PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

51

Mesa: An Agent-Based Modeling Framework

David Masad**, Jacqueline Kazil*

https://www.youtube.com/watch?v=1cySLoprPMc

Abstract—Agent-based modeling is a computational methodology used in so-
cial science, biology, and other fields, which involves simulating the behavior
and interaction of many autonomous entities, or agents, over time. There is
currently a hole in this area in Python’s robust and growing scientific ecosys-
tem. Mesa is a new open-source, Apache 2.0 licensed package meant to fill
that gap. It allows users to quickly create agent-based models using built-in
core components (such as agent schedulers and spatial grids) or customized
implementations; visualize them using a browser-based interface; and analyze
their results using Python’s data analysis tools. lts goal is to be a Python 3-
based alternative to other popular frameworks based in other languages such
as NetLogo, Repast, or MASON. Since the framework is being built from scratch
it is able to incorporate lessons from other tools. In this paper, we present Mesa’s
core features and demonstrate them with a simple example model.!

Index Terms—agent-based modeling, multi-agent systems, cellular automata,
complexity, modeling, simulation

Introduction

Agent-based modeling involves simulating the behavior and inter-
action of many autonomous entities, or agents, over time. Agents
are objects that have rules and states, and act accordingly with each
step of the simulation [Axtell2000]. These agents may represent
individual organisms, humans, entire organizations, or abstract
entities. Robert Axtell, one of the early scholars of agent-based
models (ABMs), identified the following advantages [Axtell2000]:

1) Unlike other modeling approaches, ABMs capture the
path as well as the solution, so one can analyze the

system’s dynamic history.

2) Most social processes involve spatial or network at-
tributes, which ABMs can incorporate explicitly.
3) When a model (A) produces a result (R), one has estab-

lished a sufficiency theorem, meaning R if A.

To understand the utility of agent-based modeling, consider
one of the earliest and best-known models, created by Thomas
Schelling. Schelling wanted to test the theory that segregated
neighborhoods can arise not just by active racism, but due
to only a mild preference for neighbors of the same ethnic-
ity [Schelling1971]. The model consists of majority-group and
minority-group agents living on a grid, who have a preference for

« Corresponding author: david.masad @ gmail.com, jackiekazil @ gmail.com
Department of Computational Social Science, George Mason University

Copyright © 2015 David Masad et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Mesa is available on GitHub at https://github.com/projectmesa/mesa

<+

only several neighbors of the same group. When that preference is
not met, they move to a different grid cell. The model demonstrates
that even a mild preference for same-group neighbors leads to
a dramatic degree of segregation. This is an example of the
emergence of a higher-order phenomena from the interactions
of lower-level entities, and demonstrates the link between agent-
based modeling and complexity theory, and complex adaptive
systems in particular [Miller2009].

There are currently several tools and frameworks in wide use
for agent-based modeling?, particularly NetLogo [Wilensky1999],
Repast [North2013], and MASON [Luke2005]. From our per-
spective, all of these share a key weakness: they do not use
Python. This is not just a matter of parochial preference. In
recent years, Python has become an increasingly popular language
for scientific computing [Perez2011], supported by a mature and
growing ecosystem of tools for analysis and modeling. Python is
widely considered a more natural, easy-to-use language than Java,
which is used for Repast and MASON; and unlike NetLogo’s
custom scripting language, Python is a general purpose pro-
gramming language. Furthermore, unlike the other frameworks,
Python allows interactive analysis of model output data, through
the IPython Notebook [Perez2007] or similar tools. Despite these
advantages, and despite several partial efforts (e.g. [Zvoleff2013],
[Sayama2013]), a Python agent-based modeling framework does
not yet exist. Mesa is intended to fill this gap.

Mesa is a new open-source, Apache 2.0 licensed Python
package that allows users to quickly create agent-based models
using built-in core components (such as agent schedulers and
spatial grids) or customized implementations; visualize them using
a browser-based interface; and analyze their results using Python’s
data analysis tools.

Designing a new framework from the ground up also allows us
to implement features not found in existing frameworks. For ex-
ample, as we explain in more detail below, other ABM frameworks
tend to use a single agent activation regime by default; in Mesa,
we implement several agent schedulers and require the modeler to
specify which one is being used. We also implement several useful
tools to accelerate common model analysis tasks: a data collector
(present only in Repast) and a batch runner (available in Repast
and NetLogo only via menu-driven systems), both of which can
export their results directly to pandas [McKinney2011] data frame
format for immediate analysis.

2. Throughout this paper, and in Mesa’s documentation more broadly, we
use the term ’agent-based model’ to encompass a wide range of related
computational models as well, such as multi-agent systems, cellular automata
and individual-based model.

https://www.youtube.com/watch?v=lcySLoprPMc
mailto:david.masad@gmail.com, jackiekazil@gmail.com
https://github.com/projectmesa/mesa

Now, th a dictionary of
overything fxed except for Homophily.

In (13): parameters =

In [14]: model reporters =

‘,”m:mME:

In (25): param_sweep.run a

(261 af = pa ot_mode1_vars_datatrane()

In (28] plt.scatter(df.homophily, df.Segregated Agents)
plt.grid(zrue)

Fig. 1: A Mesa implementation of the Schelling segregation model,
being visualized in a browser window and analyzed in an IPython
notebook.

While interactive data analysis is important, direct visual-
ization of every model step is also a key part of agent-based
modeling, both for debugging, and for developing an intuition
of the dynamics that emerge from the model. Mesa facilitates
such live visualization as well. It avoids issues of system-specific
GUI dependencies by using the browser as a front-end, giving
framework and model developers access to the full range of
modern JavaScript data visualization tools.

In the remainder of this paper, we will present Mesa’s architec-
ture and core features. To illustrate their use, we will describe and
build a simple agent-based model, drawn from econophysics and
presenting a statistical mechanics approach to wealth distribution
[Dragulescu2002]. The core of the model is as follows: there are
some number of agents, all of whom begin with 1 unit of money. At
every step of the model, an agent gives 1 unit of money (if they have
it) to some other agent. Despite its simplicity, this model yields
results that are often unexpected to those not familiar with it. For
our purposes, it also easily demonstrates Mesa’s core features.

Architecture
Overview

The guiding principle of Mesa’s architecture is modularity. Mesa
makes minimal assumptions about the form a model will take.
For example, while many models have spatial components, many
others do not, while some may involve multiple separate spaces.
Similarly, visualizations which display each step of a model may
be a critical component of some models and completely unneces-
sary for others. Thus Mesa aims to offer a set of components that
can be easily combined and extended to build different kinds of
models.

We divide the modules into three overall categories: modeling,
analysis and visualization. The modeling components are the core
of what’s needed to build a model: a Model class to store model-
level parameters and serve as a container for the rest of the
components; one or more Agent classes which describe the model
agents; most likely a scheduler which controls the agent activation
regime, and handles time in the model in general, and components
describing the space and/or network the agents are situated in.
The analysis components are the data collectors used to record
data from each model run, and batch runners for automating
multiple runs and parameter sweeps. Finally, the visualization
components are used to map from a model object to one or more
visual representations via a server interface to a browser window.
Figure 2 shows a simple UML diagram of a typical Mesa model.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Batch Runner

Parameters to
sweep

Data to collect

Model Vi . I |

Server Browser Page

Model
Parameters

Model Methods

| |gets viz!
data

|
i
I
-activates
stores the locations pf

i

J

art
Module
s

Chart - vielal _
Module Tsuallzes data

Data Collector gets viz

Variables

Collection
methods

Fig. 2: Simplified UML diagram of Mesa architecture.

To begin building the example model described above, we first
create two classes: one for the model object itself, and one the
model agents. The model’s one parameter is the number of agents,
and each agent has a single variable: how much money it currently
has. Each agent also has only a single action: give a unit of money
to another agent. (The numbers in comments of the code below
correspond to notes under the code block).

from mesa import Model, Agent
class MoneyAgent (Agent) :
"mm An agent with fixed initial wealth.
def _ init_ (self, unique_id):
self.unique_id = unique_id # 1.
self.wealth = 1

mmn

class MoneyModel (Model) :
"""A model with some number of agents.
def _ init_ (self, N):
self.num_agents = N
The scheduler will be added here
self.create_agents|()

mmn

def create_agents(self):
"""Method to create all the agents.
for i in range(self.num_agents):
a = MoneyAgent (i)
Now

nmn

what? See below.

1) Each agent should have a unique identifier, stored in the
unique_id field.

Scheduler

The scheduler is a model component which deserves special
attention. Unlike systems dynamics models, and dynamical sys-
tems more generally, time in agent-based models is almost never
continuous; ABMs are, at bottom, discrete-event simulations.
Thus, scheduling the agents’ activation is particularly important,
and the activation regime can have a substantial effect on the
behavior of a simulation [Comer2014]. Many ABM frameworks
do not make this easy to change. For example, NetLogo defaults
to a random activation system, while MASON’s scheduler is
uniform by default. By separating out the scheduler into a separate,
extensible class, Mesa both requires modelers to specify their
choice of activation regime, and makes it easy to change and

MESA: AN AGENT-BASED MODELING FRAMEWORK

observe the results. Additionally, the scheduler object serves as
the model’s storage structure for active agents.

Many models distinguish between a step (sometimes called a
tick) of the model, and an activation of a single agent. A step of
the model generally involves the activation of one or more agents,
and frequently of all of the agents. There are numerous possible
scheduling regimes used in agent-based modeling, including:

e Synchronous or simultaneous activation,
where all agents act simultaneously. In practice,
this is generally implemented by recording each
agent’s decision one at a time, but not altering the
state of the model until all agents have decided.

« Uniform activation, where all agents are activated
in the same order each step of the model.

« Random activation, where each agent is activated
each step of the model, but the order in which
they are activated is randomized for each step.

« Random interval activation, where the interval
between each activation is drawn from a random
distribution (most often Poisson). In this regime,
there is no set model step; instead, the model
maintains an internal ’clock’ and schedule which
determines which agent will be activated at which
time on the internal clock.

« More exotic activation regimes may be used as
well, such as agents needing to spend resources
to activate more frequently.

All scheduler classes share a few standard method conven-
tions, in order to make them both simple to use and seamlessly
interchangeable. Schedulers are instantiated with the model object
they belong to. Agents are added to the schedule using the add
method, and removed using remove. Agents can be added at the
very beginning of a simulation, or any time during its run -- e.g.
as they are born from other agents’ reproduction.

The step method runs one step of the model, activating
agents accordingly. It is here that the schedulers primarily differ
from one another. For example, the uniform BaseScheduler
simply loops through the agents in the order they were added,
while RandomAct ivation shuffles their order prior to looping.

Each agent is assumed to have a step method of its own,
which receives the model state as its sole argument. This is the
method that the scheduler calls in order to activate each agent.

The scheduler maintains two variables determining the model
clock. steps counts how many steps of the model have occurred,
while t ime tracks the model’s simulated clock time. Many mod-
els will only utilize steps, but a model using Poisson activation,
for example, will track both separately, with steps counting in-
dividual agent activations and t ime the scheduled model time of
the most recent activation. Some models may implement particular
schedules simulating real time: for example, t ime may attempt
to simulate real-world time, where agent activations simulate them
as they engage in different activities of different durations based
on the time of day.

Now, let’s implement a schedule in our example model. We
add a RandomActivation scheduler to the model, and add
each created agent to it. We also need to implement the agents’
step method, which the scheduler calls by default. With these
additions, the new code looks like this:

from mesa.time import RandomActivation

53

class MoneyAgent (Agent) :
#o...

def step(self, model):
"""Give money to another agent.
if self.wealth > O:
Pick a random agent
other = random.choice (model.schedule.agents)
Give them 1 unit money
other.wealth += 1
self.wealth —= 1

mnn

class MoneyModel (Model) :

def _ init_ (self, N):
self.num_agents = N
Adding the scheduler:
self.schedule = RandomActivation(self) # 1.
self.create_agents()

def create_agents (self):
"""Method to create all the agents."""
for i in range(self.num_agents):
a = MoneyAgent (i)
self.schedule.add(a)

def step(self):
self.schedule.step() # 2.

def run_model (self, steps):
for _ in range(steps): # 3.
self.step()

1) Scheduler objects are instantiated with their Model ob-
ject, which they then pass to the agents at each step.

2) The scheduler’s step method activates the step meth-
ods of all the agents that have been added to it, in this
case in random order.

3) Because the model has no inherent end conditions, the
user must specify how many steps to run it for.

Space

Many agent-based models have a spatial element. In spatial mod-
els, agents may have fixed positions or move around, and interact
with their immediate neighbors or with agents and other objects
nearby. The space may be abstract (as in many cellular automata),
or represent many possible scales, from a single building to a
region to the entire world. The majority of models use two-
dimensional spaces, which is how Mesa’s current space mod-
ules are implemented. Many abstract model spaces are toroidal
(doughnut-shaped), meaning that the edges *wrap around’ to the
opposite edge. This prevents model artifacts from arising at the
edges, which have fewer neighbors than other locations.

Mesa currently implements two broad classes of space: grid,
and continuous. Grids are discrete spaces, consisting of rectangu-
lar cells; agents and other objects may only be in a particular cell
(or, with some additional coding, potentially span multiple cells),
but not between cells. In continuous space, in contrast, agents can
have any arbitrary coordinates. Both types of space assume by
default that agents store their location as an (x, y) tuple named
pos.

There are several specific grid classes, all of which inherit from
a root Grid class. At its core, a grid is a two-dimensional array
with methods for getting the neighbors of particular cells, adding
and removing agents, etc. The default Grid class does not enforce
what each cell may contain. However, SingleGrid ensures
that each cell contains at most one object, while MultiGrid

54

Fig. 3: Grid topology. Moore and Von Neumann neighborhoods of
radius 1; in a torus, lettered edges connect to one another.

explicitly makes each cell be a set of 0 or more objects. There
are two kinds of cell neighborhoods: The first is a cell’s Moore
neighborhood that is the 8 cells surrounding it, including the
diagonals; the second is the Von Neumann neighborhood which
is only the 4 cells immediately above, below, and to its left and
right. Which neighborhood type to use will vary based on the
specifics of each model, and are specified in Mesa by an argument
to the various neighborhood methods.

The ContinuousSpace class also inherits from Grid, and
uses the grid as a way of speeding up neighborhood lookups; the
number of cells and the arbitrary limits of the space are provided
when the space is created, and are used internally to map between
spatial coordinates and grid cells. Neighbors here are defined as
all agents within an arbitrary distance of a given point. To find the
neighbors of a given point, Cont inuousSpace only measures
the distance for agents in cells intersecting with a circle of the
given radius.

To add space to our example model, we can have the agents
wander around a grid; instead of giving a unit of money to any
random agent, they pick an agent in the same cell as themselves.
This means that multiple agents are allowed in each cell, requiring
aMultiGrid.

from mesa.space import MultiGrid

class MoneyModel (Model) :

def _ init_ (self, N, width, height, torus):
self.grid = MultiGrid (height, width, torus) # 1.
... everything else

def create_agents (self):
for i in range(self.num_agents):
... everything above
random.randrange (self.grid.width)
random.randrange (self.grid.width)
v)) # 2.

x =
y =
self.grid.place_agent (a, (x,

class MoneyAgent (Agent) :

#o...

def move (self, model) :
"""Take a random step."""
grid = model.grid
x, y = self.pos
possible_steps = grid.get_neighborhood(x, vy,

moore=True, include_center=True) # 3.

choice = random.choice (possible_steps)

grid.move_agent (self, choice) # 4.
def give_money (self, model):

grid = model.grid

pos = [self.pos]

others = grid.get_cell_list_contents (pos) # 5.

if len(others) > 1:

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

other = random.choice (others)
other.wealth += 1
self.wealth —= 1

def step(self, model):
self.move (model)
if self.wealth > O:
self.give_money (model)

1) The arguments needed to create a new grid are its width,
height, and a boolean for whether it is a torus or not.

2) The place_agent method places the given object in
the grid cell specified by the (x, y) tuple, and assigns
that tuple to the agent’s pos property.

3) The get_neighborhood method returns a list of co-
ordinate tuples for the appropriate neighbors of the given
coordinates. In this case, it’s getting the Moore neighbor-
hood (including diagonals) and includes the center cell.
The agent decides where to move by choosing one of
those tuples at random. This is a good way of handling
random moves, since it still works for agents on an edge
of a non-toroidal grid, or if the grid itself is hexagonal.

4) the move_agent method works like place_agent,
but removes the agent from its current location before
placing it in its new one.

5) This is a helper method which returns the contents
of the entire list of cell tuples provided. It’s not
strictly necessary here; the alternative would be: x, y
= self.pos; grid[y] [x] (note that
grids are indexed y-first).

others =

Once the model has been run, we can create a static visu-
alization of the distribution of wealth across the grid using the
coord_iter iterator, which allows us to loop over the contents
and coordinates of all cells in the grid, with output shown in figure
4.

wealth_grid = np.zeroes (model.grid.width,

model.grid.height)
for cell in model.grid.coord_iter():
cell_content, x, y = cell
cell_wealth = sum(a.wealth for a in cell_content)
wealth_grid[y] [x] = cell_wealth
plt.imshow (wealth_grid, interpolation='nearest')

Data Collection

An agent-based model is not particularly useful if there is no
way to see the behaviors and outputs it produces. Generally
speaking, there are two ways of extracting these: visualization,
which allows for observation and qualitative examination (and
which we will discuss later in this paper), and quantitative data
collection. In order to facilitate the latter option, we provide a
generic DataCollector class, which can store and export data
from most models without needing to be subclassed.

The data collector stores three categories of data: model-level
variables, agent-level variables, and tables which are a catch-all
for everything else. Model- and agent-level variables are added
to the data collector along with a function for collecting them.
Model-level collection functions take a model object as an input,
while agent-level collection functions take an agent object as
an input. Both then return a value computed from the model
or each agent at their current state. When the data collector’s
collect method is called, with a model object as its argument,
it applies each model-level collection function to the model, and

MESA: AN AGENT-BASED MODELING FRAMEWORK

20

o 0 40 €0 80

Fig. 4: Example of spatial wealth distribution across the grid.

stores the results in a dictionary, associating the current value
with the current step of the model. Similarly, the method applies
each agent-level collection function to each agent currently in
the schedule, associating the resulting value with the step of
the model, and the agent’s unique ID. The data collector may
be placed within the model class itself, with the collect method
running as part of the model step; or externally, with additional
code calling it every step or every N steps of the model.

The third category, tables, is used for logging by the model or
the agents rather than fixed collection by the data collector itself.
Each table consists of a set of columns. The model or agents can
then append records to a table according to their own internal
logic. This can be used to log specific events (e.g. every time an
agent is killed), and data associated with them (e.g. agent lifespan
at destruction), particularly when these events do not necessarily
occur every step.

Internally, the data collector stores all variables and tables in
Python’s standard dictionaries and lists. This reduces the need for
external dependencies, and allows the data to be easily exported
to JSON or CSV. However, one of the goals of Mesa is facili-
tating integration with Python’s larger scientific and data-analysis
ecosystems, and thus the data collector also includes methods for
exporting the collected data to pandas data frames. This allows
rapid, interactive processing of the data, easy charting, and access
to the full range of statistical and machine-learning tools that are
compatible with pandas.

To continue our example, we use a data collector to collect the
wealth of each agent at the end of every step. The additional code
this requires can look like this:

from mesa.datacollection import DataCollector
class MoneyModel (Model) :
def _ init_ (self, N):
... everything above
ar = {"Wealth": lambda a: a.wealth}

self.dc = DataCollector (agent_reporters=ar)

def step(self):
self.dc.collect (self)

55

Histogram of agent wealth
after 1,000 steps

Agent count

Wealth

Fig. 5: Example of model output histogram, with labels added.

self.schedule.step()

We now have enough code to run the model, get some data out of
it, and analyze it.

Create a model with 100 agents on a torus 10x10 grid
model = MoneyModel (100, 10, 10, True)

Run it for 1,000 steps:

model . run_model (1000)

Get the data as a DataFrame

wealth_history = model.dc.get_agent_vars_dataframe ()

wealth _history indexed on Step and AgentID, and...
...has Wealth as one data column
wealth_history.reset_index (inplace=True)

Plot a histogram of final wealth

wealth_history[wealth_history.Step==999].\
Wealth.hist (bins=range (10)

An example of the output of this code is shown in Figure 5. Notice
that this simple rule, where agents give one another 1 unit of
money at random, produces an extremely skewed wealth distri-
bution -- in fact, this is approximately a Boltzmann distribution,
which characterizes at least some real-world wealth distributions
[Dragulescu2001].

Batch Runner

Since most ABMs are stochastic, a single model run gives us
only one particular realization of the process the model describes.
Furthermore, the questions we want to use ABMs to answer are
often about how a particular parameter drives the behavior of
the entire system -- requiring multiple model runs with different
parameter values. In order to facilitate this, Mesa provides the
BatchRunner class. Like the DataCollector, it does not need
to be subclassed in order to conduct parameter sweeps on most
models.

BatchRunner is instantiated with a model class, and a
dictionary mapping names of model parameters to either a single
value, or a list or range of values. Like the data collector, it is
also instantiated with dictionaries mapping model- and agent-level
variable names to functions used to collect them. The batch runner
uses the product combination generator included in Python’s
itertools library to generate all possible combinations of
the parameter values provided. For each combination, the batch
collector instantiates a model instance with those parameters, and

56

Relationship between starting wealth
and Gini coefficient

0.75 . . . ,
0.70 .
L]
0.65 [.
!
‘0 060} . : _
T .
g s . H
[%) - a -
g * LI TR S i .
[. . l i
050 . . » * L] [] 8
.] * .
L]
0.45 t .
|}4|} Il 1 1 1
0 2 4 3 8 10

Starting wealth

Fig. 6: Example of batch run scatter-plot, with labels added.

runs the model until it terminates or a set number of steps has
been reached. Once the model terminates, the batch collector runs
the reporter functions, collecting data on the completed model run
and storing it along with the relevant parameters. Like the data
collector, the batch runner can then export the resulting datasets to
pandas data frames.

Suppose we want to know whether the skewed wealth dis-
tribution in our example model is dependent on initial starting
wealth. To do so, we modify the model code to allow for variable
starting wealth, and implement a get_gini method to compute
the model’s Gini coefficient. (In the interest of space, these
modifications are left as an exercise to the reader, or are available
in the full model code online). The following code sets up and
runs a BatchRunner testing starting wealth values between 1
and 9, with 10 runs at each. Each run continues for 1,000 steps, as
above.

param_values = {"N": 100,
"starting_wealth": range(1l,10)}
model_reporter={"Gini": compute_gini}

batch = BatchRunner (MoneyModel,

10,

param_values,
1000, model_reporter)
batch.run_all ()

out = batch.get_model_vars_dataframe ()
plt.scatter (df.starting _wealth, df.Gini)

Output from this code is shown in Figure 6.

Visualization

Mesa uses a browser window to visualize its models. This avoids
both the developers and the users needing to deal with cross-
system GUI programming; more importantly, perhaps, it gives
us access to the universe of advanced JavaScript-based data
visualization tools. The entire visualization system is divided into
two parts: the server side, and the client side. The server runs the
model, and at each step extracts data from it to visualize, which
it sends to the client as JSON via a WebSocket connection. The
client receives the data, and uses JavaScript to actually draw the
data onto the screen for the user. The client front-end also includes
a GUI controller, allowing the user to start a model run, pause it,
advance it by one step, reset the model, and set the desired frame-
rate.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)
€« C' [127.0.0.1:8888

Money Model

07
0.6 \/_/_\/\,\/\/\
05

0.4 Close Controls

0.3
0.2
0.1

0.0
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fig. 7: Example of the browser visualization.

Mesa already includes a set of pre-built visualization elements
which can be deployed with minimal setup. For example, to create
a visualization of the example model which displays a live chart
of the Gini coefficient at each step, we can use the included
ChartModule.

from mesa.visualization.ModularVisualization \
import ModularServer

from mesa.visualization.modules import ChartModule

The Chart

Module gets a model-level variable

’

from the model's data collector

chart_element = ChartModule ([{"Label": "Gini",
"Color": "Black"}l],
data_collector_name='dc') # 1.

Create a server to visualize MoneyModel

server = ModularServer (MoneyModel, # 2.
[chart_element],
"Money Model"™, 100)

server.launch ()

1) We instantiate a visualization element object: ChartMod-
ule, which plots model-level variables being collected by
the model’s data collector as specified by the "Labels"
provided. data_collector_name is the name of
the actual DataCollector variable, so the module knows
where to find the values.

2) The server is instantiated with the model class; a list of
visualization elements (in this case, there’s only the one
element), a model name, and model arguments (in this
case, just the agent count).

Running this code launches the server. To access the actual
visualization, open your favorite browser (ideally Chrome) to http:
//127.0.0.1:8888/ . This displays the visualization, along with the
controls used to reset the model, advance it by one step, or run it at
the designated frame-rate. After several ticks, the browser window
will look something like Figure 7.

The actual visualization is done by the visualization modules.
Conceptually, each module consists of a server-side and a client-
side element. The server-side element is a Python object imple-
menting a render method, which takes a model instance as an
argument and returns a JSON-ready object with the information
needed to visualize some part of the model. This might be as
simple as a single number representing some model-level statistic,
or as complicated as a list of JSON objects, each encoding the
position, shape, color and size of an agent on a grid.

The client-side element is a JavaScript class, which imple-
ments a render method of its own. This method receives the
JSON data created by the Python element, and renders it in the
browser. This can be as simple as updating the text in a particular
HTML paragraph, or as complicated as drawing all the shapes

http://127.0.0.1:8888/
http://127.0.0.1:8888/

MESA: AN AGENT-BASED MODELING FRAMEWORK

described in the aforementioned list. The object also implements
a reset method, used to reset the visualization element when
the model is reset. Finally, the object creates the actual necessary
HTML elements in its constructor, and does any other initial setup
necessary.

Obviously, the two sides of each visualization must be de-
signed in tandem. They result in one Python class, and one
JavaScript . s file. The path to the JavaScript file is a property of
the Python class, meaning that a particular object does not need to
include it separately. Mesa includes a variety of pre-built elements,
and they are easy to extend or add to.

The ModularServer class manages the various visual-
ization modules, and is meant to be generic to most mod-
els and modules. A visualization is created by instantiating
a ModularServer object with a model class, one or more
VisualizationElement objects, and model parameters (if
necessary). The launch () method then launches a Tornado
server, using templates to insert the JavaScript code specified
by the modules to create the client page. The application uses
Tornado’s coroutines to run the model in parallel with the server
itself, so that the model running does not block the serving of
the page and the WebSocket data. For each step of the model,
each module’s render method extracts the visualization data
and stores it in a list. That list item is then sent to the client
via WebSocket when the request for that step number is received.

Let us create a simple histogram, with a fixed set of bins,
for visualizing the distribution of wealth as the model runs. It
requires JavaScript code, in HistogramModule.js and a Python
class. Below is an abbreviated version of both.

var HistogramModule = function (bins) {

// Create the appropriate tag, stored in canvas

S ("body") .append (canvas) ; // 1.

// ... Chart.js boilerplate removed

var chart = new Chart (context) .Bar (data, options);

this.render = function(data) { // 2.
for (var i in data)

chart.datasets[0] .bars[i] .value = datal[il];

chart.update () ;

bi

this.reset = function() { // 3.
chart.destroy();
chart = new Chart (context) .Bar (data, options);

Vi
bi

1) This block of code functions as the object’s constructor.
It adds and saves a canvas element to the HTML page
body, and creates a Chart.js bar chart inside of it.

2) The render method takes a list of numbers as an
input, and assigns each to the corresponding bar of the
histogram.

3) To reset the histogram, this code destroys the chart and
creates a new one with the same parameters.

Next, the Python class tells the front-end to include
Chart.min. js (included with the Mesa package) and the new
HistogramModule. js file we created above, which is located
in the same directory as the Python code’®. In this case, our
module’s render method is extremely specific for this model

57
alone. The code looks like this.

class HistogramModule (VisualizationElement) :
package_includes = ["Chart.min.js"]
local_includes = ["HistogramModule.js"]
def _ init_ (self, bins):

self.bins = bins

new_element = "new HistogramModule ({})" # 1.

new_element = new_element.format (bins)

self.js_code = "elements.push (" # 2.

self.js_code += new_element +");"

def render (self,
wealth_vals =

model) :

[a.wealth

for a in model.schedule.agents]

np.histogram(wealth_vals,
bins=self.bins) [0]

for x in hist]

hist =

return [int (x)

1) This line, and the line below it, prepare the code for
actually inserting the visualization element; creating a
new element, with the bins as an argument.

2) js_code is a string of JavaScript code to be run by the
front-end. In this case, it takes the code for creating a
visualization element and inserts it into the front-end’s
elements list of visualization elements.

Finally, we can add the element to our visualization server
object:

histogram_element = HistogramModule (range (10)
server = ModularServer (MoneyModel,
[histogram_element],
"MoneyModel", 100)
server.launch ()

Conclusions and Future Work

Mesa provides a versatile framework for building, analyzing and
visualizing agent-based models. It seeks to fill the ABM-shaped
hole in the scientific Python ecosystem, while bringing together
powerful features found in other modeling frameworks and intro-
ducing some of its own. Both Mesa’s schedule architecture and
in-browser visualization are, to the best of our knowledge, unique
among major ABM frameworks.

Despite this, Mesa is very much a work in progress. We intend
to implement several key features in the near future, including
inter-agent networks and the corresponding visualization, a better
system to set model runs’ random seed, and tools for reading
and writing model states to disk. The server-side visualization is
also structured so as to allow video-style scrubbing forwards and
backwards through a model run, and we hope to implement this
feature soon as well. In the longer term, we hope to add tools for
geospatial simulations, and for easier distribution of a batch run or
even a single model run across multiple cores or in a cluster. We
also intend to iteratively continue to add to Mesa’s documentation,
increase its efficiency, and improve the visualization quality.

We also hope to continue to leverage Mesa’s open-source
nature. As more researchers utilize Mesa, they will identify
opportunities for improvement and additional features, hopefully

3. While the best practice in web development is to host static files (e.g.
JavaScript) separately, Mesa is not set up to this way, as the models are
currently small and run only locally. As we scale the Mesa framework, we
expect that the ability to pull in external javascript files to be part of the
optimization process.

58

contribute them to the main repository. More models will generate
reference code or additional stand-alone modules, which in turn
will help provide a larger library of reusable modeling components
that have been validated both in terms of their code and scientific
assumptions.

We are happy to introduce Mesa to the world with this paper;
it marks not the end of a research effort, but the beginning of an
open, collaborative process to develop and expand a new tool in
Python’s scientific ecosystem.

Acknowledgements

Mesa is an open-source project, and we are happy to acknowledge
major code contributors Kim Furuya, Daniel Weitzenfeld, and
Eugene Callahan.

REFERENCES

[Axtel12000] Axtell, Robert. “Why agents?: on the varied motivations
for agent computing in the social sciences.” Center on
Social and Economic Dynamics. The Brookings Institution.
(2000).

[Comer2014] Comer, Kenneth W. “Who Goes First? An Examination
of the Impact of Activation on Outcome Behavior in
Agent-Based Models.” George Mason University, 2014.
http://gradworks.umi.com/36/23/3623940.html.

[Dragulescu2001] Dragulescu, Adrian, and Victor M. Yakovenko. “Exponen-
tial and Power-Law Probability Distributions of Wealth and
Income in the United Kingdom and the United States.”
Physica A: Statistical Mechanics and Its Applications 299,
no. 1 (2001): 213-21.

[Dragulescu2002] Dragulescu, Adrian A., and Victor M. Yakovenko. “Sta-
tistical Mechanics of Money, Income, and Wealth: A
Short Survey.” arXiv Preprint Cond-mat/0211175, 2002.
http://arxiv.org/abs/cond-mat/0211175.

[Luke2005] Luke, Sean, Claudio Cioffi-Revilla, Liviu Panait, Keith Sul-
livan, and Gabriel Balan. “Mason: A Multiagent Simulation
Environment.” Simulation 81, no. 7 (2005): 517-27.

[McKinney2011] McKinney, Wes. “Pandas: A Foundational Python Library
for Data Analysis and Statistics.” Python for High Perfor-
mance and Scientific Computing, 2011, 1-9.

[Miller2009] Miller, John H., and Scott E. Page. “Complex Adaptive
Systems: An Introduction to Computational Models of
Social Life.” Princeton University Press, 2009.

[North2013] North, Michael J., Nicholson T. Collier, Jonathan Ozik,
Eric R. Tatara, Charles M. Macal, Mark Bragen, and
Pam Sydelko. “Complex Adaptive Systems Modeling with
Repast Simphony.” Complex Adaptive Systems Modeling
1, no. 1 (March 13, 2013): 3. doi:10.1186/2194-3206-1-3.

[Perez2007] Fernando Pérez, Brian E. Granger. “IPython: A System for
Interactive Scientific Computing.” Computing in Science
and Engineering, vol. 9, no. 3, pp. 21-29, May/June 2007,
doi:10.1109/MCSE.2007.53. URL.: http://ipython.org

[Perez2011] Pérez, Fernando, Brian E. Granger, and John D. Hunter.
“Python: An Ecosystem for Scientific Computing.” Com-
puting in Science & Engineering 13, no. 2 (March 1, 2011):
13-21. doi:10.1109/MCSE.2010.119.

[Sayama2013] Sayama, Hiroki. “PyCX: A Python-Based Simulation Code
Repository for Complex Systems Education.” Complex
Adaptive Systems Modeling 1, no. 1 (March 13, 2013):
1-10. doi:10.1186/2194-3206-1-2.

[Schelling1971] Schelling, Thomas C. “Dynamic models of segregation.”
Journal of Mathematical Sociology 1.2 (1971): 143-186.

[Wilensky1999] Wilensky, Uri. “NetLogo.” Evanston, IL: Center for Con-
nected Learning and Computer-Based Modeling, North-
western University, 1999.

[Zvoleff2013] Zvoleff, Alex. “PyABM Toolkit." http://azvoleff.com/
pyabm.html.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

http://gradworks.umi.com/36/23/3623940.html
http://arxiv.org/abs/cond-mat/0211175
http://azvoleff.com/pyabm.html
http://azvoleff.com/pyabm.html

	Introduction
	Architecture
	Overview
	Scheduler
	Space
	Data Collection
	Batch Runner

	Visualization
	Conclusions and Future Work
	Acknowledgements
	References

