abstract numerical quantity that can
take any value in the set {0,1}. A Boolean function is a rule that
maps points in an N-dimensional Boolean space to an element
in {0,1}. Formally, f : BY = B, where BY means the Cartesian
product of N sets of type {0,1}. For example, if you have three
input variables, a,b, c, each defined on {0, 1}, then B> = {0,1}3 =
{(0,0,0),(0,0,1),...,(1,1,1)}. B* is the domain of the function
(the input part), and B = {0, 1} is the range of the function (the
output part). The set of all input variables a function depends on
is called its support.

There are several ways to represent a Boolean function, and
different data structures have different tradeoffs. In the following
sections, we will give a brief overview of PyEDA’s API for
logic expressions, truth tables, and binary decision diagrams. In
addition, we will provide implementation notes for several useful
applications.

Logic Expressions

Logic expressions are a powerful and flexible way to represent
Boolean functions. They are implemented as a graph, with atoms
at the branches, and operators at the leaves. Atomic elements
are literals (variables and complemented variables), and constants
(zero and one). The supported algebraic operators are Not, Or,
And, Xor, Equal, Implies, and ITE (if-then-else).

For general purpose use, symbolic logic expressions are
PyEDA'’s central data type. Since release 0.27, they have been
implemented using a high performance C library.

Expressions are fast, and reasonably compact. On the other
hand, they are generally not canonical, and determining expression
equivalence is NP-complete. Conversion to a canonical expression
form can result in exponential size.


https://www.youtube.com/watch?v=cljDuK0ouRs
https://github.com/cjdrake/pyeda
https://github.com/cjdrake/pyeda.git
https://github.com/cjdrake/pyeda.git
http://pyeda.rtfd.org
mailto:cjdrake@gmail.com

26

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Name OR AND

Commutativityx+y =y +x X-y=y-X

Associativity x+(y+2z) = (x+y)+z x-(yz)=(xy)z

Identity x+0=x x-1=x

Domination x+1=1 x-0=0

Idempotence x+x=ux X X=X

Inverse x+x =1 x-xX=0

TABLE 1: Boolean OR/AND Identities

Construction

To construct a logic expression, first start by defining some
symbolic variables of type Expression:
>>> a, b, ¢, d =

map (exprvar, 'abcd')

By overloading Python’s logical operators, you can build expres-
sion algebraically:

>>> F = a ~b & ¢ © ~d

Use methods from the Function base class to explore the
function’s basic properties:

>>> F.support

frozenset ({a, b, c, d})

>>> list (F.iter_relation())
[({a: 0, b: O, c: 0, d: 0}, 0),
({a: 1, b: 0, c: 0, d: 0}, 1),
({a: 0, b: : 0, d: 0}, 0),

({a: 0, b: 1, c: 1, d: 1}, 0),

({a: 1, b: 1, c: 1, d: 1}, 1)]
There are also several factory functions that offer more power than
Python’s built-in binary operators. For example, operators such as
Or, And, and Xor allow you to construct N-ary expressions:
>>> a ~ b "~ c
Xor (Xor (a, b), c)
>>> Xor (a, b, c)
Xor (a, b, <)
Also, functions such as OneHot, and Majority implement
powerful, higher order functions:

>>> OneHot (a, b, c)

And (Or (~a, ~b), Or(~a, ~c), Or(~b, ~c), Or(a, b, c))
>>> Majority(a, b, c¢)

Or (And(a, b), And(a, c), And(b, c))

Simplification

The laws of Boolean Algebra can be used to simplify expressions.
For example, Table 1 enumerates a partial list of Boolean identities
for the Or and And operators.

Most laws are computationally easy to apply. PYEDA allows
you to construct unsimplified Boolean expressions, and provides
the simplify method to perform such inexpensive transforma-
tions.

For example:
>>> F = ~a a
>>> F
Or (~a, a)
>>> F.simplify ()

1

>>> Xor (a,
~C

~b, Xnor(~a, b), c)

Performing simplification can dramatically reduce the size and
depth of your logic expressions.

Fig. 1: Majority expression rendered by Graphviz

Transformation

PyEDA also supports a growing list of expression transformations.
Since expressions are not a canonical form, transformations can
help explore tradeoffs in time and space, as well as convert an
expression to a form suitable for a particular algorithm.

For example, in addition to the primary operators Not,
Or, and And, expressions also natively support the secondary
Xor, Equal, Implies, and ITE (if-then-else) operators. By
transforming all secondary operators into primary operators, and
pushing all Not operators down towards the leaf nodes, you arrive
at what is known as "negation normal form".

>>> F = Xor(a >> b, c.eqg(d))

>>> F.to_nnf ()

And (Or (And (Or (c, d), Or(~c, ~d)), And(a, ~b)),
Or (~a, b, And(~c, ~d), And(c, d)))

Currently, expressions also support conversion to the following
forms:

« Binary operator (only two args per Or, And, etc)
« Disjunctive Normal Form (DNF)
¢ Conjunctive Normal Form (CNF)

DNF and CNF expressions are "two-level" forms. That is, the
entire expression is either an Or of And clauses (DNF), or an And
of Or clauses (CNF). DNF expressions are also called "covers",
and are important in both two-level and multi-level logic mini-
mization. CNF expressions play an important role in satisfiability.
We will briefly cover both of these topics in subsequent sections.

Visualization

Boolean expressions support a to_dot () method, which can be
used to convert the graph structure to DOT format for consumption
by Graphviz. For example, Figure 1 shows the Graphviz output on
the majority function in three variables:

>>> F = Majority(a, b, c)
>>> F.to_dot ()

The expr Function

The expr function is a factory function that attempts to transform
any input into a logic expression. It does the obvious thing when
converting inputs that look like Boolean values:

>>> expr (False)

0
>>> expr (1)



PYEDA: DATA STRUCTURES AND ALGORITHMS FOR ELECTRONIC DESIGN AUTOMATION 27

1
>>> expr("0")
0

But it also implements a full top-down parser of expressions. For
example:

>>> expr ("a b "~ c

& d")
Or (a, Xor (b, And(c, d))

)

See the documentation for a complete list of supported operators
accepted by the expr function.

Boolean Satisfiability

One of the most interesting questions in computer science is
whether a given Boolean function is satisfiable, or SAT. That is,
for a given function F, is there a set of input assignments that will
produce an output of 1?

PyEDA Boolean functions implement two functions for this
purpose, satisfy_one, and satisfy_all. The former an-
swers the question in a yes/no fashion, returning a satisfying input
point if the function is satisfiable, and None otherwise. The latter
returns a generator that will iterate through all satisfying input
points.

SAT has all kinds of applications in both digital design and
verification. In digital design, it can be used in equivalence check-
ing, test pattern generation, model checking, formal verification,
and constrained-random verification, among others. SAT finds its
way into other areas as well. For example, modern package man-
agement systems such as apt and yum might use SAT to guarantee
that certain dependencies are satisfied for a given configuration.

The pyeda.boolalg.picosat module provides an in-
terface to the modern SAT solver PicoSAT [Bie08]. When a
logic expression is in conjunctive normal form (CNF), calling the
satisfy_« methods will invoke PicoSAT transparently.

For example:

>>> F = OneHot (a, b, c)
>>> F.is_cnf ()
True

>>> F.satisfy_one()
{a: 0, b: 0, c: 1}

>>> list (F.satisfy_all())
[{a: 0, b: 0, c: 1},

{a: 0, b: 1, c: 0},

{a: 1, b: 0, c: 0}]

When an expression is not a CNF, PyEDA will resort to a
standard, backtracking algorithm. The worst-case performance of
this implementation is exponential, but is acceptable for many
real-world scenarios.

Tseitin Transformation

The worst case memory consumption when converting to CNF
is exponential. This is due to the fact that distribution of M Or
clauses over N And clauses (or vice-versa) requires M x N clauses.

>>> Or (And(a,
And (Or (a, c),

b), And(c,
Or (b, c¢),

d)) .to_cnf ()
or(a, d), or(b, d))
Logic expressions support the t seitin method, which perform’s
Tseitin’s transformation on the input expression. For more infor-
mation about this transformation, see [Tsc68].

The Tseitin transformation does not produce an equivalent
expression, but rather an equisatisfiable CNF, with the addition
of auxiliary variables. The important feature is that it can convert
any expression into a CNF, which can be solved using PicoSAT.

>>> F = Xor(a, b, c, d)

>>> soln = F.tseitin() .satisfy_one ()
>>> soln

{a: O,

aux([0]: 1,

aux[1l]: 1,

You can safely discard the aux variables to get the solution:

>>> {k: v for k, v in soln.items () if k.name !=

{a: 0, b: 0, c: 0, d: 1}

'aux'}

Truth Tables

The most straightforward way to represent a Boolean function is to
simply enumerate all possible mappings from input assignment to
output values. This is known as a truth table, It is implemented as a
packed list, where the index of the output value corresponds to the
assignment of the input variables. The nature of this data structure
implies an exponential size. For N input variables, the table will
be size 2. It is therefore mostly useful for manual definition and
inspection of functions of reasonable size.

To construct a truth table from scratch, use the t ruthtable
factory function. For example, to represent the And function:

>>> truthtable([a, b], [False, False, False, True])
# This also works
>>> truthtable([a, b], "0001")

You can also convert expressions to truth tables using the
expr2truthtable function:

>>> expr2truthtable (OneHotO (a, b, c))

HFERRRPROOOOAONON
PR OoOORr PR OOUT
HFOoOrOoORrOR O
OO O OR K E

Partial Definitions

Another use for truth tables is the representation of partially
defined functions. Logic expressions and binary decision diagrams
are completely defined, meaning that their implementation imposes
a complete mapping from all points in the domain to {0, 1}. Truth
tables allow you to specify some function outputs as "don’t care".
You can accomplish this by using either "—" or "X" with the
truthtable function.

For example, a seven segment display is used to display
decimal numbers. The codes "0000" through "1001" are used
for 0-9, but codes "1010" through "1111" are not important, and
therefore can be labeled as "don’t care".
>>> X = ttvars('x', 4)

>>> F1 truthtable (X,
>>> F2 = truthtable (X,

To convert a table to a two-level, disjunctive normal form (DNF)
expression, use the t ruthtable2expr function:

>>> truthtableZexpr (F1)

Or (And(x[0], ~x[1], x[2], ~x[31),
And(~x[0], x[1], x[2], ~x[3]),
And(x[0], x[1]1, x[2], ~xI[31]),
And (~x[0], ~x[1], ~x[2], x[3]),
And(x[0], ~x[1], ~x[2], x[31]))


http://pyeda.readthedocs.org/en/latest/expr.html#from-the-expr-function

28

Two-Level Logic Minimization

When choosing a physical implementation for a Boolean function,
the size of the logic network is proportional to its cost, in terms of
area and power. Therefore it is desirable to reduce the size of that
network.

Logic minimization of two-level forms is an NP-complete
problem. It is equivalent to finding a minimal-cost set of subsets
of a set S that covers S. This is sometimes called the "paving
problem", because it is conceptually similar to finding the cheapest
configuration of tiles that cover a floor. Due to the complexity of
this operation, PYEDA uses a C extension to the Berkeley Espresso
library [Bra84].

After calling the espresso_tts function on the F1 and F2
truth tables from above, observe how much smaller (and therefore
cheaper) the resulting DNF expression is:

>>> F1M, F2M = espresso_tts (Fl, F2)
>>> F1M
Or(x[3], And(x[0], x[2]), And(x[1], x[2]))

Binary Decision Diagrams

A binary decision diagram is a directed acyclic graph used to
represent a Boolean function. They were originally introduced by
Lee, and later by Akers. In 1986, Randal Bryant introduced the
reduced, ordered BDD (ROBDD).

The ROBDD is a canonical form, which means that given an
identical ordering of input variables, equivalent Boolean functions
will always reduce to the same ROBDD. This is a desirable prop-
erty for determining formal equivalence. Also, it means that un-
satisfiable functions will be reduced to zero, making SAT/UNSAT
calculations trivial. Due to these auspicious properties, the term
BDD almost always refers to some minor variation of the ROBDD
devised by Bryant.

The downside of BDDs is that certain functions, no matter
how cleverly you order their input variables, will result in an
exponentially-sized graph data structure.

Construction

Like logic expressions, you can construct a BDD by starting with
symbolic variables and combining them with operators.
For example:

>>> a, b, c = map(bddvar, 'abc')
>>> F = a & b & c

>>> F.support

frozenset ({a, b, c})

>>> F.restrict({a: 1, b: 1})

c

>>> F & 0

0
The expr2bdd function can also be used to convert any expres-
sion into an equivalent BDD:

>>> expr2bdd (expr (" (s ? dl : dO)
1

<=> (s & dl

Equivalence

As we mentioned before, BDDs are a canonical form. This makes
checking for SAT, UNSAT, and formal equivalence trivial.

>>> ~a & a

0

>>> ~a & ~b

1

>> F = a ~ b

~a & b a & ~b a &b

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 2: Majority BDD rendered by Graphviz

>>> G = ~a & b a & ~b
>>> F.equivalent (G)
True

>>> F is G

True

PyEDA’s BDD implementation uses a unique table, so F and G
from the previous example are actually just two different names
for the same object.

Visualization

Like expressions, binary decision diagrams also support a
to_dot () method, which can be used to convert the graph struc-
ture to DOT format for consumption by Graphviz. For example,
Figure 2 shows the Graphviz output on the majority function in
three variables:

>>> exprz2bdd (expr ("Majority(a, b, c)")).to_dot ()

Future Directions for Function Data Structures

The implementation of Boolean functions is a vast field, and
PyEDA is really only scratching the surface. In this section we
will describe several directions for improvement.

Due to their fundamentally exponential size, truth tables have
limited application. It is more common for tabular function rep-

| sentations to use an implicant table, sometimes referred to as

a "cover". PyEDA has some support for implicant tables in the
Espresso C extension, but this functionality is not exposed to the
user interface.

PyEDA’s current implementation of BDDs is written in pure
Python. Given that BDDs are memory limited, the PyObject
data type imposes a hefty overhead on the size of the DAG. Also,
there are currently no complemented edges or automatic variable
reordering, features that more complete decision diagram libraries
implement. One solution is to implement a Python C extension to
a more complete and high performance library such as [CUDD].



PYEDA: DATA STRUCTURES AND ALGORITHMS FOR ELECTRONIC DESIGN AUTOMATION 29

There are several function representations left for considera-
tion. Within the realm of decision diagrams, we have not con-
sidered algebraic decision diagrams (ADDs), or zero-suppressed
decision diagrams (ZDDs). Within the realm of graph-based struc-
tures primarily for logic synthesis, we have not considered the
and-inverter-graph (AIG), or the majority-inverter-graph (MIG).

Function Arrays

When dealing with several related Boolean functions, it is usually
convenient to index the inputs and outputs. For this purpose,
PyEDA includes a multi-dimensional array (MDA) data type,
called an farray (function array).

The most pervasive example is computation involving any
numeric data type. For example, let’s say you want to add two
numbers A, and B. If these numbers are 32-bit integers, there are
64 total inputs, not including a carry-in. The conventional way of
labeling the input variables is ag, a1, ...,as;, and by, by,...,b3;.

Furthermore, you can extend the symbolic algebra of Boolean
functions to arrays. For example, the element-wise XOR of A and
B is also an array.

In this section, we will briefly discuss farray construction,
slicing operations, and algebraic operators. Function arrays can
be constructed using any Function implementation, but for
simplicity we will restrict the discussion to logic expressions.

Construction

The farray constructor can be used to create an array of
arbitrary expressions.

>>> a, b, ¢, d = map(exprvar, 'abcd')

>>> F = farray([a, b, And(a, c), Or(b, d)1)
>>> F.ndim

1

>>> F.size

4

>>> F.shape

((0, 4), )

As you can see, this produces a one-dimensional array of size 4.

The shape of the previous array uses Python’s conventional,
exclusive indexing scheme in one dimension. The farray con-
structor also supports multi-dimensional arrays:

>>> G = farray ([ [a, b],
[And(a, c), Or(b, d)],
[Xor (b, c¢), Equal(c, d)] 1)
>>> G.ndim
2
>>> G.size
6
>>> G.shape
(0, 3), (0, 2))

Though arrays can be constructed from arbitrary functions in
arbitrary shapes, it is far more useful to start with arrays of
variables and constants, and build more complex arrays from them
using operators.

To construct arrays of expression variables,
exprvars factory function:

use the

>>> xs = exprvars('x', 8)
>>> XS
farray ([x[0], x[1], x[2], x[3], x[4], x[3], x[6], x[7]])e¢ xtime (b
>>> ys = exprvars('y', 4, 4)
farray([[y[0,0], y[0O,1], y[0,2], y[0,31],
lyl(1,0], y(1,11, yli1,21, y(1,31],
lylz,0], yi2,11, vyl2,21, yl(2,31],
ly(3,0], y[3,11, y[3,2], yI[3,3]11])

Use the uint2exprs and int2exprs function to convert inte-
gers to their binary encoding in unsigned, and twos-complement,
respectively.
>>> uint2exprs (42, 8)
farray(ro, 1, 0, 1, 0, 1, 0, 0]
>>> int2exprs(-42, 8)

1

farray ([0, 1, 1, 0, 1, 0, 1, 1]

Note that the bits are in order from LSB to MSB, so the con-
ventional bitstring representation of —42 in eight bits would be
"11010110".

Slicing

PyEDA'’s function arrays support numpy-style slicing operators:

>>> xs = exprvars('x', 4, 4, 4)

>>> xs[1,2,3]

xs[1,2,3]

>>> xs[2,:,2]

farray([x[2,0,2], x[2,1,2], x[2,2,2], x[2,3,211)

>>> xs[...,1]

farray([[x[0,0,1], x[0,1,1], x[0,2,1], x[0,3,111],
[x[1,0,1], xI[1,1,1], xI[1,2,1], xI[1,3,1]],
(x[2,0,11, x([2,1,11, x[2,2,1], x[2,3,111,
[x[3,0,1], xI[3,1,1], xI[3,2,1], xI[3,3,1111])

A special feature of PyEDA farray slicing that is useful for
digital logic is the ability to multiplex (mux) array items over a
select input. For example, to create a simple, 4:1 mux:

>>> X = exprvars('x', 4)
>>> S = exprvars('s', 2)
>>> X[S]

Or (And (x[0], ~s[0], ~s[1]),
And(x[1], s[0], ~s[1l]),
And(x[2], ~s[0], s[1l]),
And(x[3], s[0], s[1]))

Algebraic Operations

Function arrays are algebraic data types, which support the fol-
lowing symbolic operators:

e unary reductions (uor, uand, uxor, ...)
o Dbitwise logic (~ | & ")

e shifts (<< >>)

e concatenation (+)

e repetition (*)

Combining function and array operators allows us to imple-
ment a reasonably complete domain-specific language (DSL) for
symbolic Boolean algebra in Python.

Consider, for example, the implementation of the xtime
function, which is an integral part of the AES algorithm.

The Verilog implementation, as a function:

[7:0]
int n);

function automatic logic
xtime (logic [7:0] b,
xtime = b;
for (int i = 0; 1 < n; i++)
xtime = {xtime[6:0], 1'b0O}
A (8'hlb & {8{xtime[7]1}1});
endfunction

And the PyEDA implementation:

, n):

for _ in range(n):
b = (exprzeros(l) + b[:7]
~ uint2exprs (0xlb, 8) & b[7]%8)
return b



30

Practical Applications

Arrays of functions have many practical applications. For exam-
ple, the pyeda.logic.addition module contains implemen-
tations of ripple-carry, brent-kung, and kogge-stone addition logic.
Here is the digital logic implementation of 242 = 4:

>>> from pyeda.logic.addition import kogge_stone_add
>>> A = exprvars('a', 8)
>>> B = exprvars('b', 8)

>>> S, C = kogge_stone_add (A, B)
>>> S.vrestrict ({A: "01000000", B:
farray ([0, 0, 1, 0, 0, 0, 0, 01])

"01000000"})

Related Work

It is truly an exciting time for Python in digital logic. There are
several available libraries implementing features that are competi-
tive with PyEDA’s.

SymPy was an early influence for PyEDA’s design [Sympy].
It features a logic module that implements symbolic logic expres-
sions. SymPy is implemented in 100% pure Python, and therefore
will have some trouble competing with the raw performance of
PyEDA’s C extensions.

Another tremendous influence was Ilan Schnell’s pycosat
module [Pycosat]. It implements a similar Python interface to the
PicoSAT SAT solver [Bie08], but does not delve into the area of
symbolic Boolean algebra.

Steve Haynal and others at the University of California Santa
Barbara have implemented PyCUDD, a Python binding to the
well-known [CUDDY] library.

The Sage Math project implements logic and sat modules with
similar features to PyEDA’s.

Lastly, there are a few notable Python bindings to other SAT
libries. python-minisat, and pycryptosat implement Python wrap-
pers around MiniSAT and CryptoMiniSAT, respectively. Also,
Microsoft recently open sourced the truly excellent Z3 theorem
prover library, which has its own SMT SAT solver and Python
bindings.

REFERENCES
[Ake78] S.B. Akers, Binary Decision Diagrams, IEEE Transactions on
Computers, Vol. C-27, No. 6, June 1978, pp. 509-516.

R. I. Bahar, E. A. Frohm, C. M. Gaona, G. D. Hachtel, E. Macii,
A. Pardo, and F. Somenzi. Algebraic Decision Diagrams and
Their Applications, Proceedings of the International Conference
on Computer-Aided Design, pages 188-191, Santa Clara, CA,
November 1993.

A. Biere. PicoSAT Essentials, Journal on Satisfiability, Boolean
Modeling and Computation (JSAT), vol. 4, pages 75-97, Delft
University, 2008.

R. Brayton, G. Hatchel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis,
Kluwer Academic Publishers, Boston, MA, 1984.

R.E. Bryant. Graph-based algorithms for Boolean function ma-
nipulation, IEEE Transactions on Computers, C-35(8):677-691,
August 1986. http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
J. Decaluwe. MyHDL: A Python-based Hardware Description
Language, Linux Journal, November 2004. http://www.myhdl.org
B. Finkbeiner, L. Tentrup, Fast DOBF Refutation, SAT 2014 https:
/Iwww.react.uni-saarland.de/tools/bunsat/

Graphviz - Graph Visualization Software http://www.graphviz.
org/

D. Lockhart, G. Zibrat, C. Batten. PyMTL: A Unified Frame-
work for Vertically Integrated Computer Architecture Research,
Int’l Symp. on Microarchitecture (MICRO-47), December 2014.
http://csl.cornell.edu/~cbatten/pdfs/lockhart-pymtl-micro2014.pdf

[Bah93]

[Bie08]

[Bra84]

[Bry86]

[Dec04]
[Fin14]
[Graphviz]

[Loc14]

[Min93]

[Nan14]

[Pycosat]
[Ros03]

[CUDD]
[Sympy]

[Lee59]

[Tse68]

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

S.I. Minato. Zero-suppressed BDDs for set manipulation in com-
binatorial problems, In Proceedings of the Design Automation
Conference, pages 272-277, Dallas, TX, June 1993.

S. Nannapaneni, et al. A Model-Based Approach for
Reliability  Assessment in ~ Component-Based  Systems,
https://www.phmsociety.org/sites/phmsociety.org/files/phm_
submission/2014/phmc_14_025.pdf

Ilan Schnell https://github.com/ContinuumIO/pycosat/

K. Rosen. Discrete Mathematics and its Applications McGraw
Hill, 2003.

F. Somenzi. CUDD: CU Decision Diagram Package, http://vlsi.
colorado.edu/~fabio/CUDD/

Sympy - Python library for symbolic mathematics http://docs.
sympy.org

C.Y. Lee, Representation of Switching Circuits by Binary-Decision
Programs, Bell System Technical Journal, Vol. 38, July 1959, pp.
985-999.

G.S. Tseitin, On the complexity of derivation in propositional cal-
culus, Slisenko, A.O. (ed.) Structures in Constructive Mathematics
and Mathematical Logic, Part II, Seminars in Mathematics pp.
115-125. Steklov Mathematical Institute, 1968.


http://docs.sympy.org/dev/modules/logic.html
http://bears.ece.ucsb.edu/pycudd.html
http://doc.sagemath.org
https://github.com/tfukushima/python-minisat
https://pypi.python.org/pypi/pycryptosat
http://minisat.se/
https://github.com/msoos/cryptominisat
http://minisat.se/
http://www.cs.cmu.edu/~bryant/pubdir/ieeetc86.pdf
http://www.myhdl.org
https://www.react.uni-saarland.de/tools/bunsat/
https://www.react.uni-saarland.de/tools/bunsat/
http://www.graphviz.org/
http://www.graphviz.org/
http://csl.cornell.edu/~cbatten/pdfs/lockhart-pymtl-micro2014.pdf
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2014/phmc_14_025.pdf
https://www.phmsociety.org/sites/phmsociety.org/files/phm_submission/2014/phmc_14_025.pdf
https://github.com/ContinuumIO/pycosat/
http://vlsi.colorado.edu/~fabio/CUDD/
http://vlsi.colorado.edu/~fabio/CUDD/
http://docs.sympy.org
http://docs.sympy.org

	Introduction
	Note About Code Blocks

	Boolean Variables and Functions
	Logic Expressions
	Construction
	Simplification
	Transformation
	Visualization
	The expr Function
	Boolean Satisfiability
	Tseitin Transformation

	Truth Tables
	Partial Definitions
	Two-Level Logic Minimization

	Binary Decision Diagrams
	Construction
	Equivalence
	Visualization

	Future Directions for Function Data Structures
	Function Arrays
	Construction
	Slicing
	Algebraic Operations
	Practical Applications

	Related Work
	References

