
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 113

pyDEM: Global Digital Elevation Model Analysis

Mattheus P. Ueckermann‡∗, Robert D. Chambers‡, Christopher A. Brooks‡, William E. Audette III‡, Jerry Bieszczad‡

https://www.youtube.com/watch?v=bGulPZh_-Mo

F

Abstract—Hydrological terrain analysis is important for applications such as
environmental resource, agriculture, and flood risk management. It is based
on processing of high-resolution, tiled digital elevation model (DEM) data for
geographic regions of interest. A major challenge in global hydrological terrain
analysis is addressing cross-tile dependencies that arise from the tiled nature of
the underlying DEM data, which is too large to hold in memory as a single array.
We are not aware of existing tools that can accurately and efficiently perform
global terrain analysis within current memory and computational constraints.
We solved this problem by implementing a new algorithm in Python, which uses
a simple but robust file-based locking mechanism to coordinate the work flow
between an arbitrary number of independent processes operating on separate
DEM tiles.

We used this system to analyze the conterminous US’s terrain at 1 arc-
second resolution in under 3 days on a single compute node, and global terrain
at 3 arc-second resolution in under 4 days. Our solution is implemented and
made available as pyDEM, an open source Python/Cython library that enables
global geospatial terrain analysis. We will describe our algorithm for calculating
various terrain analysis parameters of interest, our file-based locking mechanism
to coordinate the work between processors, and optimization using Cython. We
will demonstrate pyDEM on a few example test cases, as well as real DEM data.

Index Terms—digital elevation model, hydrology, terrain analysis, topographic
wetness index

Introduction

The aspect (or flow direction), magnitude of the slope, upstream
contributing area (UCA), and topographic wetness index (TWI),
shown in Figure 1, are important quantities in hydrological terrain
analysis. These quantities are used to determine, for example, the
flow path of water, sediment, and pollutants for applications in
environmental resource, agricultural, and flood risk management.
These quantities are calculated from gridded digital elevation
models (DEM), which describe the topography of a region. DEMs
are often stored as raster arrays, where the value of an element in
the array gives the elevation of that point (usually in meters). The
(i, j) coordinates of the array are also related to (latitude, longitude)
coordinates through a geotransform. The aspect is calculated from
DEM data and gives the angle (in radians) at each element. The
aspect is important for determining the direction that water will
flow, and is also important for solar radiation (for example, a
north-facing slope is more shaded than a south-facing slope in

* Corresponding author: mpu@creare.com
‡ Creare LLC, Hanover, NH

Copyright © 2015 Mattheus P. Ueckermann et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

the northern hemisphere). The slope (meters / meters) can also be
calculated, and gives the change in elevation over the change in
horizontal distance, quantifying the steepness of the topography.
UCA captures the effect of water draining down a slope along
particular routes by keeping track of the amount of runoff that is
funneled through a point. UCA is defined as the total horizontal
area that is up-slope of a point or contour [moore91], and unlike
aspect and slope, the UCA at each element depends on more
than just the immediately surrounding, or adjacent elements in
the array. TWI (κ) is derived from UCA (a) and slope (tanβ ),
where κ = ln a

tanβ
, and was developed by Beven and Kirkby

[beven79] within the runoff model TOPMODEL (see [beven95] ).
TWI represents the steady-state soil moisture due to topographic
effects. Regions with large TWI (flat slopes with large UCA) are
generally wetter than regions with small TWI (steep slopes and
small UCA).

With the improving availability of large, high quality DEM
data, the hydrology of increasingly large regions can be analyzed.
For example, in the US, the National Elevation Dataset provides
1 × 1 arc second (approximately 30 × 30 m) resolution DEM
data for the conterminous US. This data is available as over 3500
files spanning 1o×1o latitude × longitude with over 3600 × 3600
pixels per file for 45 gigapixels of data. Analyzing such large data-
sets presents unique challenges including:

• Accurately handling grid projections where the data is non-
uniformly spaced

• Robustly dealing with no-data and flat regions
• Efficiently calculating the required quantities
• Breaking data up into computable tiles and dealing with

the resulting edge effects (see Figure 2).

DEM datasets can be supplied in various coordinate frames
where the data is not uniformly spaced. Over large regions and
higher latitudes, assuming that the data is uniformly spaced can
result in large errors, and accurate algorithms need to take into
account this grid anisotropy. Additionally, DEM data often con-
tains no-data values where the elevation could not be determined
because of noise in the raw data or other effects. DEM data can
also contain regions where the elevation appears to be flat, that
is, there is no change in elevation from one pixel to the next. In
that case, the aspect is not defined, and the slope is zero, which
leads to an undefined TWI. These situations need to be dealt
with robustly in order to successfully and automatically process
large data-sets. The size of these data-sets can also make analysis
intractable because of limited computational resources and slow
algorithms. Finally, the discrete nature of the tiles can result in
edge effects. Figure 2 shows an example of UCA calculated with

https://www.youtube.com/watch?v=bGulPZh_-Mo
mailto:mpu@creare.com


114 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 1: pyDEM calculates the aspect, slope, upstream contributing area (UCA), and topographic wetness index (TWI) from digital elevation
model data. The aspect and slope are calculated directly from the elevation data, the UCA is calculated from the aspect, and the TWI is
calculated from the UCA and the slope.

Fig. 2: pyDEM can correctly follow the UCA calculation across tile
boundaries.

and without edge correction, where the edge artifact is visible as
a vertical line.

pyDEM was developed to address these challenges. pyDEM
is an open source Python/Cython library that has been used to
calculate TWI for the conterminuous US at 30m resolution, and
the globe at 90m resolution. In the following sections we will
describe our new algorithm for calculating UCA, our file-based
locking mechanism to coordinate work between processors, and
optimization using Cython. Using pyDEM, we will then show
TWI calculated using test elevations, and realistic elevations from
the National Elevation Dataset.

Algorithm Design

To calculate the aspect and slope, pyDEM uses the D∞ method
[tarboton97]. This method calculates the aspect and slope based

on an 8-point stencil around a pixel. The UCA is calculated from
the aspect, and it requires more than just an 8-point stencil around
a pixel. In Tarboton 1997, a recursive algorithm to calculate the
UCA is also presented, but we developed a new algorithm that han-
dles no-data and flat areas differently, while also allowing area up-
dates based on new information at edges of the tile. The recursive
algorithm [tarboton97] starts at down-slope pixels and recursively
calculates its up-slope area. Our algorithm follows the opposite
strategy, and starts at up-slope pixels, then progressively calculates
the UCA of down-slope pixels. Next, we will describe the main
data-structure used for our approach, then present pseudo-code
for the basic algorithm, describe modifications needed to update
edges, and explain modifications to deal with flats.

Data Structures: The main data-structure used by the UCA
algorithm is an adjacency (or connectivity) matrix, A. For the
example in Figure 3 (top), we have a 3×3 elevation array with a
total of 9 pixels. Each row in matrix A (Figure 3, bottom) repre-
sents a pixel in the raster array that receives an area contribution
from another pixel. The columns represents the pixels that drain
into a pixel represented as a row. The value in row i column j
represent the fraction of pixel j’s area that drains into pixel i. For
example, pixel 6 drains completely into pixel 7, so A7,6 = 1.0. On
the other hand, only 30% of the area in pixel 0 drains into pixel 3,
so A3,0 = 0.3.

The algorithm also requires a data structure: ac_pix to keep
track of the "active pixels" which can be computed, ac_pix_old
to record which pixels were computed last round, done to mark
which pixels have finished their computations, and uca to contain
the UCA for each pixel. The ac_pix vector is initialized by
summing over the columns of A to select pixels that do not receive
an area contribution from another pixel. This would happen for



PYDEM: GLOBAL DIGITAL ELEVATION MODEL ANALYSIS 115

Fig. 3: The UCA calculation takes a raster of elevation data (top) and constructs an adjacency (or connectivity) matrix.

pixels at the top of mountains or hills, where the surrounding
elevation is lower, and on pixels on the edges of tiles that do not
receive contributions from the interior. The indices ac_pix of these
pixels are stored in a boolean array.

Algorithm: The pseudo-code for our algorithm is given be-
low using Python syntax. Lines 1-5 initialize the working data-
structures, and assumes that the adjacency matrix was constructed
and elevation_data is an array with the shape of the raster DEM
data. The UCA should be initialized with the geographic area of
a tile, but for simplicity consider 1m×1m pixels. The calculation
is iterative and the exit condition on line 7 ensures that the loop
will terminate, even if there are circular dependencies. Circular
dependencies should not occur for usual DEM data, but for
robustness (in the face of randomly distributed no-data values)
this exit condition was chosen.

If a pixel is marked as active, its area will be distributed down-
slope, executing lines 15-25. The column of the active pixel is
looped over, and the fraction of the area in each row is distributed
to the pixel in that row of the adjacency matrix. For example, in
Figure 3, pixel 0 will be marked as active in the first loop (sum of
elements in the row is zero). Line 17 will then update uca[3] and
uca[4] with f=0.3 and 0.7 times the area in pixel 0, respectively.

Next, lines 21-25 will check to see if the pixel just drained into
is ready to become active. A pixel is allowed to become active
once it has received all of its upstream area contributions. This
condition for becoming active is crucial for preventing double-
accounting. Continuing the example, once uca[3] was updated
with the contribution from pixel 0, we will loop through the entries
of A in row 3. If the entry is non-zero and not marked as done,
we know that pixel 3 will receive a contribution from an upstream
pixel in a later round. In our example, pixel 0 is the only upstream
pixel for pixel 3, and it is done. So, in the next round we can drain
from pixel 3.

In the worst case, this algorithm appears to be O(n4), where
n is the number of elements in the DEM array. Each of the loops,
the while and three for loops all could be executed n times. In
practice, the sparsity of A can be exploited to obtain an algorithm
close to O(n) (see the optimization section).
1 # Initialize
2 ac_pix = A.sum(1) == 0
3 ac_pix_old = zeros_like(ac_pix)

4 done = zeros_like(ac_pix)
5 uca = ones(elevation_data.shape) # Approximately
6

7 while any(ac_pix != ac_pix_old):
8 done[ac_pix] = True
9 ac_pix_old = ac_pix.copy()

10 ac_pix[:] = False
11

12 for i in range(ac_pix.size):
13 if ac_pix[i] is False:
14 continue # to next i. Otherwise...
15 for j, f in enumerate(A[:, i]):
16 # update area
17 uca[j] += uca[i] * f
18

19 # Determine if pixel is done
20 for k, f2 in enumerate(A[j, :]):
21 if not done[k] and f2:
22 break
23 else:
24 # Drain this pixel next round
25 ac_pix[j] = 1

Modification for Edges Update: A fortunate aspect of the UCA
calculation is its linearity, which lends itself well to the principle
of superposition. That is, the UCA within a tile can be calculated
and later adjusted with new contributions from the edges. In our
Figure 3 example, we have a single DEM tile, but this tile might be
one of many tiles. Considering only this one tile, we can calculate
pixel 0’s area contribution to the other pixels within a tile, but we
do not know if pixel 0 is on a ridge, or if there is another pixel
that would drain into it from another tile in the data-set. Similarly,
pixel 8 might need to drain its area downstream to pixels in a
downstream tile in the data-set. Ultimately, there will be a tile
that has the most up-slope pixel, which has no edge dependencies.
Similarly, for realistic data, the UCA of most pixels within a tile
does not depend on the edge. Consider Figure 2 which shows that
the difference in UCA between the tiles does not extend far past
the edge, which indicates that the UCA calculation is relatively
local, except for rivers. This means that the edge update can be
efficient: we only have to update pixels near the edges, and rivers.
Since rivers have a proportionally much smaller area, the edge
update requires much fewer computations compared to the initial
UCA calculation for a tile.

Our strategy of starting at the up-slope pixels and contributing



116 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

area to down-slope pixels is a key algorithmic choice to allow for
the edge correction. Edge pixels that receive area contributions
from neighboring tiles always need to distribute that area down-
slope. It may be possible for every interior pixel to calculate and
store its edge dependencies using the recursive strategy that starts
at down-slope pixels, but in the worst case, each of these pixels
will need to store its dependency on every edge pixel. This results
in a large storage structure, or a complex one that compresses
the information. Alternatively, every pixel will need to be re-
calculated for every edge correction. With our strategy of starting
with up-slope pixels, only the interior pixels that are affected by
information from the edge needs to be recalculated.

To handle edges, the major modifications to the basic algo-
rithm are: initializing the active pixels (ac_pix) based on edge
information/dependencies, initializing the done pixels, and adding
data-structures to keep track of edge dependencies. The main
challenge is careful bookkeeping to ensure that edge information
is communicated to neighboring tiles. pyDEM does this book-
keeping both within a tile, which can be broken up into multiple
chunks, and across tiles, which is described in greater detail under
the Parallel Processing section.

Modification for Flats: pyDEM considers no-data regions
to also be flats. To handle flats, a small adjustment is made to
the adjacency matrix. Without modification, the adjacency matrix
will allow pixels next to flats to drain their area contributions
into the flat, but these contributions never leave. The adjacency
matrix is adjusted by adding the black and green arrows depicted
in Figure 4. The total area contributions that drain into a flat
are collected, for convenience, at a random point within the flat
(black arrows). This total area contribution to the flat is then
proportionally distributed to pixels at the edge of a flat. The
proportions depend on the difference in elevation of the pixels
around the flat. The pixel with the lowest elevation around the
flat always receives a distribution. If a pixel’s elevation satisfies
elocal < min(~elocal)+

√
2∆x, where elocal is the pixel’s elevation,

~elocal are the elevations of the pixels around the flat and ∆x
is the approximate grid spacing, then it is also included in the
area distribution. This relationship comes from a Taylor series
expansion of the grid discretization error, and the

√
2 appears

because the maximum error occurs along the diagonal direction.
The proportion of the distribution is calculated as p =

e f lat−~elocal
∑e f lat−~elocal

,
where e f lat is the elevation of the flat. This distributes the UCA
evenly to pixels with the same elevation surrounding the flat,
or slightly more to pixels with a lower elevation (within the
calculated error tolerance).

Parallel Processing

The majority of the processing on a tile can be done independent
of every other tile. This means it is simple to spawn multiple
processes on a machine or cluster to churn through a large number
of elevation tiles. There are various packages that automate this
process. However, in our case, the edge correction step cannot be
done efficiently on a tile-by-tile basis, so existing packages did not
meet our needs.

The calculation proceeds in three stages. In the first stage, the
tile-local quantities, aspect and slope, are calculated in parallel.
Then the first pass UCA calculation is performed in parallel,
where the initial edge data is written to files. Finally, the UCA
is corrected in parallel to eliminate edge effects. This final stage
does have an order-dependency, and the parallelism is not as

Fig. 4: To correctly calculate drainage over flat or no-data regions,
the total area that drains into the flat (bottom red arrows) are collected
at a single point within the flat (middle black arrows) and then
redistributed to lower-lying regions (top green arrows).

efficient. In each of these stages, separate pyDEM processes can be
launched. If a process terminates unexpectedly, it does not affect
the remaining processes.

In order to prevent multiple processes from working on the
same file, a simple file locking mechanism is used. When a process
claims a DEM tile, it creates an empty .lck file with the same name
as the elevation file. Subsequent processes will then skip over this
file and sequentially process the next available DEM tile. Once
a process is finished with a DEM tile, the .lck file is removed.
Subsequent processes also check to see if the outputs are already
present, in which case it will also skip that DEM tile, moving on
to the next available file. This works well for the first two stages
of the processing, although future implementations plan to use a
cross-platform operating-system-level file locking package such as
lockfile.

In the second and third stages, numpy’s .npz format is used
to save files which communicate edge information. The following
three files are saved for every edge of a tile after calculating the
UCA:

1) the current UCA value at each pixel on the edge,
2) whether the UCA calculation on the edge pixel is done,

and does not still depend on information from neighbor-
ing tiles,

3) whether the edge needs to receive information from
neighboring tiles and has not yet received it.

The first two quantities are populated by neighboring tiles,
while the last quantity is self-calculated by a tile. That is, after
calculating the UCA, a tile will set the pixel value and whether
an edge is done on its neighbors, and update whether an edge
needs information on its own edge data file. To explain why this
is needed, the second and third quantities are illustrated in Figure
5. The first row represents three DEM tiles with edges in the state
after the second calculation stage. The left tile is at the top of
a hill, and all of its edges contribute area downstream. This tile
does not expect any information to enter from adjacent tiles, so
it sets the "to do" value (third quantity) on its edges as False.
The left tile also communicates to the middle tile that this edge
is "done" and can be calculated next round. Still on the top row,
the middle tile determines that area will enter from the left edge,
and sets the "to do" value on its left edge as True. Following this
dependency along, it calculates that none of its other edges are



PYDEM: GLOBAL DIGITAL ELEVATION MODEL ANALYSIS 117

Fig. 5: To correct edges across DEM tiles, the edge information
is communicated to neighboring tiles, which can then update UCA
internally to its edges and communicate that information to the next
tile.

done, and communicates this to the tile on the right. The second
row in Figure 5 shows what happens during the first round of
stage 3. In the first round, the middle tile is selected and the UCA
is updated. Since it received finished edge data from the left tile, it
now marks the left edge’s "to do" status as False, and propagates
the updated area through the tile. It communicates this information
to the right tile, which will be updated in subsequent rounds in
the stage 3 calculation. Note that the calculation on the right tile
could not proceed until the left tile was calculated, which means
that this computation had to be performed serially and could not
be paralellized.

In the example illustrated in Figure 5, the middle tile only
needed one correction. However, in general a tile may require
multiple corrections. This can happen when a river meanders be-
tween two tiles, crossing the tile edge multiple times. In this case,
the two adjacent tiles will be updated sequentially and multiple
times to fully correct the UCA. This situation is specifically tested
in the bottom left (c-1) test-case in Figure 6. There the water flow
path spirals across multiple tiles multiple times. At each crossing,
the UCA needs to be corrected.

During each round of the second stage, we heuristically select
the best tile to correct first. This best tile is selected by looking at
what percentage of edge pixels on that tile will be done after the
correction. In the case of ties, the tile with the higher maximum
elevation is used. In case another process is already using that tile,
the next best tile is selected. As such, the calculation proceeds in
a semi-parallel fashion for large data-sets.

Optimization

The first implementation of the UCA algorithm was much more
vectorized than the code presented above. This pure-Python vec-
torized version aimed to take advantage of the underlying libraries
used by numpy and scipy. However, this earlier version of the
algorithm was not efficient enough to analyze a large data-set
using a single compute node. The analysis would have taken over
a year using 32 CPU cores.

Initial attempts to re-write the algorithm in Cython were not
fruitful, only yielding minor speed improvements. The primary

issue causing the poor performance was the adjacency matrix A.
This matrix was stored as a sparse array, because it had very
few entries. The initial Python and Cython implementations used
scipy’s underlying sparse matrix implementation, along with linear
algebra operations to perform the calculations. These implemen-
tations failed to use the underlying sparse matrix storage structure
to their full advantage.

Consequently, we re-implemented the algorithm with the ad-
jacency matrix was stored in both the Compressed Sparse Column
(CSC) and Compressed Sparse Row (CSR) formats. The CSC
format stores three arrays: data, row_ind, and col_ptr. The data
stores the actual floating point values of the elements in the array,
while the row_ind stores the row number of the data in each
column (same size as data), and col_ptr stores the locations in
the data vector that start a new column (size is 1 + the number of
columns, where the last entry in col_ptr is the total number of data
elements). For example, the A in Figure 3 is stored in CSC as:

data = [0.3,0.7,1.0,1.0,1.0,0.4,0.6,1.0,1.0,1.0]

row_ind = [3, 4, 4, 5, 4, 5, 8, 8, 7, 8]

col_ptr = [0, 2, 3, 4, 5, 7, 8, 9, 10, 10]

The CSR format, which stores col_ind, row_ptr, and a re-arranged
data vector instead, is more computationally efficient for some
aspects of the algorithm, which is why both formats are used.

In particular, looping over the rows for a specific column in
A to update the UCA (lines 15-17 of algorithm) can be efficiently
done using the CSC format. Determining if a pixel is done, which
loops over the columns for a specific row in A (lines 19-25) can
be efficiently done using the CSR format.

Nested for loops in Python are generally known to be in-
efficient and was not implemented. The Cython implementation
yielded excellent results, giving approximately a 3× speed-up
for smaller problems, and a 1000× speedup for larger problems.
These numbers are approximate because the actual values are
highly dependent on the DEM data.

The computational complexity for this improved implemen-
tation is O(n). The for loop on line 12 will continue past lines
13-14 only n times, regardless of how many times the while loop
is executed. Since each pixel can only drain to two neighbors,
the for loop in line 15 only loops over 2 elements when using
CSC. The for loop in line 20 only loops over a maximum of 8
elements for non-flats (since a pixel can only receive contributions
from 8 neighboring pixels) when using CSR. While additional
optimization is potentially possible, the present implementation
efficiently computes the UCA.

Applications

To verify that pyDEM’s core algorithms work as expected, a
collection of test cases were created, and a subset is shown
in Figure 6. pyDEM was also used to calculate TWI for the
conterminous US. Next we will describe the purpose and results
of the each of the test cases, and then we will present the results
over the conterminous US.

To ensure that the [tarboton97] D∞ method was correctly
implemented, we created a number of linearly sloping elevations
to test each quadrant of the 8-element stencil used for the slope and
magnitude calculation (Figure 6 a-1, b-1, b-2). All of the possible
angles are tested in the a-3 case. Notice that the TWI is higher
along the diagonals of this case, and this is an artifact of the D∞

method which is expected to be small for real DEM data. The



118 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 6: To verify that pyDEM’s core algorithms work as expected,
a collected of test elevations (top) were created to cover anticipated
issues in calculating TWI (bottom). This shows that TWI is correctly
calculated. In particular, TWI is larger where the elevation is lower
(as expected), it is evenly distributed around flats (2nd and 3rd rows,
3rd column), and it is concentrated in rivers or outlets (4th column).

c-2 case is a trough that tests to make sure that water will drain
along the diagonal, which would not happen if a central difference
method was used instead of the D∞ method. The a-2 case tests if
pyDEM correctly handles no-data values along the edge of a tile.
Cases b-3, c-3, and those in column 4 all test pyDEM’s handling
of flat regions. In case b-3, notice that pyDEM correctly distributes
the area that drains into the top of the flat to the pixels at the edge
of the flat instead of draining all of the area to a single pixel,
or a few pixels. However, when a pixel that has a much lower
elevation is present at the edge of a flat (a-4 and b-4), pyDEM
drains preferentially along those pixels.

The c-1 case was used to test the third stage of processing,
the edge correction stage. This is a challenging case because the
drainage pattern is a spiral that crosses a single tile boundary
multiple times. Without the edge correction, the UCA builds up in
channels along a tile, but never reach the full value required (see
Figure 7 right). Figure 7 also shows that pyDEM’s edge correction
algorithms are working correctly. The left UCA calculation is
performed on a single tile using tauDEM, and it does not need
edge corrections from adjoining tiles. The middle UCA calculation
is performed using pyDEM over chunks of elevation sections
forming a 7 by 7 grid. For this middle calculation, 316 rounds of

the stage 3 edge correction was performed in serial, which means
that every tile required multiple corrections as new information
became available on the edges. Except for the edge pixels, the
tauDEM and pyDEM results agree to withing 0.02%, which is
reasonable considering how different the algorithms are.

pyDEM was also verified against tauDEM using all of the
above test cases (not shown). In all cases without flats the results
agreed as well as in the spiral case. For the cases with flats,
tauDEM and pyDEM do not agree because they treat flat regions
differently. Also, for cases with non-uniform grids, tauDEM and
pyDEM do not agree. To illustrate the difference, consider the case
of a conical topography with some added noise. On a uniform grid,
the tauDEM and pyDEM solutions agree very well (Figure 8): the
difference between the two UCA calculations is on the order of
10−7, which is excellent given the vast differences between the
UCA algorithms. However, Figure 9 shows that on a non-uniform
grid only pyDEM correctly captures the shape of the geometry
(note that the diagonal artifacts are from the D∞ method). This is
because pyDEM does not assume that the DEM data is uniformly
gridded, but takes into account the geospatial coordinates when
calculating the Aspect using the D∞ method.

Finally, to verify that pyDEM is efficient, robust, and accurate
for real data-sets, we calculated TWI over the conterminous US
(Figure 10). In the figure, the spurious black areas are due to the
interpolation of no data-values of our geoTiff viewer. The full
calculation took approximately 3 days on a 32 core AWS compute
node. Figure 2 (left) shows the UCA for a small region in Austin,
TX from this calculation.

Summary

To solve our problem of analyzing the hydrology of large DEM
data-sets spanning national and global scales, we designed, imple-
mented, optimized, parallelized, and tested a new Python package,
pyDEM. pyDEM implements the D∞ method [tarboton97] to
calculate the aspect and slope, and it uses a novel algorithm to
calculate the upstream contributing area.

pyDEM enables the efficient, accurate, and robust analysis of
large data-sets, while correcting for edge effects. pyDEM has been
tested and agrees well with tauDEM.

Availability

The pyDEM package is available from the Python package index
or through pip install pydem. Note this package is still in alpha
and has not been tested on a wide range of operating systems. The
source code is also hosted on GitHub (https://github.com/creare-
com/pydem), and is free to modify, change, and improve under the
Apache 2.0 license.

Acknowledgments

The authors are grateful to the Cold Regions Research and Engi-
neering Laboratory for support under the SBIR grant W913E5-14-
C-0002.

REFERENCES

[beven79] Beven, K.J.; Kirkby, M. J.; Seibert, J. (1979). "A physically
based, variable contributing area model of basin hydrology".
Hydrolological Science Bulletin 24: 43–69

[beven95] Beven, K., Lamb, R., Quinn, P., Romanowicz, R., Freer, J., &
Singh, V. P. (1995). Topmodel. Computer models of watershed
hydrology., 627-668.

https://pypi.python.org/
https://github.com/creare-com/pydem
https://github.com/creare-com/pydem
https://github.com/creare-com/pydem


PYDEM: GLOBAL DIGITAL ELEVATION MODEL ANALYSIS 119

Fig. 7: UCA for the spiral test case calculated over a single tile (left), multiple tiles with edge correction (middle) and multiple tiles without
edge correction (right).

Fig. 8: For a noisy cone (left), the UCA calculated using pyDEM (middle) and tauDEM (right) agree well when the DEM data is on a uniform
grid.

Fig. 9: For a noisy cone (left), the UCA calculated using pyDEM (middle) and tauDEM (right) do not agree well when the DEM data is on a
non-uniform grid. pyDEM correctly captures the shape of the geometry.

[moore91] Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital
terrain modelling: a review of hydrological, geomorphological,
and biological applications. Hydrological processes, 5(1), 3-30.

[tarboton97] Tarboton, D. G. (1997). A new method for the determination of
flow directions and upslope areas in grid digital elevation models.
Water Resources Research, 33(2), 309-319.



120 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Fig. 10: To verify pyDEM’s performance over a large data set, TWI was calculated for the 1 arc-second resolution US National Elevation
Database (shown with hill-shading overlay) and 3 arc-second SRTM globally (shown in inset).


	Introduction
	Algorithm Design
	Parallel Processing
	Optimization
	Applications
	Summary
	Availability
	Acknowledgments
	References

