PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

105

Signal Processing and Communications: Teaching
and Research Using IPython Notebook

Mark Wickert*

https://www.youtube.com/watch?v=xWREmn7Ea jM

Abstract—This paper will take the audience through the story of how an elec-
trical and computer engineering faculty member has come to embrace Python,
in particular IPython Notebook (IPython kernel for Jupyter), as an analysis and
simulation tool for both teaching and research in signal processing and com-
munications. Legacy tools such as MATLAB are well established (entrenched)
in this discipline, but engineers need to be aware of alternatives, especially in
the case of Python where there is such a vibrant community of developers.
In this paper case studies will also be used to describe domain specific code
modules that are being developed to support both lecture and lab oriented
courses going through the conversion from MATLAB to Python. These modules
in particular augment scipy.signal in a very positive way and enable rapid
prototyping of communications and signal processing algorithms. Both student
and industry team members in subcontract work, have responded favorably to
the use of Python as an engineering problem solving platform. In teaching,
IPython notebooks are used to augment lecture material with live calculations
and simulations. These same notebooks are then placed on the course Web Site
so students can download and tinker on their own. This activity also encourages
learning more about the language core and Numpy, relative to MATLAB. The stu-
dents quickly mature and are able to turn in homework solutions and complete
computer simulation projects, all in the notebook. Rendering notebooks to PDF
via LaTeX is also quite popular. The next step is to get other signals and systems
faculty involved.

Index Terms—numerical computing, signal processing, communications sys-
tems, system modeling

Introduction

This journey into Python for electrical engineering problem solv-
ing began with the writing of the book Signals and Systems for
Dummies [Wic2013], published summer 2013. This book features
the use of Python (Pylab) to bring life to the mathematics
behind signals and systems theory. Using Python in the Dummies
book is done to make it easy for all readers of the book to
develop their signals and system problem solving skills, without
additional software tools investment. Additionally, the provided
custom code module ssd.py [ssd], which is built on top of
numpy, matplotlib, and scipy.signal, makes it easy to
work and extend the examples found in the book. Engineers love
to visualize their work with plots of various types. All of the plots
in the book are created using Python, specifically matplotlib.

% Corresponding author: mwickert@uccs.edu
£ University of Colorado Colorado Springs

Copyright © 2015 Mark Wickert. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

*

The next phase of the journey, focuses on the research and
development side of signals and systems work. During a recent
sabbatical'! Python and IPython notebook (IPython kernel for
Jupyter) served as the primary digital signal processing modeling
tools on three different projects. Initially it was not clear which
tool would be best, but following discussions with co-workers?
Python seemed to be the right choice. Note, for the most part,
the analysis team was new to Python, all of us having spent
many years using MATLAB/Octave [MATLAB]/[Octave]. A nice
motivating factor is that Python is already in the workflow in the
real-time DSP platform used by the company.

The third and current phase of the Python transformation
began at the start of the 2014-2015 academic year. The move
was made to push out Python to the students, via the IPython
Notebook, in five courses: digital signal processing, digital com-
munications, analog communications, statistical signal processing,
and real-time signal processing. Four of the courses are traditional
lecture format, while the fifth is very hands-on lab oriented, involv-
ing embedded systems programming and hardware interfacing.
IPython Notebook works very well for writing lab reports, and
easily allows theoretical and experimental results to be integrated.
A notebook interface is not a new concept in scientific computing
tool sets’. Both of these tools are very powerful for specific
problem classes.

The remainder of this paper is organized into the follow-
ing sections: arriving at Python for communications and signal
processing modeling, describing IPython notebook usage, case
studies, and conclusions.

Arriving at Python for Communications and Signal Processing
Modeling

About three years ago while working on a study contract for
a small business, 1 started investigating the use of open-source
alternatives over MATLAB. I initially homed in on using Octave
[Octave] for its syntax compatibility with MATLAB. Later I
started to explore Python and became fascinated by the ease of
use offered by the IPython (QT) console and the high quality
of matplotlib 2D plots. The full power of Python/I[Python

1. Academic year 2013-2014 was spent working for a small engineering
firm, Cosmic AES.

2. Also holding the Ph.D. and/or MS in Electrical Engineering, with empha-
sis in communications and signal processing.

3. See for example Mathematica [Mathematica] (commercial) and wxMax-
ima [Maxima] (open source).

https://www.youtube.com/watch?v=xWREmn7EajM
mailto:mwickert@uccs.edu

106

for engineering and scientific computing gradually took hold as
I learned more about the language and the engineering problem
capabilities offered by pylab.

When I took on the assignment of writing the Signals and
Systems for Dummies book [Wic2013] Python seemed like a good
choice because of the relative ease with which anyone could obtain
the tools and then get hands-on experience with the numerical
examples I was writing into the book. The power of numpy
and the algorithms available in scipy are very useful in this
discipline, but I immediately recognized that enhancements to
scipy.signal are needed to make signals and systems tinker-
ing user friendly. As examples were written for the book, I began
to write support functions that fill in some of the missing details
not found in scipy. This is the basis for the module ssd.py, a
constant work in progress to make open source signals and systems
software more accessible to the engineering community.

Modules Developed or Under Development

As already briefly mentioned, the first code module I developed
is ssd.py*. This module contains 61 functions supporting signal
generation, manipulation, and display, and system generation and
characterization. Some of the functions implement subsystems
such as a ten band audio equalization filter or the model of an
automobile cruise control system. A pair of wrapper functions
to_wav () and from_wav () make it easy for students to write
and read 1D ndarrays from a wave file. Specialized plotting
functions are present to make it easy to visualize both signals and
systems. The collection of functions provides general support for
both continuous and discrete-time signals and systems, as well
as specific support for examples found in [Wic2013]. Most all
of functions are geared toward undergraduate education. More
modules have followed since then.

The second module developed, digitalcom.py, focuses
on the special needs of digital communications, both modulation
and demodulation. At present this module contains 32 functions.
These functions are focused on waveform level simulation of con-
temporary digital communication systems. When I say simulation
I specifically mean Monte Carlo techniques which involve the use
of random bit streams, noise, channel fading, and interference.
Knowledge of digital signal processing techniques plays a key
role in implementation of these systems. The functions in this
module are a combination of communcation waveform generators
and specialized signal processing building blocks, such as the
upsampler and downsampler, which allow the sampling rate of
a signal to be raised or lowered, respectively. More functions
are under development for this module, particularly in the area
of orthogonal frequency division multiplexing (OFDM), the key
modulation type found in the wireless telephony standard, long
term evolution (LTE).

A third module, fec_conv.py, implements a rate 1/2 con-
volutional encoding and decoding class [Zie2015]. In digital com-
munications digital information in the form of bits are sent from
the transmitter to the receiver. The transmission channel might
be wired or wireless, and the signal carrying the bits may be at
baseband, as in say Ethernet, or bandpass on a carrier frequency,
as in WiFi. To error protect bits sent over the channel forward
error correction (FEC) coding, such as convolutional codes, may
be employed. Encoding is applied before the source bits are mod-
ulated onto the carrier to form the transmitted signal. With a rate

4. http://www.eas.uccs.edu/wickert/SSD/docs/python/

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

1/2 convolutional code each source bit is encoded into two channel
bits using a shift register of length K (termed constraint length)
with excusive or logic gate connections. The class allows arbitrary
constraint length codes and allows puncturing and depuncturing
patterns. With pucturing/depuncturing certain code bits are erased,
that is not sent, so as to increase the code rate from 1/2 to say 3/4
(4 channel bits for every three source bits).

For decoding the class implements the Viterbi algorithm (VA),
which is a dynamic programming algorithm. The most likely path
the received signal takes through a trellis structure is how the
VA recovers the sent bits [Zie2015]. Here the cost of traversing a
particular trellis branch is established using soft decision metrics,
where soft decision refers to how information in the demodulated
radio signal is converted metric values.

The class contains seven methods that include two graphical
display functions, one of which shows the survivor traceback
paths through the trellis back in time by the decoder decision
depth. The traceback paths, one for each of the 2K=1 trellis states,
give students insight into the operation of the VA. Besides the
class, fec_conv also contains four functions for computing error
probability bounds using the weight structure of the code under
both hard and soft branch metric distance calculations [Zie2015].

A fourth module, synchronization.py, was developed
while teaching a phase-locked loops course, Summer 2014. Syn-
chronization is extremely important is all modern communications
communications schemes. Digital communication systems fail
to get data bits through a wireless link when synchronization
fails. This module supplies eight simulation functions ranging
from a basic phase-locked loop and both carrier and symbol
synchronization functions for digital communications waveforms.
This module is also utilized in an analog communications course
taught Spring 2015.

Describing IPython Notebook Use Scenarios

In this section I describe how Python, and in particular the [Python
notebook, has been integrated into teaching, graduate student
research, and industry research and development.

Teaching

To put things into context, the present lecturing style for all
courses I teach involves the use of a tablet PC, a data projector, a
microphone, and audio/video screen capture software. Live Python
demos are run in the notebook, and in many cases all the code
is developed in real-time as questions come from the class. The
notebook is more than just a visual experience. A case in point is
the notebook audio control which adds sound playback capability.
A 1D ndarray can be saved as a wave file for playback. Simply
put, signals do make sounds and the action of systems changes
what can be heard. Students enjoy hearing as well as seeing
results. By interfacing the tablet lineout or headphone output to
the podium interface to the classroom speakers, everyone can
hear the impact of algorithm tweaks on what is being heard.
This is where the fun starts! The modules scipy.signal
and ssd.py, described earlier, are imported at the top of each
notebook.

For each new chapter of lecture material I present on the tablet
PC, a new IPython notebook is created to hold corresponding
numerical analysis and simulation demos. When appropriate,
starter content is added to the notebook before the lecture. For
example I can provide relevant theory right in the notebook to

SIGNAL PROCESSING AND COMMUNICATIONS: TEACHING AND RESEARCH USING IPYTHON NOTEBOOK 107

transition between the lecture notes mathematics and the notebook
demos. Specifically, text and mathematics are placed in markdown
cells. The notebook theory is however very brief compared to
that of the course lecture notes. Preparing this content is easy,
since the lecture notes are written in LaTeX I drop the selected
equations right into mark down cells will minimal rework. Sample
calculations and simulations, with corresponding plots, are often
generated in advance, but the intent is to make parameter changes
during the lecture, so the students can get a feel for how a
particular math model relates to real-word communications and
signal processing systems.

Computer projects benefit greatly from the use of the note-
book, as sample notebooks with starter code are easily posted to
the course Web Site. The sample notebook serves as a template for
the project report document that the student will ultimately turn in
for grading. The ability to convert the notebook to a LaTeX PDF
document works for many students. Others used screenshots of
selected notebook cells and pasted them into a word processor
document. In Spring 2015 semester students turned in printed
copies of the notebook and as backup, supplied also the notebook
file. Marking on real paper documents is still my preference.

Graduate Student Research

In working with graduate students on their research, it is normal to
exchange code developed by fellow graduate students working on
related problems. Background discussions, code implementations
of algorithms, and worked examples form a perfect use case for
IPython notebook. The same approach holds for faculty interaction
with their graduate students. In this scenario the faculty member,
who is typically short on free time, gains a powerful advantage in
that more than one student may need to brought up to speed on the
same code base. Once the notebook is developed it is shared with
one or more students and often demoed in front the student(s) on
a lab or office computer. The ability to include figures means that
system block diagrams can also be placed in the notebook.

As the student makes progress on a research task they docu-
ment their work in a notebook. Faculty member(s) are briefed on
the math models and simulation results. Since the notebook is live,
hypothetical questions can be quickly tested and answered.

Industry Research and Development

With the notebook engineers working on the same team are able
to share analytical models and development approaches using
markdown cells. The inclusion of LaTeX markup is a welcome
addition and furthers the establishment of notational conventions,
during the development of signal processing algorithms.

Later, prototype algorithm development is started using code
cells. Initially, computer synthesized signals (waveforms) are used
to validated the core functionality of an algorithm. Next, signal
captures (date files) from the actual real-time hardware are used
as a source of test vectors to verify that performance metrics are
being achieved. Notebooks can again be passed around to team
members for further algorithm testing. Soon code cell functions
can be moved to code modules and the code modules distributed
to team members via git [git] or some other distributed revi-
sion control system. At every step of the way matplotlib
[matpltlib] graphics are used to visualize performance of a par-
ticular algorithm, versus say a performance bound.

Complete subsystem testing at the Python level is the final step
for pure Python implementations. When Python is used to con-
struct a behavioral level model, then more testing will be required.

In this second case the code is moved to a production environment
and recoding to say C/C++. It might also be that the original
Python model is simply an abstraction of real electronic hardware,
in which case a hardware implementer uses the notebook (maybe
just a PDF version) to create a hardware prototype, e.g., a field
programable gate array (FPGA) or custom integrated circuit.

Live From the Classroom

Here live from the classroom means responding to questions
using on-the-fly IPython notebook demos. This is an excellent
way to show off the power of Python. Sometimes questions
come and you feel like building a quick model right then and
there during a lecture. When successful, this hopefully locks in a
solid understanding of the concepts involved for the whole class.
The fact that the lecture is being recorded means that students
can recreate the same demo at their leisure when they watch
the lecture video. The notebook is also saved and posted as a
supplement/companion to the lecture. As mentioned earlier, there
is a corresponding notebook for each chapter of lecture material®.
I set the goal of re-posting the chapter notebooks each time a new
lecture video is posted. This way the students have something to
play with as they work on the current homework assignment.

Case Studies

In this section I present case studies that present the details on
one or more of the IPython notebook use cases described in the
previous section of this paper. Case studies from industry R&D
are not included here due to the propriety nature of the work.

In all of the case studies you see that graphical results are
produced using the pylab interface to matplotlib. This is
done purposefully for two reasons. The first stems from the fact
that currently all students have received exposure to MATLAB in
a prior course, and secondly, I wish to augment, and not replace,
the students’ MATLAB knowledge since industry is still lagging
when it comes to using open source tools.

Digital Signal Processing

As a simple starting point this first case study deals with the
mathematical representation of signals. A step function sequence
u[n] is defined as

I, n>0
= ’ - 1
ulr] {O, otherwise M

Here I consider the difference between two step sequences starting
at n = 0 and the other starting at n = 5. I thus construct in Python

x3[n] = x1[n] — x2[n] = uln] — u[n — 3], (2)

which forms a pulse sequence that turns on at n = 0 and turns off
at n =5. A screen capture from the IPython notebook is shown in
Fig. 1.

Of special note in this case study is how the code syntax for
the generation of the sequences follows closely the mathematical
form. Note to save space the details of plotting x»[n] and x3[n] are
omitted, but the code that generates and plots x3[n] is simply:

stem(n, x1 - x2)

5. Notebook postings for each course at http://www.eas.uccs.
edu/wickert/

108

Notebook Screen Capture
Create Two Step Sequences

The module ssd (file ssd.py) contains the function ssd.dstep (n) which produces a step function
output using the index vector n as the input that turns on at n = 0. If you input n-5 the step will now
turn on at n=5.

n = arange (-5, 15)
x1 ssd.dstep(n) # st
X2 ssd.dstep(n-5) #

Plot Waveforms using the Stem function

Create a 3x1 array subplots. The first two contain 1 [n] = u[n] and z3[n] = u
The third plot is the difference of the first minus the second, i.e., #1[n] — z2[n] = u
which should be a rectangular pulse of duration five samples starting at n = 0

n — 5] respectively.
n] —uln — 5],

figure(figsize=(6, 1.0))
stem(n, x1)

grid()

axis([-5, 15, -.1, 1.11)
xlabel (r'Index - n')
ylabel(z'$x 1[n]$')

(...Repeat for two more plots)

1.0F E 9 @ 4 - - 9 ¢ 0
*8'2’ E .] .]
ek | B 1 ulnl
0.2 - 1
0.0p—e2—-o0—-90—-o 1
-5 0 5 10 15
Index - n
1.0F - T ® 9 000606090 q
o ' f
e 1 : 1 uln-5]
T 0.2 - - 1
002900 ¢ oo oo B
-5 0 5 10 15
Index - n
1 uln]—uln-15]
oo o ¢ o e ec0000e0 |
0 5 10 15
Index - n

As expected you see in plot 3 a pulse sequence of five samples starting at n = 0.

Fig. 1: Discrete-time signal generation and manipulation.

Convolution Integral and LTI Systems

A fundamental signal processing result states that the signal output
from a linear and time invariant (LTI) system is the convolution
of the input signal with the system impulse response. The impulse
response of a continuous-time LTI system is defined as the system
output A(¢) in response to the input 8(¢), where &(¢) is the dirac
delta function. A block diagram of the system model is shown in
Fig. 2.

x(t) —| h(t) — y(1)

LTI System

Fig. 2: Simple one input one output LTI system block diagram.

In mathematical terms the output y(¢) is the integral
y0) = [At~ 2)dx 0

Students frequently have problems setting up and evaluating the
convolution integral, yet it is an important concept to learn. The
waveforms of interest are typically piecewise continuous, so the
integral must be evaluated over one or more contiguous intervals.
Consider the case of x(¢) = u(t) —u(t — T), where u(t) is the unit
step function, and % (¢) = ae~“u(t), where a > 0. To avoid careless
errors I start with a sketch of the integrand i(A)x(r — 1), as shown
in Fig. 3. From there I can discover the support intervals or cases
for evaluating the integral.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

x(1) oh 1@ .

1 P
t t

0 T 0

increasing f s h(L)

x(t=1) Integrand of Convolution Integral
A
t-T t 0

Fig. 3: Sketches of x(t), h(t), and h(A)x(t —).

A screen capture of a notebook that details the steps of solving
the convolution integral is given in Fig. 4. In this same figure we
see the analytical solution is easily plotted for the case of T =1
and a = 5.

Notebook Screen Capture ——

Convolution Integral Simulation

For a continuous-time linear time invariant (LTl)system having impulse response h(t) and input
signal z(t), the output, y(t) can be written in terms of a convolution integral:
o

y(t) = Lo 2(Ah(t — X)dA = f: h(\)z(t — A)dA

Special Case

Consider z(t) = u(t) — u(t — T') a rectangular pulse of duration T's and h(t) = ae~**u(t) an
exponential, where a@ > 0. Note: The impulse response is of the form of the well known RC lowpass
filter if we leta = 1/RC.

Writing out and evaluating the convolution integral for the given z(t) and h(t) results in a piecewise
solution involving three contiguous support intervals: (Case 1)t < 0, (Case 2) 0 > ¢ < T, and
(Case 3)t > T The integrand is zero for Case 1. Using the second form of the convolution integral
Case 2 evaluates to:

t
y(t) = / ae” N gy = e
0

For Case 3 we have

¢
y(t) = / ae Ny = ¢
+-T

13
=1-e®0<t<T

0

i —eotD [1 — e’“T] ,t>T

t—T
In summary:
0, t<0
y(t) = 1—e %, 0<t<T
e alt-T) [1 — e"‘T}, t>T

Plot the piecewise solution:

Let T = 1s and a = 5

figure (figsize=(6, 2))

T=1; a=>5

tt = arange(-1, 3.001, .01)

yt = (1-exp(-a*tt))*(ssd.step(tt)=-ssd.step(tt-T))\
+exp (-a* (£t-T)) * (1-exp (-a*T)) *ssd.step(tt-T)

plot (tt, yt,'g")

5

Theoretical Filter Output for a=5 and T=1

0.0 L L L
=0.5 0.0 0.5 1.0 1.5 2.0 25 3.0
Time (s)

Fig. 4: Solving the convolution integral in the notebook .

To bring closure to the tedious analytical solution develop-
ment, I encourage students check their work using computer
simulation. The function ssd.conv_integral () performs
numerical evaluation of the convolution integral for both finite
and semi-infinite extent limits. I simply need to provide an array of
signal/impulse response sample values over the complete support
interval. The screen capture of Fig. 5 shows how this is done
in a notebook. Parameter variation is also explored. Seeing the
two approaches provide the same numerical values is rewarding
and a powerful testimony to how the IPython notebook improves
learning and understanding.

SIGNAL PROCESSING AND COMMUNICATIONS: TEACHING AND RESEARCH USING IPYTHON NOTEBOOK 109

Notebook Screen Capture

Check on the Analytical Solution

Let T = 1s and a = 1
figure (figsize=(6, 2))
1

arange (=1, 3.001, .001)

ssd.step(t) - ssd.step(t-1) C;;]enerate x(t) Elilnd h(t) :

a*exp (~a*t) *ssd.step (t) then numerically convolve
with scipy.signal.convolve

used in the core calculation

]
[T T

y, ty = ssd.conv_integral(x, t, h, t)
plot(ty, y)

(...Repeat for two more plots with a = 5 and 10)

Numerical Convolution Filter Output for T=1
1.0F~ ED — — T T

0.8}
0.6

04

_ _ L
-0.5 0.0 0.5 1.0 15 2.0 2.5 3.0
Time (s)

Fig. 5: Plotting y(t) for a= 1,5, and 10.

Convolutional Coding for Digital Communications

In this case study the coding theory class contained in
fec_conv.py is exercised. Here the specific case is taken from
a final exam using a rate 1/2, K =5 code. Fig. 6 shows the
construction of a fec_conv object and a plot of one code symbol
of the trellis.

Notebook Screen Capture

Part a: K=5 Rate 1/2 Code

In this first part you will create a fec_conv object for the K = 5 code of Table 1. You will create a BEP
plot similar to that found on page 7-41 of the Chapter 7 (text Chapter 12) notes. Note: You will need to
increase D to about 5 X 5 = 25. Unlike the notes example, your results will be for soft-decision
decoding. Functions for computing soft decision decoding upper bounds are contained in the module
fec_conv.py. In addition to the BEP plot, also provide the trellis plot and a traceback plot under low
and high SNR values.

In [5]1: # Instantiate a fec conv coder/decoder cobject
ccl = fec.fec_conv(('10011", '11 "), 25)
ccl.trellis_plot()

Note: 2€1 = 16 Rate 1/2, K = 5 Trellis
states. i :

Blue transitions _
for ‘0" input bit
Green transitions _

4
for 1" input bit
3 -6
T
£
2 -8
i
w

0.0 0.2 0.4 0.6 0.8 1.0
One Symbol Transition

Fig. 6: Construction of a fec_conv object and the corresponding
trellis structure for the transmission of one code symbol.

At the digital communications receiver the received signal is
demodulated into soft decision channel bits. The soft values are
used to calculate branch metrics, which then are used to update
cumulative metrics held in each of the 16 states of the trellis. There
are two possible paths arriving at each state, but the surviving path
is the one producing the minimum cumulative metric.

Fig. 7 shows the survivor traceback paths in the 16-state
trellis while sending random bits through the encoding/decoding
process. Additive noise in the communications channel introduces
confusion in the formation of the traceback paths. The channel
signal-to-noise ratio (SNR), defined as the ratio of received signal

Notebook Screen Capture ——
High SNR Traceback Plot

ccl = fec.fec_conv(('10011',
EbNO = 7

Create 1000 random 0/1 bits
X = randint (0, 2, 1000)

Encode with shift register starting state of '0000'

state = '0000"'

y, state ccl.conv_encoder (X, state)

Add channel noise to bits translated to +1/-1

yn = dc.cpx AWGN (2*y-1, EbNO-3, 1) # Channel SNR is dB less
Translate noisy +1/-1 bits to soft values on [0, 7]

yn = (yn.real+l)/2*7

z = ccl.viterbi_decoder (yn)

Look at the traceback in the VA trellis
ccl.traceback plot ()

riiio1'), 25)

Survivor Paths Traced Back From All 16 States
ofTraceback shows a common - 1 -
path early on (?ood). The correspondin,

_»1-0’ and ‘1" bit at the decision depth
transition (here 25) is the decoded bi

Traceback paths
correspond to
the minimum
cumulative metric
from each of the
16 trellis states

State Index 0 to =251
|
=]

=20 =15 =10 =5 0
Traceback Symbol Periods

Fig. 7: Passing random bits through the encoder/decoder and plotting
an instance of the survivor paths.

power to background noise power, sets the operating condition for
the system. In Fig. 7 the SNR, equivalently denoted by Ej,/Np), is
set at 7 dB. At a decision depth of 25 code symbols, all 16 paths
merge to a common path, making it very likely that the probability
of a bit error, is very very small. At lower a SNR, not shown here,
the increased noise level makes it take longer to see a traceback
merge and this is indicative of an increase in the probability of
making a bit error.

Real-Time Digital Signal Processing

In the real-time digital signal processing (DSP) course C-code
is written for an embedded processor. In this case the processor
is an ARM Cortex-M4. The objective of this case study is to
implement an equal-ripple finite impulse response (FIR) lowpass
filter of prescribed amplitude response specifications. The filter is
also LTI. Python (scipy.signal) is used to design the filter
and obtain the filter coefficients, b[n], n=0,...,M, in £1loat 64
precision. Here the filter order turns out to be M = 77. As in
the case of continuous-time LTI systems, the relation between the
filter input and output again involves a convolution. Since a digital
filter is a discrete-time system, the convolution sum now appears.
Furthermore, for the LTI system of interest here, the convolution
sum can be replaced by a difference equation representation:

y[n] = Z x[n]bln — k|, —co < < oo (€))
k=0

In real-time DSP (4) becomes an algorithm running in real-time
according to the system sampling rate clock. The processor is
working with int 16 precision, so once the filter is designed the
coefficients are scaled and rounded to 16 bit signed integers as
shown in Fig. 8. The fixed-point filter coefficients are written to a
C header file using a custom function defined in the notebook (not
shown here).

110

Notebook Screen Capture

Remez Equi-Ripple Design

e module from GNU Radio

d pass = 0.2
d_stop = 60.0
fs = 48000
f pass = 3500
f_stop = 5000
n, ff, aa, wts=optfir.remezord([f_pass, £ stopl, [1, 0],
[1-10**(-d pass/20), 10%*(-d_stop/20)1,

fsamp=48000)

bl = signal.remez (n_bump, ££f, aa[0::2], wts, Hz=2)

Note: The original amplitude response requirements have been changed. The passband ripple is now

0.2 db and the passband critical frequency is reduced from 4000 to 3500 Hz. This reduces the filter
order.

Fixed-Point Coefficients (int16_t)

bl fix = intle(rint(bl*2**15))

bl fix
array([14, -13, -33, -63, -97, ~-124, -134, -118, -72,
-2, 80, 151, 191, 179, 109, -9, -148, -269,
-332, -304, -176, 32, 274, 481, 581, 520, 281,
-103, -549, -936, -1128, -1009, -512, 360, 1519, 2810,
4036, 4993, 5518, 5518, 4993, 4036, 2810, 1519, 360,
-512, -1009, -1128, -93¢, -549, -103, 281, 520, 581,
481, 274, 32, -176, -304, -332, -269, -148, -9,
109, 179, 191, 151, 20, -2, -72, -118, -134,
-124, -97, -63, -33, -13, 14], dtype=int1é)

FIR_fix header('s4_pl_remez.h',bl)

Fig. 8 Designing an equal-ripple
scipy.signal.remez for real-time operation.

lowpass filter using

The filter frequency response magnitude is obtained using a
noise source to drive the filter input (first passing through an
analog-to-digital converter) and then the filter output (following
digital-to-analog conversion) is processed by instrumentation to
obtain a spectral estimate. Here the output spectrum estimate cor-
responds to the filter frequency response. The measured frequency
response is imported into the notebook using loadtxt (). Fig.
9 compares the theoretical frequency response, including quanti-
zation errors, with the measured response. The results compare
favorably. Comparing theory with experiment is something stu-
dents are frequently asked to do in lab courses. The fact that the
stopband response is not quite equal-ripple is due to coefficient
quantization. This is easy to show right in the notebook by
overlaying the frequency response using the original float64
coefficients b1, as obtained in Fig. 8, with the response obtained
using the b1_ fix coefficients as also obtained in Fig. 8 (the plot
is not shown here).

An important property of the equal-ripple lowpass is that
the filter coefficients, b[n], have even symmetry. This means that
b1[M —n] = b;[n] for 0 < n < M. Taking the z-transform of both
sides of (4) using the convolution theorem [Opp2010] results in
Y(z) = H(z)X(z), where Y (z) is the z-transform of y[n], X (z) is the
z-transform of x[n], and H(z), known as the system function, is the
z-transform of the system impulse response. The system function
H(z) takes the form

f al%o
) = bnz_n =
n=0

In general H(z) = N(z)/D(z) is a rational function of z or z~!. The
roots of N(z) are the system zeros and roots of D(z) are the system
poles. Students are taught that a pole-zero plot gives much insight
into the frequency response of a system, in particular a filter.
The module ssd. py provides the function ssd. zplane (b, a)

M
(z—zn))
=

n

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Notebook Screen Capture
Import Measured Results
fs_48, remez78_gl5 = loadtxt('spec_noise_b_remez78_ fs48arm gl5.csv"',

delimiter=',"', skiprows=1, usecols=(0, 1),
unpack=True)

figure (figsize=(6, 3))

f = arange (0, 1.0, .001)

W, B = signal.freqz(bl, 1, 2*pi*f)

w, Bg = signal.freqz(bl_fix, 1, 2*pi*f)
plot(f*48,

20*1ogl0 (abs (B)))
10 abs(Bq)/sum(bl le))

tltlelr'Equl 1pple Lo»pa s T
ylabel (r'Filter Gain (dB)')
xlabel (r'Frequency in kHz ($f s =$

3d kHz)' % (fs/1e3,))
legend((r'Theory floaté64', r'Theory intlé'), loc='upper right')
ylim([=70, 21)

x1im ([0,
grid():

fs/1e3/2])

Equmpple Lowpass Measured: 78 Taps

(== 3
— Theory |nt16
—10F — "Measured ||
@ —20f 1
z
£ —30f 1
s
o
o —40f 1
2
T _sol |
_60 -
~70 I

i
5 10 15 20
Frequency in kHz (f, = 48 kHz)

Fig. 9: Comparing the theoretical fixed-point frequency response with
the measured.

where b contains the coefficients of N(z) and a contains the
coefficients of D(z); in this case a = [1]. The even symmetry
condition constrains the system zeros to lie at conjugate reciprocal
locations [Opp2010] as seen in Fig. 10.

ssd.zplane (bl, [1], auto_scale=False, size=1.2)

17, 0)

Pole-Zero Plot
1.0} =) f
®®QOO G}’OO@@
@d !
0.5} &@@ ;

o :
S T
00F - = =vereiea s)ZT._.,O [5EEES
O

£ on
5
& o
>
|
£ o) ;
9 . [l
P - °
© : /
-0.5} Q ' ., ° g
Gbo : y
®® : ﬁ
-10} “ee00de600”]
-=1.0 -0.5 0.0 0.5 1.0
Real Part

Fig. 10: Pole-zero plot of the equal-ripple lowpass which confirms
that H(z) is linear phase.

With real filter coefficients the zeros must also occur in
conjugate pairs, or on the real axis. When the student sees the pole-
zero plot of Fig. 10 whats jumps off the page is all of the zeros
on the unit circle for the filter stopband. Zeros on the unit circle
block signals from passing through the filter. Secondly, you see
conjugate reciprocal zeros at angles over the interval [—7/4, /4]
to define the filter passband, that is where signals pass through
the filter. As a bit of trivia, zeros not on the unit circle or real
axis must occur as quadruplets, and that is indeed what is seen in

SIGNAL PROCESSING AND COMMUNICATIONS: TEACHING AND RESEARCH USING IPYTHON NOTEBOOK 111

Fig. 10. Note also there are 77 poles at z = 0, which is expected
since M = 77. The pole-zero plot enhances the understanding to
this symmetrical FIR filter.

Statistical Signal Processing

This case study is taken from a computer simulation project in
a statistical signal processing course taken by graduate students.
The problem involves the theoretical calculation of the probability
density function of a random variable (RV) w where

W=Xy-+z

is a function of the three RVs x, y, and z. Forming a new RV that
is a function of three RV as given here, requires some serious
thinking. Having computer simulation tools available to check
your work is a great comfort.

The screenshot of Fig. 11 explains the problem details, includ-
ing the theoretical results written out as the piecewise function
pdf_projl_w(w).

Notebook Screen Capture

Problem 1
The random variable w is defined in terms of the random variables x, y, and z, to be
W=Xyt+z
=v+z

The input rv are assumed to be mutually independent, with = U(—1,1), y U(—1,1), and z U(0,1).

Find the theoretical pdf . Start by first finding the pdf on v = xy using the fact that for independent x
and y,

10 = [L r)n(2) du
- () v

Then find the pdf on the sum w = v + z from a convolution. Note that the rv v and z are also
independent. Why?

Theoretical Analysis
def pdf projl_w(w):
pdf_projl_w(w)

on plot the pdf of w = x*y + z where x~U(-1,1), y~U(-1,1), and
z~U(0,1).

Mark Wickert March 2015

fw = zeros_like(w)

for k, wk in enumerate (w):
if wk >= -1 and wk <= 0:
fwlk] = -1/2* (wk*log (-wk)-wk-1)

elif wk > 0 and wk <= 1:

fwlk] = 1/2%(1 + (wk-1)*log(1-wk) - wk*log(wk))
elif wk > 1 and wk <= 2:

fwlk]l = 1/2*(2 - wk + (wk-1)*1log(wk-1))
else:

fwlk] = 0

return fw

Fig. 11: One function of three random variables simulation problem.

Setting up the integrals is tedious and students are timid
about pushing forward with the calculus. To build confidence a
simulation is constructed and the results are compared with theory
in Fig. 12.

Conclusions and Future Work

Communications and signal processing, as a discipline that sits
inside electrical computer engineering, is built on a strong math-
ematical modeling foundation. Undergraduate engineering stu-
dents, despite having taken many mathematics courses, are often
intimidated by the math they find in communications and signals
processing course work. I cannot make the math go away, but
good modeling tools make learning and problem solving fun
and exciting. I have found, and hopefully this paper shows, that

Notebook Screen Capture
Simulation

Create the Random Variates

X = 2*rand (1000000, 1)-1
¥ = 2*rand (1000000, 1)-1
z = rand(1000000, 1)

W =XxX*y + z

v = x*y

figure (figsize=(6, 3))

hist(w, 51, (-1, 2), normed=True, cumulative=False):
xlabel (r'sws')

ylabel (r'Probability Density $f
title(r'Probability Density of
wr = arange(-1.2, 2.2, .001)

(

w§)

xy + 2§")

plot (wr, pdf projl_w(wr), 'r')
grid();
09 Probability Density of w=zy+z
B T T T T T

0.8
0.7
0.6
05
0.4
0.3

Probability Density f,, (w)

Fig. 12: The simulation of random variable w and the a comparison
plot of theory versus a scaled histogram.

[Python notebooks are valuable mathematical modeling tools.
The case studies show that [Python notebook offers a means for
students of all levels to explore and gain understanding of difficult
engineering concepts.

The use of open-source software is increasing and cannot
be overlooked in higher education. Python is readily accessible
by anyone. It is easy to share libraries and notebooks to foster
improved communication between students and faculty members;
between researchers, engineers, and collaborators. [Python and the
IPython notebook stand out in large part due to the enthusiasm of
the scientific Python developer community.

What lies ahead is exciting. What comes to mind immediately
is getting other faculty on-board. I am optimistic and look forward
to this challenge as tutorial sessions are planned over summer
2015. Other future work avenues I see are working on more code
modules as well as enhancements to the existing modules. In
particular in the convolutional coding class both the encoder and
especially the Viterbi decoder, are numerically intensive. Speed
enhancements, perhaps using Cython, are on the list of things
to do. Within the notebook I am anxious to experiment with
notebook controls/widgets so as to provide dynamic interactivity
to classroom demos.

Acknowledgments

The author wishes to thank the reviewers for their helpful com-
ments on improving the quality of this paper.

REFERENCES

[Wic2013] M.A. Wickert. Signals and Systems for Dummies, Wiley, 2013.
[ssd] http://www.eas.uccs.edu/wickert/SSD/.
[MATLAB] http://www.mathworks.com/.

[Octave] https://en.wikipedia.org/wiki/GNU_Octave.
[Mathematica] https://en.wikipedia.org/wiki/Mathematica.
[Maxima] http://andrejv.github.io/wxmaxima/.

112
[Zie2015]
Lgit]

[matpltlib]
[Opp2010]

R.E. Ziemer and W.H. Tranter Principles of Communications,
seventh edition, Wiley, 2015.

https://git-scm.com/
http://matplotlib.org/

Alan V. Oppenheim and Ronald W. Schafer, Discrete-Time
Signal Processing (3rd ed.), Prentice Hall, 2010.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

	Introduction
	Arriving at Python for Communications and Signal Processing Modeling
	Modules Developed or Under Development

	Describing IPython Notebook Use Scenarios
	Teaching
	Graduate Student Research
	Industry Research and Development
	Live From the Classroom

	Case Studies
	Digital Signal Processing
	Convolution Integral and LTI Systems
	Convolutional Coding for Digital Communications
	Real-Time Digital Signal Processing
	Statistical Signal Processing

	Conclusions and Future Work
	Acknowledgments
	References

