
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 43

The James Webb Space Telescope Data Calibration
Pipeline

Howard Bushouse‡∗, Michael Droettboom‡, Perry Greenfield‡

https://www.youtube.com/watch?v=o-D4TpRFza4

F

Abstract—The James Webb Space Telescope (JWST) is the successor to the
Hubble Space Telescope (HST) and is currently expected to be launched in late
2018. The Space Telescope Science Institute (STScI) is developing the software
systems that will be used to provide routine calibration of the science data
received from JWST. The calibration operations use a processing environment
provided by a Python module called stpipe that provides many common
services to each calibration step, relieving step developers from having to imple-
ment such functionality. The stpipe module provides common configuration
handling, parameter validation and persistence, and I/O management.

Individual steps are written as Python classes that can be invoked individ-
ually from within Python or from the stpipe command line. Any set of step
classes can be configured into a pipeline, with stpipe handling the flow of
data between steps. The stpipe environment includes the use of standard
data models. The data models, defined using json schema, provide a means of
validating the correct format of the data files presented to the pipeline, as well
as presenting an abstract interface to isolate the calibration steps from details of
how the data are stored on disk.

Index Terms—pipelines, astronomy

Introduction

Data coming from the electronic detectors in scientific instruments
attached to telescopes (both on the ground and in space) look
nothing like the end product on which astronomers do their
analysis or the pictures that show up in the media. Raw images
and spectra contain artifacts and extra signals that are intrinsic to
the instrumentation itself, rather than the source being observed.
These artifacts include things like dead detector pixels, pixel-to-
pixel variations in sensitivity, background signal from the detector
and instrument, non-linear detector response, anomalous signals
due to impacts of cosmic-rays, and spatial distortions due to the
optics. All anomalies must be removed or corrected before the data
are suitable for scientific analysis. In addition, processing such as
combining the data from multiple exposures and extracting one-
dimensional spectra from the two-dimensional detector format in
which they were recorded must also be performed. This is the job
of astronomical data reduction and calibration pipelines.

The Space Telescope Science Institute (STScI), which is the
science operations center for the Hubble Space Telescope (HST),
has developed and maintained data calibration pipelines for all

* Corresponding author: bushouse@stsci.edu
‡ Space Telescope Science Institute

Copyright © 2015 Howard Bushouse et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

of the HST scientific instruments and is now in the process of
developing the pipelines that will be used for the James Webb
Space Telescope (JWST) after it is launched in late 2018. The HST
pipelines for the different scientific instruments on the telescope
were developed over a span of more than 20 years and hence show
an evolution in both software languages and design. The pipelines
for each instrument, which now number 11 over the 25 year history
of HST, were all written independently of one another and used
an assortment of programming languages, including the Subset
Preprocessor (SPP) language [Tody83], which is unique to the
astronomical community, Fortran, C, and Python. This assortment
of languages made maintenance and enhancement rather difficult,
and precluded any code sharing between instruments. The HST
calibration pipelines also used monolithic, procedural designs,
with very little modularity. This approach worked as long as data
were allowed to flow uninterrupted from beginning to end, but
made it very difficult, if not impossible, to start or stop processing
midstream, skip one or more steps, or insert additional steps.
Customizing the processing in this way is often necessary for an
astronomer to get the most out of their particular observations.

The JWST calibration pipelines are being developed from
scratch using a completely new design approach and using almost
nothing but Python. There is a common framework for all 4 of
the scientific instruments, with extensive sharing of routines and
a common code base. The new design allows for flexibility in
swapping in and out specific processing steps, easily changing the
ordering of steps within pipelines, and the ability for astronomers
to plug-in custom processing. This flexibility is necessary due to
the fact that the knowledge of the science instruments and the
intricacies of the data they produce is constantly evolving, often
over the entire lifetime of the mission. The calibration pipelines
will be used not only in the production environment at STScI,
which will apply an initial round of processing to all data coming
from JWST and archiving the results, but will also be distributed
to astronmers to run at their home institutions. This gives the
users the ability to rerun and refine the processing applied to their
observations. The highly modular and flexible nature of the design
will allow them to even add in their own custom processing steps,
either as part of the pipeline itself or as standalone routines that
are run on the data and then reinserted back into the pipeline flow.

Before continuing, a clarification of exactly what we mean by
the term "pipeline" is in order. A high-level workflow management
system is used to guide the entire flow of data processing. This
end-to-end process includes the receipt of telemetry downlinks
from the telescope, reformatting the raw telemetry packets into

https://www.youtube.com/watch?v=o-D4TpRFza4
mailto:bushouse@stsci.edu

44 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

useful data file formats, integrating meta data from various
database systems, reducing and calibrating the raw data read
out from the detectors in order to remove instrumental artifacts,
storing the fully reduced data into an archive, and automaticlly
notifying the astronomers who obtained the observations that the
data are available. The calibration pipelines reported on here
concern only the middle step of reducing and calibrating the
raw images and spectra so that they are ready for scientific
analysis. As such, the calibration pipelines do not provide any
kind of high-level process management functions, interfaces to
databases, and so on. The calibration pipelines are strictly devoted
to applying a series of operations to the pixel values that comprise
an image in order to remove instrumental artifacts and place the
data values onto scales involving physical units. The particular
series of such steps varies according to the observation modes
used by the different instruments on the telescope. The calibration
pipelines define and control the data flow within these different
series of processing steps. The calibration pipelines, therefore,
don’t require a large, high-level task scheduling and workflow
management system (e.g. Luigi [BF12]). A separate high-level
process management system is used to control the execution of all
the pieces involved in the end-to-end system described above, of
which the calibration pipelines are one small part.

A primary goal for the JWST calibration pipelines is to have
the system distributable to astronomers to execute on their own
systems at their home institutions. It’s often necessary for an
astronomer to tailor or modify the details of the processing that’s
applied to their particular observations in order to get the greatest
scientific return. The calibration pipeline package has therefore
been designed to be as light-weight and self-contained as possible
in order to make it as easy as possible for users to install and
run themselves. The only external interface required is to our
Calibration Reference Data System (CRDS), which is used to
supply reference data needed by some of the calibration steps.
The CRDS server at STScI will accept requests for reference files
from the client on an astronomer’s home system and automatically
download the requested files to their systems for use locally.

stpipe

The heart - or perhaps more appropriately, the nervous system - of
the JWST calibration pipeline environment is a Python module
called stpipe. stpipe manages individual processing steps
that can be combined into pipelines. The stpipe environment
provides functionality that is common to all steps and pipelines so
that they behave in a consistent manner. It provides:

• running steps and pipelines from the command line
• parsing of configuration settings
• composing steps into pipelines
• file management and data I/O between pipeline steps
• interface to the Calibration Reference Data System

(CRDS)
• logging

Each pipeline step is embodied as a Python class, with a
pipeline being composed of multiple steps. Pipelines can in turn be
strung together, just like steps, to compose an even higher-order
flow. Steps and pipelines can be executed from the command-
line using stpipe, which is the normal mode of operations in
the production environment that processes data in real-time as it
is downlinked from the telescope. The step and pipeline classes

can also be instantiated and executed from within a Python shell,
which provides a lot of flexibility for developers when testing the
code and to astronomers who may need to occasionally tweak or
otherwise customize the processing of their particular data sets.

When run from the command line, stpipe handles the
parsing of configuration parameters that can be provided either as
arguments on the command line or within configuration files. Con-
figuration files use the well-known ini-file format and stpipe
uses the ConfigObj library to parse them. stpipe handles all of
the file I/O for each step and the passing of data between pipeline
steps, as well as providing access within each step to a common
logging facility. It also provides a common interface for all steps
to reference data files that are stored in the STScI Calibration
Reference Data System (CRDS). Having all of these functions
handled by the stpipe environment relieves developers from
having to include these features in each step or pipeline and
provides a consistent interface to users as well.

Command-line Execution

stpipe can be used from the command line to execute a
step or pipeline by providing either the class name of the
desired step/pipeline or a configuration file that references the
step/pipeline class and provides optional argument values. An
example that directly calls a class is:

> strun jwst_pipeline.SloperPipeline input.fits
--output_file="myimage.fits"

The same thing can be accomplished by specifying a config file,
e.g.:

> strun sloper.cfg input.fits

where sloper.cfg contains:

name = "SloperPipeline"
class = "jwst_pipeline.SloperPipeline"
output_file = "myimage.fits"
save_calibrated_ramp = True

Note that in the absence of the user explicitly specifying an output
file name for saving the results, stpipe includes a mechanism
for constructing an output file name that is composed of the input
root file name and the name of the pipeline or step class that has
been applied to produce the output.

Python Execution

Steps and pipelines can also be called from within Python using
the class "call" method:

>>> from jwst_pipeline import SloperPipeline
>>> SloperPipeline.call('input.fits',

config_file='sloper.cfg')

Logging

The stpipe logging mechanism is based on the standard Python
logging framework. The framework has certain built-in things
that it automatically logs, such as the step and pipeline start/stop
times, as well as platform information. Steps can log their own
specific items and every log entry is time-stamped. Every log
message that’s posted has an associated level of severity, including
DEBUG, INFO, WARN, ERROR, and CRITICAL (the same
levels provided in the Python stdlib). The user can control how
verbose the logging is via arguments in the config file or on the
command line.

THE JAMES WEBB SPACE TELESCOPE DATA CALIBRATION PIPELINE 45

Steps and Pipelines

Steps define the parameters that are available, their data types
(specified in "configspec" format), and their default values. As
mentioned earlier, users can override the default parameter values
by supplying values in configuration files or on the command-line.
Steps can be combined into pipelines, and pipelines are themselves
steps, allowing for arbitrary levels of nesting.

Simple linear pipelines can be constructed as a straight se-
quence of steps, where the output of each step feeds into the
input of the next. These linear pipelines can be started and
stopped at arbitrary points, via arguments supplied by the user,
with all of the status saved to disk and then resumed later if
desired. More complex (non-linear) pipelines can be defined using
a Python function, so that the flow between steps is completely
flexible. This is useful, for example, when the output of a step
is multiple products that need to be looped over by subsequent
steps. Because of their non-linear nature, these more complex
types of pipeline can not be started or stopped mid-stream. Both
types of pipelines, however, allow the user to skip certain steps by
supplying configuration overrides.

Step configuration files can also specify pre- and post-hooks,
to introduce custom processing into the pipeline. The hooks can
be Python functions or shell commands. This allows astronomers
to examine or modify data, or insert a custom correction, at any
point along the pipeline without needing to write their own Python
code.

A hypothetical pipeline is shown below. In this example, the
input data is modified in-place by each processing step and the
results passed along from one step to the next. The final result is
saved to disk by the stpipe environment. Each pipeline subclass
inherits from the Pipeline class. The subclass defines the Steps that
will be used so that the framework can configure parameters for
the individual Steps. This is done with the step_defs member,
which is a dictionary that maps step names to step classes. This
dictionary defines what the Steps are, but says nothing about
their order or how data flows from one Step to the next. That
is defined in Python code in the Pipeline’s process method. By
the time the Pipeline’s process method is called, the Steps in
step_defs will be instantiated as member variables.

from jwst_lib.stpipe import Pipeline

pipeline step imports
from jwst_pipeline.dq import dq_step
from jwst_pipeline.ipc import ipc_step
from jwst_pipeline.bias import bias_step
from jwst_pipeline.reset import reset_step
from jwst_pipeline.frame import frame_step
from jwst_pipeline.jump import jump_step
from jwst_pipeline.ramp import ramp_step

setup logging
import logging
log = logging.getLogger()
log.setLevel(logging.DEBUG)

the pipeline class
class SloperPipeline(Pipeline)

spec = """
save_cal = boolean(default=False)

"""

step definitions
step_defs = {"dq" : dq_step.DQInitStep,

"ipc" : ipc_step.IPCStep,
"bias" : bias_step.SuperBiasStep,

"reset" : reset_step.ResetStep,
"frame" : frame_step.LastFrameStep,
"jump" : jump_step.JumpStep,
"ramp_fit" : ramp_step.RampFitStep,
}

the pipeline process
def process(self, input):

log.info("Starting calwebb_sloper ...")

input = self.dq(input)
input = self.ipc(input)

don’t apply superbias to MIRI data
if input.meta.instrument.name != "MIRI":

input = self.bias(input)

only apply reset and lastframe to MIRI data
if input.meta.instrument.name == "MIRI":

input = self.reset(input)
input = self.frame(input)

input = self.jump(input)

save the results so far
if save_cal:

input.save(product_name(self, "cal"))

input = self.ramp_fit(input)

log.info("... ending calwebb_sloper")
return input

Another example listed below shows how a pipeline can be in-
cluded within a pipeline, just like a step, using all the same means
to declare the pipeline and receiving all the same configuration
handling from stpipe. In this example an existing pipeline is
first applied to the input, followed by two more individual steps.

from jwst_lib.stpipe import Pipeline

pipeline and step imports
from jwst_pipeline.pipeline import sloper_pipe
from jwst_pipeline.wcs import wcs_step
from jwst_pipeline.flat import flat_step

setup logging
import logging
log = logging.getLogger()
log.setLevel(logging.DEBUG)

the pipeline class
class MyPipeline(Pipeline)

step definitions
step_defs = {"sloper": sloper_pipe.SloperPipe,

"wcs" : wcs_step.WcsStep,
"flat" : flat_step.FlatStep,
}

the pipeline process
def process(self, input):

slope_model = self.sloper(input)
slope_model = self.wcs(slope_model)
result = self.flat(slope_model)

return result

Data Models

For nearly 35 years most astronomers, observatories, and astro-
nomical data processing packages have used a common data file
format known as the Flexible Image Transport System (FITS).

46 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

While a common file format has made it very easy to share data
across groups of people and software, the format is used in many
different ways to store the unique aspects of different types of
observational data (e.g. images versus spectra). The burden of
loading, parsing, and interpreting the contents of any particular
FITS file has always fallen to the processing code that’s trying
to do something to the data. For the JWST calibration pipelines,
the stpipe environment takes care of all the file I/O, leaving the
developers of steps and pipelines to concentrate on processing the
data itself.

This has been implemented through the use of software data
models in stpipe, through which it performs all the necessary
I/O between files on disk and the data models. The data models
allow the on-disk representation of the data to be abstracted from
the pipeline steps via the I/O mechanisms built into stpipe.
The use of software data models in the processing steps also
has the benefit of eliminating or at least being able to manage
dependencies between the various steps. Because all of the actual
science data and its associated meta data are completely self-
contained within a model, each step has all of the information
it needs to do its work. For example, if one of the final steps in a
particular pipeline gets modified in some way, there’s no need to
restart the processing for a particular data set from the beginning.
The results from the step immediately preceding the change can
be reloaded and the modified step executed from that point. If a
particular processing step changes the overall format or content of
the data set in some way, the result is saved in a different type
of data model. Each step can perform a check to ensure that the
input it’s been given conforms to the type of data model expected
in that step. Any inconsistencies will be detected immediately and
the process will shutdown with a warning to the user, rather than
the undesirable behavior of having a step crash because the input
data were not compatible with that step.

The stpipe models interface currently reads and writes FITS
files, but will soon also support the Advanced Scientific Data
Format (ASDF) file format being developed by STScI [DB15].
The interface provides the same methods of access within the
pipeline steps whether the data is on disk or already in memory.
Futhermore, the stpipe interface can decide the best way to
manage memory, rather than leaving it up to the code in individual
steps. The use of the data models isolates the processing code from
future changes in file formats or keywords.

Each model is a bundle of array or tabular data, along with
metadata. The structure of the data and metadata for any model
is defined using JSON Schema [Dro14]. JSON Schema works
with any structured data, such as YAML and XML. The data
model schemas are modular, such that a core schema that contains
elements common to all models can also include any number of
additional sub-schema that are unique to one or more particular
models.

An example is the simple "ImageModel", shown below, which
contains a total of three 2-dimensional data arrays. The schema
defines the name of each model attribute, its data type, array
dimensions (in the case of data arrays), and default values.
Attributes can also be designated as required or optional. The
"core.schema.json" and "sens.schema.json" files contain additional
definitions of metadata attributes.

{ "allOf": [
{"$ref": "core.schema.json"},
{"type" : "object",

"properties" : {

"data" :
{"type" : "data",
"title" : "The science data",
"fits_hdu" : "SCI",
"default" : 0.0,
"ndim" : 2,
"dtype" : "float32"
},

"dq" :
{"type" : "data",
"title" : "Data quality array",
"fits_hdu" : "DQ",
"default" : 0,
"dtype" : "uint32"
},

"err" :
{"type" : "data",
"title" : "Error array",
"fits_hdu" : "ERR",
"default" : 0.0,
"dtype" : "float32"
},
"sens" : {"$ref": "sens.schema.json"}

}
}

]
}

Within the pipeline or step code the developer loads a data model
using simple statements like:

from jwst_lib.stpipe import Step, cmdline
from jwst_lib import models

class FlatFieldStep(Step):

def process(self, input):

with models.ImageModel(input) as im:
result = flat_field.correct(im)

return result

In a case like this, stpipe takes care of determining whether
"input" is a model already loaded into memory or a file on disk. If
the latter, it opens and loads the file contents into an ImageModel.
The step code then has direct access to all the attributes of the
ImageModel, such as the data, dq, and err arrays defined in the
ImageModel schema above. If this is the only step being executed,
stpipe will save the returned data model to disk. If this step
is part of a pipeline, on the other hand, stpipe will pass the
returned data model in memory to the next step. At the end of the
pipeline the final model will be saved to disk.

Conclusions

We are in the process of building the data calibration pipelines
that will be used to remove instrumental artificats from images
and spectra obtained by the James Webb Space Telescope. The
calibration pipelines rely on the stpipe environment developed
at STScI, which handles all data I/O and configuration hanlding
for the individual calibration steps. The entire package is designed
to be relatively light-weight and self-contained so that it can be
easily distributed to and run by individual astronomers at their
home institutions. Calibration steps and pipelines can be executed
from the command line, or their classes can be instantiated and
called from with an interactive Python environment. This latter
feature in particular allows for great flexibility to tweak or enhance
the processing that’s applied to a given data set. A user can, for

THE JAMES WEBB SPACE TELESCOPE DATA CALIBRATION PIPELINE 47

example, invoke a standard pipeline or a set of individual steps
from within Python and at any point during the processing apply
their own custom processing to the resulting data model in an
interactive way. The ability to interact in real time with the data as
it proceeds through the processing is new to the JWST calibration
environment and did not exist at all for users of Hubble Space
Telescope data.

REFERENCES

[BF12] E. Bernhardsson and E. Freider. The Luigi Python module, https:
//github.com/spotify/luigi

[Dro14] M. Droettboom. JSON Schema, http://json-schema.org
[DB15] M. Droettboom and E. Bray. The ASDF Standard, http://asdf-

standard.readthedocs.org/en/latest/
[Tody83] D. Tody. A Reference Manual for the IRAF Subset Preprocessor

Language, 1983

https://github.com/spotify/luigi
https://github.com/spotify/luigi
http://json-schema.org
http://asdf-standard.readthedocs.org/en/latest/
http://asdf-standard.readthedocs.org/en/latest/

	Introduction
	stpipe
	Command-line Execution
	Python Execution

	Logging
	Steps and Pipelines
	Data Models
	Conclusions
	References

