48

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Circumventing The Linker: Using SciPy’s BLAS and
LAPACK Within Cython

lan Henriksen**

https://www.youtube.com/watch?v=R4yB-8tB0JO

Abstract—BLAS, LAPACK, and other libraries like them have formed the un-
derpinnings of much of the scientific stack in Python. Until now, the standard
practice in many packages for using BLAS and LAPACK has been to link each
Python extension directly against the libraries needed. Each module that calls
these low-level libraries directly has had to link against them independently.
The task of finding and linking properly against the correct libraries has, in the
past, been a substantial obstacle in the development and distribution of Python
extension modules.

Cython has existing machinery that allows C-level declarations to be shared
between Cython-compiled extension modules without linking against the original
libraries. The Cython BLAS and LAPACK API in SciPy uses this functionality to
make it so that the same BLAS and LAPACK libraries that were used to compile
SciPy can be used in Python extension modules via Cython. This paper will
demonstrate how to create and use these APIs for both Fortran and C libraries
in a platform-independent manner.

Index Terms—Cython, BLAS, LAPACK, SciPy

Introduction

Many of the primary underpinnings of the scientific Python stack
rely on interfacing with lower-level languages, rather than working
with code that is exclusively written in Python. SciPy [SciPy], for
example, is a collection of algorithms and libraries implemented
in a variety of languages that are wrapped to provide convenient
and usable APIs within Python. Because programmers often need
to call low-level libraries, F2PY [F2PY], Cython [Cython], and
a variety of similar tools have been introduced to simplify that
process.

In spite of the large number of tools for automatically wrap-
ping low-level libraries, interfacing with low-level languages can
still present a significant challenge. If performance bottlenecks
depend on any third party algorithms, developers are faced with
the daunting task of rewriting their algorithms to interface with
completely different packages and adding large dependencies on
existing low-level libraries. Adding these dependencies to an
existing project can complicate the build process and expose
the project to a much wider variety of bugs. When developers
distribute code meant to work reliably with a variety of compilers
in a variety of environments, low-level dependencies become a

x Corresponding author: iandh@byu.edu
1 Brigham Young University Math Department

Copyright © 2015 lan Henriksen. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

never-ending source of trouble. The problems caused by these
dependencies are further complicated by the fact that, currently,
each Python module must shoulder the burden of distributing or
finding the libraries it uses.

For example, consider the case of a simple tridiagonal matrix
solve. This sort of solve can be done easily within Python.

import numpy as np

def pytridiag(a, b, c, x):
"mm Solve the system A y = x for y
where A is the square matrix with subdiagonal
'a’, b', and superdiagonal 'c'.
A = np.zeros((b.shape[0], b.shape[0]))
np.fill_diagonal (A[1:]1, a)
np.fill_diagonal (A, b)
np.fill_diagonal (A[:,1:], c)
return np.linalg.solve (A, Xx)

’ mn

diagonal

This function works fine for small problems, but, if it needs to
be called frequently, a more specialized algorithm could provide
major improvements in both speed and accuracy. An ideal candi-
date for this sort of optimization is LAPACK’s [LAPACK] routine
dgt sv. That routine can be used within Cython to solve the same
problem more quickly and with fewer numerical errors.

cython: wraparound = False
cython: boundscheck = False
cdef extern from "lapacke.h" nogil:
void dgtsv "LAPACK_dgtsv" (int =xn, int =nrhs,
double xdl, double =d,
double xdu, double =xb,
int x1db, int *info)

cpdef tridiag(double[::1] a,
double[::1] c,

double[::1] b,
double[::1] x):

cdef int n=b.shape[0], nrhs=1, info
Solution is written over the values in X.
dgtsv (&n, &nrhs, &al[0], &b[0], &c[0], &x[0],

&n, &info)

Though this process for calling an external function from a library
is not particularly difficult, the setup file for the Python module
now must find a proper LAPACK installation. If there are several
different versions of LAPACK present, a suitable one must be
chosen. The proper headers and libraries must be found, and, if at
all possible, binary incompatibilities between compilers must be
avoided. If the desired routine is not a part of one of the existing
C interfaces, then it must be called via the Fortran ABI and the
name mangling schemes used by different Fortran compilers must
be taken into account. All of the code needed to do this must also
be maintained so that it continues to work with new versions of the

https://www.youtube.com/watch?v=R4yB-8tB0J0
mailto:iandh@byu.edu

CIRCUMVENTING THE LINKER: USING SCIPY’S BLAS AND LAPACK WITHIN CYTHON

different operating systems, compilers, and BLAS and LAPACK
libraries.

An effective solution to this unusually painful problem is to
have existing Python modules provide access to the low-level
libraries that they use. NumPy has provided some of this sort
of functionality for BLAS and LAPACK by making it so that
the locations of the system’s BLAS and LAPACK libraries can
be found using NumPy’s distutils module. Unfortunately, the
existing functionality is only usable at build time, and does little
to help users that do not compile NumPy and SciPy from source.
It also does not include the various patches used by SciPy to
account for bugs in different BLAS and LAPACK versions and
incompatibilities between compilers.

Cython has provided similar functionality that allows C-level
APIs to be exported between Cython modules without linking.
In the past, these importing systems have been used primarily
to share Cython-defined variables, functions and classes between
Cython modules. If used carefully, however, the existing machin-
ery in Cython can be used to expose functions and variables from
existing libraries to other extension modules. This makes it so that
other Python extension modules can use the functions it wraps
without having to build, find, or link against the original library.

The Cython API for BLAS and LAPACK

Over the last year, a significant amount of work has been devoted
to exposing the BLAS and LAPACK libraries within SciPy at the
Cython level. The primary goals of providing such an interface
are twofold: first, making the low-level routines in BLAS and
LAPACK more readily available to users, and, second, reducing
the dependency burden on third party packages.

Using the new Cython API, users can now dynamically load
the BLAS and LAPACK libraries used to compile SciPy without
having to actually link against the original BLAS and LAPACK
libraries or include the corresponding headers. Modules that use
the new API also no longer need to worry about which BLAS
or LAPACK library is used. If the correct versions of BLAS and
LAPACK were used to compile SciPy, the correct versions will
be used by the extension module. Furthermore, since Cython uses
Python capsule objects internally, C and C++ modules can easily
access the needed function pointers.

BLAS and LAPACK proved to be particularly good candidates
for a Cython API, resulting in several additional benefits:

o Python modules that use the Cython BLAS/LAPACK
API no longer need to link statically to provide binary
installers.

e The custom ABI wrappers and patches used in SciPy
to provide a more stable and uniform interface across
different BLAS/LAPACK libraries and Fortran compilers
are no longer needed for third party extensions.

e The naming schemes used within BLAS and LAPACK
make it easy to write type-dispatching versions of BLAS
and LAPACK routines using Cython’s fused types.

In providing these low-level wrappers, it was simplest to
follow the calling conventions of BLAS and LAPACK as closely
as possible, so all arguments are passed as pointers. Using the
new Cython wrappers, the tridiagonal solve example shown above
can be implemented in Cython in nearly the same way as before,
except that all the needed library dependencies have already been
resolved within SciPy.

49

cython: wraparound = False

cython:

boundscheck = False
from scipy.linalg.cython_lapack cimport dgtsv

cpdef tridiag(double[::1] a,
double[::1] c,

double[::1] b,
double[::1] x):

cdef int n=b.shape[0], nrhs=1, info
Solution is written over the values 1in X.
dgtsv (&n, &nrhs, &al[0], &b[0], &c[0], &x[O0],

&n, &info)

Since Cython uses Python’s capsule objects internally for the
cimport mechanism, it is also possible to extract function pointers
directly from the module’s __pyx_capi___ dictionary and cast
them to the needed type without writing the extra shim.

Exporting Cython APIs for Existing C Libraries

The process of exposing a Cython binding for a function or
variable in an existing library is relatively simple. First, as an
example, consider the following C file and the corresponding
header.

// myfunc.c

double f (double x, double y) {
return x » x - x *x y + 3 * y;

}

// myfunc.h

double f (double x, double vy);

This library can be compiled by running clang -c¢ myfunc.c
-o myfunc.o.

This can be exposed at the Cython level and exported as a
part of the resulting Python module by including the header in
the pyx file, using the function from the C file to create a Cython
shim with the proper signature, and then declaring the function
in the corresponding pxd file without including the header file. A
similar approach using function pointers is also possible. Here’s a
minimal example that demonstrates this process:

cy_myfunc.pyx

Use a £

level directive to 1link

the compiled object.
distutils: extra_link_args = ['myfunc.o']
cdef extern from 'myfunc.h':

double f (double x, double y) nogil

Declare both the external function and

the Cyt

on function as nog
used wi any Python operations

(other than loading the module) .

so they can be

~nhout

cdef double cy_f (double x, double y) nogil:
return f(x, vy)

cy_myfunc.pxd

Don't ude the header here.

Only give the signature for the

Cython-exposed version of the function.

cdef double cy_f (double x, double y) nogil

cy_myfunc_setup.py

from distutils.core import setup

from Cython.Build import cythonize

setup (ext_modules=cythonize ('cy_myfunc.pyx'))

From here, once the module is built, the Cython wrapper for the
C-level function can be used in other modules without linking
against the original library.

Exporting a Cython API for an existing Fortran library

When working with a Fortran library, the name mangling scheme
used by the compiler must be taken into account. The simplest

50

way to work around this would be to use Fortran 2003’s ISO
C binding module. Since, for the sake of platform/compiler
independence, such a recent version of Fortran cannot be used
in SciPy, an existing header with a small macro was used to
imitate the name mangling scheme used by the various Fortran
compilers. In addition, for this approach to work properly, all the
Fortran functions in BLAS and LAPACK were first wrapped as
subroutines (functions without return values) at the Fortran level.
! myffunc.f
! The function to be exported.
double precision function f (x, y)
double precision x, y
f=x%x - x %y + 3 %y
end function f

3

wffuncwrap. £
! A s for the function.
subroutine fwrp (out, x, vy)
external f
double precision f
double precision out, x, y
out = f(x, y)
end

subroutine wrapper

// fortran_defs.h

// Define a macro to handle different
// Fortran naming conventions.
// Copied verbatim from SciPy.
#1if defined (NO_APPEND_FORTRAN)
#1f defined (UPPERCASE_FORTRAN)
#define F_FUNC(f,F) F

#else

#define F_FUNC(f,F) f

#endif

#else

#1f defined (UPPERCASE_FORTRAN)
#define F_FUNC(f,F) F##_
#else

#define F_FUNC(f,F) f##_
#endif

#endif

// myffuncw

#include "fortran_defs.h"

void F_FUNC (fwrp, FWRP) (double xout,
double *y);

double +*x,

cyffunc.pyx

cdef extern from 'myffuncwrap.h':

void fort_f "F_FUNC (fwrp, FWRP)" (double =xout,
double =*x,
double *y) nogil
cdef double f (double xx, double *y) nogil:
cdef double out
fort_f (sout, x, vy)
return out
cyffunc.pxd
cdef double f (double xx, double xy) nogil

Numpy’s distutils package can be used to build the Fortran
libraries and compile the final extension module. The interoper-
ability between NumPy’s distutils package and Cython is limited,
but the C file resulting from the Cython compilation can still be
used to create the final extension module.

cyffunc_setup.py
from numpy.distutils.core import setup
from numpy.distutils.misc_util import Configuration
from Cython.Build import cythonize
def configuration():
config = Configuration ()
config.add_library('myffunc’',
sources=['"'myffunc.f',

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

'myffuncwrap.f'])
config.add_extension('cyffunc',
sources=['cyffunc.c'],
libraries=['myffunc'])
return config
Run Cython to get the needed C files.
Doing this separately from the setup proc
causes any Cython file-specific distutils
directives to be ignored.
cythonize ('cyffunc.pyx")
setup (configuration=configuration)

cess

o W W

There are many routines in BLAS and LAPACK, and creating
these wrappers currently still requires a large amount of boilerplate
code. When creating these wrappers, it was easiest to write Python
scripts that used F2PY’s existing functionality for parsing Fortran
files to generate a set of function signatures that could, in turn, be
used to generate the needed code.

Since SciPy supports several versions of LAPACK, it was also
necessary to determine which routines should be included as a
part of the new Cython API. In order to support all currently used
versions of LAPACK, we limited the functions in the Cython API
to include only those that had a uniform interface from version 3.1
through version 3.5.

Conclusion

The new Cython API for BLAS and LAPACK in SciPy helps
to alleviate the substantial packaging burden imposed on Python
packages that use BLAS and LAPACK. It provides a model for
including access to lower-level libraries used within a Python
package. It makes BLAS and LAPACK much easier to use for
new and expert users alike and makes it much easier for smaller
modules to write platform and compiler independent code. It
also provides a model that can be extended to other packages
to help fight dependency creep and reduce the burden of package
maintenance. Though it is certainly not trivial, it is still fairly easy
to add new Cython bindings to an existing library. Doing so makes
the lower-level libraries vastly easier to use.

Going forward, there is a great need for similar APIs for a
wider variety of libraries. Possible future directions for the work
within SciPy include using Cython’s fused types to expose a
more type-generic interface to BLAS and LAPACK, writing better
automated tools for generating wrappers that expose C, C++,
and Fortran functions automatically, and making similar interfaces
available in ctypes and CFFL.

REFERENCES

[SciPy] Stéfan van der Walt, S. Chris Colbert and Gaél Varoquaux. The
NumPy Array: A Structure for Efficient Numerical Computa-
tion, Computing in Science & Engineering, 13, 22-30 (2011),
DOI:10.1109/MCSE.2011.37
Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn and Kurt Smith. Cython: The Best of Both
Worlds, Computing in Science and Engineering, 13, 31-39 (2011),
DOI:10.1109/MCSE.2010.118
Pearu Peterson. F2PY: a tool for connecting Fortran and Python
programs, International Journal of Computational Science and En-
gineering, 4 (4), 296-305 (2009), DOI:10.1504/1JCSE.2009.029165
[LAPACK] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, D. Sorensen. LAPACK Users’ Guide Third
Edition, Society for Industrial and Applied Mathematics,
1999.

[Cython]

[F2PY]

	Introduction
	The Cython API for BLAS and LAPACK
	Exporting Cython APIs for Existing C Libraries
	Exporting a Cython API for an existing Fortran library
	Conclusion
	References

