PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

31

Scientific Data Analysis and Visualization with Python,
VTK, and ParaView

Cory Quammen®**

https://www.youtube.com/watch?v=8ugmkKaYKxM

Abstract—VTK and ParaView are leading software packages for data analysis
and visualization. Since their early years, Python has played an important role
in each package. In many use cases, VTK and ParaView serve as modules
used by Python applications. In other use cases, Python modules are used to
generate visualization components within VTK. In this paper, we provide an
overview of Python integration in VTK and ParaView and give some concrete
examples of usage. We also provide a roadmap for additional Python integration
in VTK and ParaView in the future.

Index Terms—data analysis, scientific visualization, VTK, ParaView

Introduction

The Visualization Toolkit (VTK) is an open-source, freely avail-
able software system for 3D visualization. It consists of a set of
C++ class libraries and bindings for Python and several other
languages. VTK supports a wide variety of visualization algo-
rithms for 2D and 3D scalar, vector, tensor, and volumetric data,
as well as advanced algorithms such as implicit modeling, polygon
reduction, mesh smoothing, cutting, contouring, and Delaunay
triangulation. VTK has an extensive information visualization
framework and a suite of 3D interaction widgets. The toolkit sup-
ports parallel processing and integrates with various GUI toolkits
such as Qt. Python bindings expose nearly all VTK classes and
functions, making it possible to write full VTK-based applications
exclusively in Python. VTK also includes interfaces to popular
Python packages such as NumPy and matplotlib. Support for
writing custom VTK algorithms in Python is also available.

ParaView is a scalable visualization tool based on VTK that
runs on a variety of platforms ranging from PCs to some of
the largest supercomputers in the world. The ParaView package
consists of a suite of executables for generating data visualizations
using the techniques available in VTK. ParaView executables
interface with Python in a number of ways: data sources, filters,
and plots can be defined via Python code, data can be queried
with Python expressions, and several executables can be controlled
interactively with Python commands. Batch processing via Python
scripts that are written either by hand or generated as a trace of
events during an interactive visualization session is available for
offline visualization generation.

* Corresponding author: cory.quammen@kitware.com
1 Kitware, Inc.

Copyright © 2015 Cory Quammen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

This paper is organized into two main sections. In the first
section, I introduce basic VTK usage, describe the relationship
between VTK and Python, and describe interfaces between the
two. In the second section, I detail the relationship between
ParaView and Python. Examples of Python usage in VTK 6.2 and
ParaView 4.3 are provided throughout. I also provide a roadmap
for additional Python support in VTK and ParaView.

Python and VTK
VTK Data Model

To understand Python usage in VTK, it is important to understand
the VTK data and processing models. At the most basic level, data
in VTK is stored in a data object. Different types of data objects
are available including graphs, trees, and data sets representing
spatially embedded data from sensors or simulations such as uni-
form rectilinear grids, structured/unstructured grids, and Adaptive
Mesh Refinement (AMR) data sets. This paper focuses on spatially
embedded data sets.

Each spatially embedded data set consists of cells, each of
which defines a geometric entity that defines a volume of space,
and points that are used to define the vertices of the cells.
Data values that represent a quantity, e.g. pressure, temperature,
velocity, may be associated with both cells and points. Each
quantity might be a scalar, vector, tensor, or string value. Vectors
and tensors typically have more than one numerical component,
and the quantity as a whole is known as a fuple.

The full collection of a quantity associated with points or cells
is known by a number of names including "attribute", "field",
"variable", and "array". VTK stores each attribute in a separate
data array. For a point-associated array (point array), the number
of tuples is expected to match the number of points. Likewise, for
cell-associated arrays (cell array) the number of tuples is expected
to match the number of cells.

VTK Pipeline

Data processing in VTK follows the data-flow paradigm. In this
paradigm, data flows through a sequence of processing algorithms.
These algorithms are chained together in a pipeline. At the
beginning of a pipeline, a source generates a VTK data set. For
example, an STL file reader source reads an STL file and produces
a polygonal VTK data set as an output. A filter can be connected to
the file reader to process the raw data from the file. For example, a
smoothing filter may be used to smooth the polygonal data read by
the STL reader. The output of the smoothing filter can be further

https://www.youtube.com/watch?v=8ugmkKaYKxM
mailto:cory.quammen@kitware.com

32

processed with a clipping filter to cut away part of the smoothed
data set. Results from this operation can then be saved to a file
with a file writer.

An algorithm in a pipeline produces one or more VTK data
sets that are passed to the next algorithm in the pipeline. Algo-
rithms need only update when one of their properties changes
(e.g., smoothing amount) or when the algorithm upstream of it has
produced a new data set. These updates are handled automatically
by an internal VTK pipeline executive whenever an algorithm is
updated.

Because VTK is intended to produce 3D interactive visualiza-
tions, output from the final algorithm in a pipeline is typically
connected to a mapper object. A mapper is responsible for
converting a data set into a set of rendering instructions. An actor
represents the mapper in a scene, and has some properties that
can modify the appearance of a rendered data set. One or more
actors can be added to a renderer which executes the rendering
instructions to generate an image.

Python Language Bindings for VTK

Since 1997, VTK has provided language bindings for Python.
Over the years, Python has become increasingly important to
VTK, both as a route to using VTK, as well as to the development
of VTK itself.

The Python binding support in VTK has evolved so that today
nearly every semantic feature of C++ used by VTK has a direct
semantic analog in Python. C++ classes from VTK are wrapped
into Python equivalents. The few classes that are not wrapped are
typically limited to classes that are meant for internal use in VTK.

Python Wrapping Infrastructure

Python classes for VTK classes and special types are generated
using a shared lex/yacc-based parser tailored for VITK program-
ming conventions and custom code generation utilities for Python
wrapping. VTK is organized into a number of C++ modules.
When built with shared libraries enabled, a library containing C++
classes is generated at build time for each C++ module. Each
Python-wrapped source file is likewise compiled into a shared
library corresponding to the C++ module. All wrapped VTK C++
modules are provided in a single vtk Python package.

VTK Usage in Python

For convenience, an executable named vtkpython is provided
in VTK binaries. This is the standard Python executable with
environment variables set to make it simple to import the vtk
package. It is also possible to use VIK in the same python
executable from the Python installation against which VTK was
built by prepending the location of VTK’s shared libraries and the
location of the parent directory of the file vtk/__init__ .pyto
the PYTHONPATH environment variable, but using vtkpython
avoids the need to do this.
To access VTK classes, you simply import vtk:

import vtk
VTK is somewhat unusual for a Python package in that all

modules are loaded by this import statement.
Creation of VTK objects is straightforward:

contourFilter = vtk.vtkContourFilter ()

Each Python object references an underlying VTK object. Objects
in VTK are reference counted and automatically deleted when

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

no longer used. The wrapping interface updates the underlying
VTK object’s reference count and alleviates the need for explicit
memory management within Python.

One particularly nice semantic equivalence between VTK’s
C++ and Python interfaces involves member functions that accept
a pointer to a C++ array representing a small tuple of elements.
Such functions are common in VTK to do things like set a 3D
Cartesian coordinate as a property of a class. In Python, the
corresponding function accepts a tuple or list object. This works
well as long as the list or tuple has the expected number of
elements.

sphere = vtk.vtkSphereSource ()

[y

Express point as 11

sphere.SetCenter ([0, 1, 0]

Express point as tuple

sphere.SetCenter ((0, 1, 0)

Member functions that return pointers to arrays with a fixed
number of elements are also supported. Such functions require a
hint to the wrapping infrastructure indicating how many elements
are in the tuple that is returned.

>>> center = sphere.GetCenter ()

>>> print center

(0, 1, 0)

For VTK classes that have operators <, <=, ==, >=, > defined,
equivalent Python operators are provided.

Some functions in VTK return information via parameters
passed by reference. For example, in the following code block,
the parameter t is a return parameter from the member function
IntersectWithLine.

double t, x([3]

plane->IntersectWithLine (pointl, point2, t, x);

In Python, the equivalent is

t = vtk.mutable (0.0)

plane.IntersectWithLine (pointl, point2, t, x)

Class and function documentation is processed by the wrapping
infrastructure to make it available via Python’s built-in help
system.

>>> help (vtk.vtkSphereSource)
The above shows the full documentation of the
vtkSphereSource class (too extensive to list here), while the

code below produces help for only the SetCenter member
function.

>>> help (vtk.vtkSphereSource.SetCenter)

Help on built-in function SetCenter:

SetCenter(...)
V.SetCenter (float, float, float)
C++: void SetCenter (double, double, double)
V.SetCenter ((float, float, float))

C++: void SetCenter (double al[3]

Some less often used mappings between C++ and Python
semantics, as well as limitations, are described in the file
VTK/Wrapping/Python/README_WRAP.txt in the VTK
source code repository in versions 4.2 and above.

A full example below shows how to create a VTK pipeline
in Python that loads an STL file, smooths it, and displays the
smoothed result in a 3D render window.

import vtk

SCIENTIFIC DATA ANALYSIS AND VISUALIZATION WITH PYTHON, VTK, AND PARAVIEW

reader = vtk.vtkSTLReader ()
reader.SetFileName ('somefile.stl")

smoother = vtk.vtkLoopSubdivisionFilter ()
smoother.SetInputConnection (reader.GetOutputPort ())

mapper = vtk.vtkPolyDataMapper ()
mapper.SetInputConnection (smoother.GetOutputPort ())

actor = vtk.vtkActor ()
actor.SetMapper (mapper)

renderer = vtk.vtkRenderer ()
renderer.AddActor (actor)

renWin = vtk.vtkRenderWindow
renWin.AddRenderer (renderer)

interactor = vtk.vtkRenderWindowInteractor ()
interactor.SetRenderWindow (renWin)
interactor.Initialize()

renWin.Render ()

iren.Start ()

Many additional examples of VTK usage in Python are available
in the VTK/Examples/Python wiki page [Wik15].

Integration with NumPy

There are limited functions within VTK itself to process or analyze
point and cell arrays. Since 2008, a low-level interface layer
between VTK arrays and NumPy arrays has been available in
VTK. This interface layer can be used to map VTK arrays to
NumPy arrays and vice versa, enabling the full power of NumPy
operations to be used on VTK data. For example, suppose that we
have a data set from a computational fluid dynamics simulation
that we can load with a VTK reader class, and suppose further
that the data set has a point array representing pressure. We can
find several properties of this array using NumPy, e.g.,

import numpy as np
import vtk.util.numpy support as nps

Load data with a VTK reader instantiated earlier

reader.Update (

ds = reader.GetOutput ()

pd = ds.GetPointData ()

pressure = pd.GetArray ('pressure')
np_pressure = nps.vtk_to_numpy (pressure)

min_p =
max_p =

np.min (np_pressure)
np.max (np_pressure)

This interface can also be used to add data arrays to loaded data
sets that can be handed off to VTK for visualization:

norm_pressure = (np_pressure - min_pressure) / \

(max_pressure - min_pressure)
vtk_norm_pressure = np.numpy_to_vtk (norm_pressure,
vtk_norm_pressure.SetName ('normalized pressure')
pd.AddArray (vtk_norm_pressure)

1

The second argument to np . numpy_to_vtk indicates that the
NumPy array should be deep copied to the VTK array. This is
necessary if no reference to the NumPy array will otherwise be
kept. If a reference to the numpy array will be kept, then the
second argument can be omitted and the NumPy array will be
shallow copied instead, saving memory and time because the array
data does not need to be copied. Note that the Python interpretter
might crash if a NumPy array reference is not held and the data is
shallow copied.

More recently, a higher-level NumPy-like interface layer has
been added to VTK. This numpy_interface was designed to

33

combine the ease of use of NumPy with the distributed memory
parallel computing capabilities and broad data set type support
of VTK. The straightforward interface between VTK data arrays
and NumPy described above works only when the entire data
set is available on one node. However, data sets in VITK may
be distributed across different computational nodes in a parallel
computer using the Message Passing Interface [Sni99]. In this sce-
nario, global reduction operations using NumPy are not possible.
For this reason, a NumPy-like interface has been added to VTK
that properly handles distributed data sets [Ayal4].

A key building block in VTK’s numpy_interface is a set
of classes that wrap VTK data set objects to have a more Pythonic
interface.

import vtk
from vtk.numpy interface import dataset_adapter as dsa

reader = vtk.vtkXMLPolyDataReader ()
reader.SetFileName (filename)
reader.Update ()

ds = dsa.WrapDataObject (reader.GetOutput ())
In this code, ds is an instance of a
dataset_adapter.PolyData that wraps the

vtkPolyData output of the vtkXMLPolyDataReader.
Point and cell arrays are available in member variables
PointData and CellData, respectively, that provide the
dictionary interface.

>>> ds.PointData.keys ()
['pressure']

>>> pressure = ds.PointDatal'pressure']

Note that the pressure array here is an instance of VTKArray
rather than a wrapped VTK data array. VTKArray is a
wrapper around the VTK array object that inherits from
numpy .ndarray. Hence, all the standard ndarray operations
are available on this wrapped array, e.g.,

>>> pressure[0]
0.112

>>> pressure[l:4]

VTKArray ([34.2432, 47.2342, 38.1211], dtype=float32)
>>> pressure[l:4] + 1
VTIKArray ([35.2432, 48.2342, 39.1211], dtype=float32)

>>> pressure[pressure > 40]
VTKArray ([47.2342], dtype=float32)

The numpy_interface.algorithms module also provides
NumPy-like functionality:

import vtk.numpy interface.algorithms as algs

>>> algs.min (pressure)
VIKArray (0.1213)

>>> algs.where (pressure > 38)
(array ([2, 3], dtype=int64),)

In addition to providing most of the ufuncs provided by NumPy,
the algorithms interface provides some functions to access
quantities that VTK can compute in the wide variety of data set
types available in VTK. This can be used to compute, for instance,
the total volume of cells in an unstructured grid:

>>> cell_volumes = algs.volume (ds)

>>> algs.sum(cell_volumes)
VIKArray (847.02)

34

This example illustrates nicely the power of combining a NumPy-
like interface with VTK’s uniform API for computing various
quantities on different types of data sets.

Another distinct advantage of the
numpy_interface.algorithms module is that all
operations are supported in parallel when data sets are distributed
across computational nodes. [Ayal4] describes this functionality
in more detail.

Integration with matplotlib

While VTK excels at interactive 3D rendering of scientific data,
matplotlib excels at producing publication-quality 2D plots. VTK
leverages each toolkit’s strengths in two ways.

First, as described earlier, convenience functions
for exposing VTK data arrays as NumPy arrays are
provided in the vtk.util.numpy_support and

numpy_interface.algorithms modules. These arrays
can be passed to matplotlib plotting functions to produce
publication-quality plots.

Second, VTK itself incorporates some of matplotlib’s ren-
dering capabilities directly when possible. When VTK Python
wrapping is enabled and matplotlib is available, VTK uses the
matplotlib.mathtext module to render LaTeX math ex-
pressions to either vtkImageData objects that can be dis-
played as images or to paths that may be rendered to a
vtkContextView object, VITK’s version of a canvas. The
vtkTextActor, a class for adding text to visualizations, uses
this module to support rendering complex LaTeX math expres-
sions.

Qt applications with Python

Python support in VTK is robust enough to create full-featured
applications without writing a single line of C++ code. PyQt
[PyQt15] (or PySide [PyS15]) provide Python bindings for Qt. A
simple PyQt example adapted from an example by Michka Popoff
is provided below:

import sys

import vtk

from PyQt4 import QtCore, QtGui

from vtk.gt4.QVTKRenderWindowInteractor \
import QVTKRenderWindowInteractor

class MainWindow (QtGui.QMainWindow) :

def _ init__ (self,
QtGui.QMainWindow.__init__ (

parent = None):
self, parent)

self.frame = QtGui.QFrame ()

layout = QtGui.QVBoxLayout ()

self.vtkWidget = \
QVTKRenderWindowInteractor (self.frame)

layout.addWidget (self.vtkWidget)

self.renderer = vtk.vtkRenderer ()
self.vtkWidget.GetRenderWindow ()
rw.AddRenderer (self.renderer)
self.interactor = rw.GetInteractor ()

rw =

cylinder = vtk.vtkCylinderSource ()
mapper = vtk.vtkPolyDataMapper ()
mapper.SetInputConnection (\
cylinder.GetOutputPort ())
actor = vtk.vtkActor ()
actor.SetMapper (mapper)

self.renderer.AddActor (actor)

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

self.renderer.ResetCamera ()

self.frame.setLayout (layout)
self.setCentralWidget (self.frame)

self.show()
self.interactor.Initialize()

] "

if 1ame _ _main__":
app = QtGui.QApplication(sys.argv)
window = MainWindow ()
sys.exit (app.exec_())

This simple application does little besides what is possible with
pure VTK code alone. However, this example can easily be
expanded to provide interaction through UI elements such as a
menu bar, buttons, text entries, sliders, etc.

VTK filters defined in Python

While VTK sources and filters are available in Python, they
cannot be subclassed to create new sources or filters be-
cause the virtual function table defined in C++ cannot dis-
patch to member functions defined in Python. Instead, one
can subclass from a special VTKAlgorithm class defined in
vtk.util.vtkAlgorithm. This class specifies the inter-
face for classes that interact with vtkPythonAlgorithm,
a C++ class that delegates the primary VTK pipeline update
functions to equivalent pipeline update functions in the Python
VTKAlgorithm class. Subclasses of VTKAlgorithm can (and
usually should) override these functions. By doing this, it is
possible to implement complex new sources and filters using
Python alone. For more details on the VTKAlgorithm class,
see [Gev2014].

Python integration in VTK tests

As a project that follows a quality software process, VTK has
many regression tests. At present, 26% of tests (544 out of
2046) are written in Python. This integration of Python in VTK’s
testing infrastructure shows how important Python is in VTK’s
development.

Obtaining VTK

VTK and its Python bindings are available on many Linux distri-
butions including Ubuntu, Debian, OpenSUSE. It is also available
in Anaconda and Enthought Canopy. Binary installers and source
code for the most recent versions are available on the VTK web
site [VTK15] for Windows, Mac, and Linux.

Python and ParaView

ParaView is a suite of scalable parallel visualization executables
that use VTK to read data, process it, and create visualizations.
One of the executables includes a graphical user interface (GUI)
to make it possible to create visualizations without programming
(when ParaView is mentioned in this section, it is the executable
with a GUI unless otherwise specified). Data processing in Par-
aView follows the same data-flow paradigm that VTK follows. In
ParaView, sources and filters are chained together in a Pipeline
Browser as shown in Figure 1. Visualization controls are modified
with user interaction widgets provided by Qt.

While ParaView can be used to make visualizations without
programming, it is also possible to use Python scripting to au-
tomate certain operations or even create entire visualizations. In
this section, I describe how Python scripting is integrated into

SCIENTIFIC DATA ANALYSIS AND VISUALIZATION WITH PYTHON, VTK, AND PARAVIEW

Density

3.606e-01 0.6

09 12 15 1.790e+00
LT T

0] I}

Fig. 1: The ParaView GUI with an example visualization of a data
set from a simulation of airflow past a blunt fin. The Pipeline
Browser (upper left) shows the sources and filters used to create the
visualization. Filter and visualization parameters are shown in the
Property window (lower left).

ParaView at several different levels. At a high level, Python
commands are issued via a console to change properties of a
visualization. At a lower level, Python commands are used to set
up entire visualizaion pipelines. At an even lower level, Python is
used to create custom sources and filters to provide additional data
analysis and visualization functionality.

Python Console

ParaView includes a Python console available under the Tools
-> Python Console menu item. This console is a fully-
featured Python console with the environment set up so that the
vtk package and a paraview package are available. When first
started, the command

from paraview.simple import =«

is automatically executed to import the paraview.simple
module. This layer is described in more detail later.

Running commands in ParaView’s Python console is identical
to running commands in other Python consoles. The key difference
is that commands can be used to change the state of the ParaView
application. This provides a similar experience to using a Python
console to change matplotlib plots.

The Python console also provides a button to load and execute
a Python script with ParaView commands from a file. This feature
is ideal for iterative Python script development.

pvpython and pvbatch

The ParaView suite of tools includes two Python-based utili-
ties for both interactive and batch generation of visualizations.
pvpython is an interactive Python shell that provides the same
access to the vtk and paraview packages as provided by
the Python console in ParaView. The key difference between
ParaView and pvpython is that no GUI controls are available
to modify pipeline or visualization state. pvbatch is a non-
interactive executable that runs a Python script and is intended
to perform offline data processing and visualization generation.

Python Tracing and State Files

While documentation is available to learn how to write Python
scripts for ParaView, it can take some time to find the function
calls needed to replicate a sequence of actions performed through

35

the GUI. To reduce script development time, ParaView supports
tracing of user interactions where the generated trace is in the form
of a Python script. Running the resulting trace script through the
ParaView Python console, pvpython or pvbatch reproduces
the effects of the user interactions with the GUIL.

Python tracing is implemented by instrumenting the ParaView
application with Python generation code at various user event
handlers. The tracing mechanism can record either the entire state
of ParaView objects or just modifications of state to non-default
values to reduce the trace size. Traces can be started and stopped
at any time - they do not need to record the full user interaction
history.

An application where tracing is useful is the batch conversion
of data files. If ParaView can read the source file format and write
the destination file format, it is easy to perform the conversion
manually one time with the ParaView GUI. For a large list of files,
though, a more automated approach is useful. Creating a trace
of the actions needed to perform the conversion of a single file
produces most of the script that would be needed to convert a list
of files. The trace script can then be changed to apply to a list of
files.

In addition to saving a trace of user interaction sequences,
a Python state file may also be produced. Like a Python trace,
the state file contains Python commands that set up the pipeline
and visualization settings, but unlike a trace, it does not record
interaction events as they happen but rather the final state of
ParaView.

Simple Python Interface

Much of ParaView is implemented in C++ as VTK classes. These
classes are wrapped in Python with the same mechanism that
wraps VTK classes. As such, they are accessible within the Python
console, pvpython, and pvbatch. However using these classes
directly is often unwieldy. The example below illustrates how to
use the direct ParaView API to create a sphere source with radius
2.

from paraview import servermanager as sm

pm = sm.vtkSMProxyManager.GetProxyManager ()
controller = \
sm.vtkSMParaViewPipelineControllerWithRendering ()

ss = pm.NewProxy ('sources',
ss.GetProperty ('Radius') .SetElement (O,
controller.RegisterPipelineProxy (ss)

'SphereSource')
2.0)

view = pm.GetProxy('views', 'RenderViewl')

rep = view.CreateDefaultRepresentation(ss, 0)
controller.RegisterRepresentationProxy (rep)
rep.GetProperty ('Input') .SetInputConnection (0, ss, 0)
rep.GetProperty ('Visibility') .SetElement (0, 1)

controller.Show(ss, O,
view.ResetCamera ()
view.StillRender ()

view)

Note in this example the various references to proxies. A proxy
here refers to the proxy programming design pattern where one
object provides an interface to another object. Proxies are central
to ParaView’s design. In a number of the various client/server
configuration in which ParaView can be run, the client software
running on a local workstation connects to a remote server running
one or more processes on different nodes of a high-performance
computing resource. Proxies for each pipeline object exist on the
ParaView client, and they provide the interface for communicating
state to all the VTK objects in each client and server process.

36

In the example above, a new proxy for a vtkSphereSource
object is created. This proxy has a property named ’Radius’
that is modified to the value 2.0. Changes to the 'Radius’ prop-
erty are forwarded to the ’Radius’ property of the underlying
vtkSphereSource.

As this example demonstrates, creating a new data source, a
representation for it (how it is rendered), and adding the represen-
tation to the view (where it is rendered), is an involved process
when using the paraview. servermanager module directly.
Fortunately, ParaView provides a simplified Python interface that
hides most of these details, making Python scripting much more
accessible.

The paraview.simple layer provides simpler Python
functions to create pipelines and modify filter and visual-
ization properties. The same example above expressed with
paraview.simple functions is reduced to

from paraview import simple

Sphere (Radius=2.0)
Show ()
Render ()

ParaView traces and Python state files are expressed in terms of
paraview.simple module functions. For more information on
how to use this module, see [Kitl5].

Python Programmable Filter

ParaView provides many data filters for transforming data and
performing analysis tasks. There are, however, an infinite number
of operations one may want to perform on a data set. To address
the need for custom filters, ParaView supports a rich plugin
architecture that makes it possible to create additional filters in
C++. Unfortunately, creating a plugin this way is a relatively
involved process.

Aside from the C++ plugin architecture, ParaView provides a
Programmable Filter that enables a potentially faster development
path. The Programmable Filter has a text property that stores a
Python script to execute when the filter is updated. Inputs to the
Programmable Filter are available within this script. Complete
specification of the output data set is possible within the script,
including setting the output data type, the data set toplogy (i.e.,
type and number of cells), as well as point and cell arrays.

At its core, the Programmable Filter is de-
fined by the VTK-derived C++ class named
vtkPythonProgrammableFilter. Using the Python

C APl the vtkPythonProgrammableFilter passes a
reference to itself to the Python environment in which the script
executes so that it is available within the script itself. This makes
it possible to access the inputs and outputs to the filter via:

input = self.GetInput ()
output = self.GetOutput ()

Arbitrarily complex Python scripts can be executed to generate
the filter’s output. The following example moves points in an
input vtkPointSet along normals associated with the points
if available.

ipd = self.GetInput ()
opd = self.GetOutput ()

Output

Deep copy the points so

is shallow-copied by default

that we are not modifying

the input points.

opd.DeepCopy (ipd)

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

na = ipd.GetPointData() .GetArray ('Normals"')
if na != None:
for i in xrange (ipd.GetNumberOfPoints()) :
pt = ipd.GetPoint (i)
n = na.GetTuple (i)
newPt = (pt[0]+n[0], pt[l]+n[l], pt[2]+n[2])
opd.GetPoints () .SetPoint (i, newPt)
The Programmable Filter also uses the

vtk.numpy_interface.dataset_adapter module
to wrap the inputs to the filter. All of the wrapped inputs are
added to a list named inputs, and the single output is wrapped
in an object named output. By using the wrapped inputs and
outputs, the filter above becomes simply

ipts =
normals =

inputs[0] .Points
inputs[0] .PointDatal['Normals']

output.Points = ipts + normals

It is important to note that Python scripts in the Programmable
Filter may use only VTK classes and other Python modules,
but not any of the modules in the paraview package. If those
modules are imported, the behavior is undefined.

Python Programmable Source

Within ParaView it is also possible to define Python script that
defines data sources using the Python Programmable Source. This
source functions much like the Python Programmable Filter, but
does not require any input data sets.

Python Calculator

ParaView’s Python Calculator filter is a light-weight alternative to
the Programmable Filter used to compute additional point or cell
arrays using NumPy or the numpy_interface.algorithms
module. The following expression computes the areas of polygons
in a surface mesh:

algs.area (inputs[0]

Note that the numpy_interface.algorithms is imported
with the name algs in the Python environment in which the
expression is evaluated. In the Python Calculator, the prop-
erty ’Array Association’, which indicates whether the output
array should be a point or cell array, must be set to ’Cell
Data’ because one area value is produced per cell. Note that
like the Programmable Filter, the inputs are wrapped with
the vtk.numpy_interface.dataset_adapter module
functions and stored in an inputs list.

Python Annotation

It is often desirable to annotate visualizations with numerical
values taken either directly from the data set or computed from
the data. The Python Annotation filter in ParaView provides
this capability in a convenient way. The filter takes a Python
expression that is evaluated when the filter is executed and the
value returned by the expression is displayed in the render view.
Importantly, these annotations can come from data analysis results
from NumPy or numpy_interface.algorithms. Figure 2
shows an example using the Python Annotation filter.

Python View

While ParaView’s roots are in the loading and display of tradi-
tional 3D scientific visualizations, it has grown over the years
to support more data set types and different displays of those
data set types. These different displays, or "Views" in ParaView

SCIENTIFIC DATA ANALYSIS AND VISUALIZATION WITH PYTHON, VTK, AND PARAVIEW

B [Diyossix [+
P mma

< o Renderviewl (m[&]o]x

3651001

8

jon2
@ L@ pythonannotation3

Properties | information

Properties

@
x

o [Mookt || 2

[RIEg

Aray Association [Cell pata [

Expression |

mmHHH\mmm\mmmh\mg

= Dply s |(€)(2)
%) Interactivity
o1 5[P B/I]5)=)
| e inden Location — Minimum area: 0.074867
L&] Maximum area: 0.365054 g
[|2 | Totalarea: 111.040775 retes

I 14

Fig. 2: Three annotations filters in the scene show the minimum,
maximum, and total areas of polygons in the sphere source.

parlance, include a 3D interactive rendering view, a histogram
view, a parallel coordinates view, and a large number of others.

One of these other view types is the Python View. This view
is similar to the programmable filter in that the user supplies a
Python script that generates some data. In the case of the Python
View, the data that is generated is an image to display in the
ParaView window. This makes it possible to use Python plotting
packages, such as matplotlib, to generate plots to be displayed
directly in ParaView.

Scripts used in the Python view are required to define two
functions, a setup_data function and a render function.
Rendering in the Python view is done on the local client, so data
that resides on remote server processes must first be brought over
to the client. Because data sets may be larger than the client’s
RAM, only a subset of the data arrays in a data set are copied to the
client. By default, no arrays are copied. Arrays can be requested
using functions available in the vtkPythonView class instance
that is passed in as an argument to the setup_data function,
e.g.,

def setup_data(view) :
view.SetAttributeArrayStatus (0, \

vtkDataObject .POINT, "Density", 1)

The actual generation of the plot image is expected to be done in
the render function. This function is expected to take the same
view object as is passed to the setup_data function. It also
takes a width and height parameter that tells how large the plotted
image should be in terms of pixels. This function is expected to
return an instance of vtkImageData containing the plot image.
A few utilities are included in the paraview.python_view
module to convert Python arrays and images to vtk ImageData.
An example that creates a histogram of an array named "Density"
is provided here:

def render (view, width, height):

from paraview \

import python_view.matplotlib_figure
figure = matplotlib_figure (width, height)

ax = figure.add_subplot(1l,1,1)
ax.minorticks_on|()
ax.set_title('Plot title'")
ax.set_xlabel ('X label')
ax.set_ylabel ('Y label')

37

Process only the first visible object in the
pipeline browser
do = view.GetVisibleDataObjectForRendering (0)

dens = do.GetPointData () .GetArray ('Density"')

Convert VTK data array to numpy array
from paraview.numpy_ support import vtk_to_numpy

ax.hist (vtk_to_numpy (dens), bins=10)

return python_view.figure_to_image (figure)

For more information on the Python View, see Section 4.11 in
[Ayal5] or [Qual3].

ParaViewWeb

ParaViewWeb is a framework for remote VTK and ParaView
processing and visualization via a web browser. The framework
on the server side is based on the Autobahn, Twisted, Six, and
Zopelnterface Python libraries. On the client side, ParaViewWeb
provides a set of JavaScript libraries that use WebGL, JQuery, and
Autobahn.js. Images are typically generated on the server and sent
to the client for display, but if the visualized geometry is small
enough, geometry can be sent to the client and rendered with
WebGL.

A nice feature of ParaViewWeb is that the server component
can be launched with pvpython. No separate web server is
needed. For example, on Linux, the following command launches
the ParaViewWeb server from the ParaView installation directory
./bin/pvpython \

lib/paraview-4.1/site-packages/paraview/\

web/pv_web_visualizer.py —-port 8080 \

--content ./share/paraview—4.1/www \
-—-data-dir /path-to-share/ & \

Once the server is running, it can be accessed through a web
browser at the URL http://localhost:8080/apps/Visualizer. This
is one example application that comes with the framework. It
has much of the same functionality as the ParaView desktop
application. ParaViewWeb can also be used to display images
within an iPython notebook. For additional information about
using and extending the ParaViewWeb framework, see [Pvw15].

Tem|

P
9.079e+02
£750
EGDU

EAso
3.3846+02

Fig. 3: The ParaViewWeb Visualizer application web interface.

Unified Server Bindings

As previously discussed, ParaView uses proxies to manage state
among VTK class instances associated with pipeline objects on
distributed process. For example, when the proxy for a cross-
section filter has its cutting plane property changed, the underlying
VTK filter on each process is updated so that is has the same

http://localhost:8080/apps/Visualizer

38

cutting plane. These instances are updated via a client/server com-
munication layer that is generated automatically using a wrapping
mechanism. The client/server layer consists of one communication
class per VTK class that serializes and deserializes state in the
VTK class.

As discussed, a similar wrapping process is also performed to
generate Python bindings for VTK classes and ParaView classes.
Each of these wrappings adds to the size of the executable files and
shared libraries. On very large scale parallel computing resources,
the amount of RAM available per node can be relatively limited.
As a result, when running ParaView on such a resource, it is
important to reduce the size of the executables as much as possible
to leave room for the data. One way to do this is to use the Python
wrapping to communicate among processes instead of using the
client/server communication class. Indeed, when this option is
enabled, the process of creating the special communication classes
is skipped. Instead, communication is performed by sending
strings with Python expressions to destination processes. These
expressions are then evaluated on each process to change the
state of local VTK classes. In this approach, we get the same
functionality as the custom client/server communication layer
wrapping, but with smaller executables.

Conclusions

Python has been integrated into VTK and ParaView for many
years. The integration continues to mature and expand as Python
is used in an increasing number of ways in both software pack-
ages. As Python continues to grow in popularity among the
scientific community, so too does the need for providing easy-
to-use Pythonic interfaces to scientific visualization tools. As
demonstrated in this paper, VTK and ParaView are well-positioned
to continue adapting to the future needs of scientific Python
programmers.

Future Work

VTK and ParaView currently support Python 2.6 and 2.7. Support
for Python 3 is targeted for sometime in 2016.

Acknowledgements

Contributions to Python support in VTK and ParaView have come
from many VTK community members. Deserving special recog-
nition are key contributors David Gobbi, Prabhu Ramachandran,
Ken Martin, Berk Geveci, Utkarsh Ayachit, Ben Boeckel, Andy
Cedilnik, Brad King, David Partyka, George Zagaris, Marcus
Hanwell, and Mathieu Malaterre.

REFERENCES

[Ayal4] U. Ayachit, B. Geveci, Scientific data analysis and visualization

at scale in VITK/ParaView with NumPy, 4th Workshop on Python

for High Performance and Scientific Computing PyHPC 2014,

November, 2014.

U. Ayachit, The ParaView Guide: A Parallel Visualization Applica-

tion, Kitware, Inc. 2015, ISBN 978-1930934306.

B. Geveci, vtkPythonAlgorithm is great, Kitware Blog, September

10, 2014. http://www.kitware.com/blog/home/post/737

simple Module, http://www.paraview.org/ParaView/Doc/Nightly/

www/py-doc/paraview.simple.html

[Pvw15] ParaViewWeb, http://paraviewweb.kitware.com/#!/guide

[PyQt15] PyQt4 Reference Guide, http://pyqt.sourceforge.net/Docs/PyQt4/

[PyS15] PySide 1.2.2, https://pypi.python.org/pypi/PySide

[Qual3] C. Quammen. ParaView: Python View is now more versatile, http:
/Iwww.kitware.com/blog/home/post/704

[Ayal5]
[Gevl4]

[Kitl5]

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

[Sch04] W. Schroeder, K. Martin, and B. Lorensen, The Visualization
Toolkit: An Object-Oriented Approach to 3D Graphics, 4th ed.
Kitware, Inc., 2004, ISBN 1-930934-19-X.

[Sni99] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra,

MPI - The Complete Reference: Volume 1, The MPI Core, 2nd ed.,
MIT Press, 1999, ISBN 0-262-69215-5.

[VTKI15] VIK - The Visualization Toolkit, http://www.vtk.org/

[Wik15] VTK/Examples/Python, http://www.vtk.org/Wiki/VTK/Examples/
Python

http://www.kitware.com/blog/home/post/737
http://www.paraview.org/ParaView/Doc/Nightly/www/py-doc/paraview.simple.html
http://www.paraview.org/ParaView/Doc/Nightly/www/py-doc/paraview.simple.html
http://paraviewweb.kitware.com/#!/guide
http://pyqt.sourceforge.net/Docs/PyQt4/
https://pypi.python.org/pypi/PySide
http://www.kitware.com/blog/home/post/704
http://www.kitware.com/blog/home/post/704
http://www.vtk.org/
http://www.vtk.org/Wiki/VTK/Examples/Python
http://www.vtk.org/Wiki/VTK/Examples/Python

	Introduction
	Python and VTK
	VTK Data Model
	VTK Pipeline
	Python Language Bindings for VTK
	Python Wrapping Infrastructure
	VTK Usage in Python
	Integration with NumPy
	Integration with matplotlib
	Qt applications with Python
	VTK filters defined in Python
	Python integration in VTK tests
	Obtaining VTK

	Python and ParaView
	Python Console
	pvpython and pvbatch
	Python Tracing and State Files
	Simple Python Interface
	Python Programmable Filter
	Python Programmable Source
	Python Calculator
	Python Annotation
	Python View
	ParaViewWeb
	Unified Server Bindings

	Conclusions
	Future Work
	Acknowledgements
	References

