PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

121

Widgets and Astropy: Accomplishing Productive
Research with Undergraduates

Matthew Craig**

https://www.youtube.com/watch?v=hyxCDdBH1Mg

Abstract—This paper describes a tool for astronomical research implemented
as an IPython notebook with a widget interface. The notebook uses Astropy, a
community-developed package of fundamental tools for astronomy, and Astropy
affiliated packages, as the back end. The widget interface makes Astropy a
much more useful tool to undergraduates or other non-experts doing research in
astronomy, filling a niche for software that connects beginners to research-grade
code.

Index Terms—astronomy

Introduction

Incoming students interested in majoring in Physics at Minnesota
State University Moorhead are often interested in doing astro-
nomical research. The department encourages students to become
involved in research as early as possible to foster their interest
in science and because research experiences are correlated with
successful completion of a degree [Lopatto2004].

The students typically have no programming experience, but
even the smallest project requires calibrating and taking measure-
ments from a couple of hundred images. To the extent possible,
analysis needs to be automated. Roughly half of the students use
Windows, the rest Mac OSX.

The problem, described in more detail below, is that the GUI-
based software most accessible to these students is expensive,
often available only on Windows, not clearly documented and does
not leave a record of the choices made in calibrating the images
so that future researchers can use the images with confidence. The
free options largely require programming.

The proposed solution is a widget-based IPython note-
book [Pérez2007] for calibrating astronomical images, called
reducer.! A widget-based interface was chosen because stu-
dents at this level are more comfortable with a GUI than with
programming. An IPython notebook was chosen because of its
rich display format, the ability to save both code and text, and the
persistence of output in the notebook, which provides a record of
the work done.

The back end of reducer is built on the Astropy project
[Astropy2013], a community-driven effort to develop high-quality,

* Corresponding author: mcraig @mnstate.edu
Department of Physics and Astronomy, Minnesota State University Moor-
head

Copyright © 2015 Matthew Craig. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

+

open source tools for Python in astronomy, and on Astropy
affiliated projects.> Astropy was chosen because it has a large
developer community of professional astronomers.

Section Background: Image analysis in optical stellar astron-
omy provides background on the science of image calibration. In
the following section the problem is discussed more completely,
including a review of some of the available options for astronomi-
cal image processing. The section “reducer package and notebook
discusses the use of reducer, while “reducer* widget structure
presents its implementation. The widget classes in reducer are
potentially useful in other applications.

Background: Image analysis in optical stellar astronomy

While a detailed description of astronomical data analysis is
beyond the scope of this paper, some appreciation of the steps
involved is useful for understanding its motivation.

An image from a CCD camera on a telescope is simply an
array of pixel values. Several sources contribute to the brightness
of an individual pixel in a raw image:

Light from stars and other astronomical objects.

Light from the nighttime sky; even a “dark” sky is not
perfectly black.

Noise that is related to the temperature of the camera and
to the electronics that transfer the image from the detector
chip in the camera to a computer.

A DC offset to prevent negative pixel values.

The first stage of calibration is to remove the noise and offset
from each image. The second stage is to correct for imperfections
in the optical system that affect how much light gets to each pixel
in the camera. An example of this sort of imperfection is dust on
the camera itself.

A series of images is taken and then combined to perform each
type of calibration. Bias images correct for the DC offset, dark
images correct for thermal noise and flats correct for non-uniform
illumination. One combines several frames of each type to reduce
the electronic read noise present in the calibration images.

After calibration, the brightness of a pixel in the image is
directly proportional to the amount of light that arrived at that
pixel through the telescope. Note that light includes both starlight
and light from the atmosphere.

1. Source code is at: https://github.com/mwcraig/reducer
2. http://www.astropy.org/affiliated/

https://www.youtube.com/watch?v=hyxCDdBH1Mg
mailto:mcraig@mnstate.edu
https://github.com/mwcraig/reducer
http://www.astropy.org/affiliated/

122

Extraction of the brightness of individual stars is called pho-
tometry. There are several techniques for performing photometry,
all of which estimate and eliminate the sky background.

The problem

Several software packages can calibrate astronomical images and
perform photometry, so why write another one?
Ideally, such software would:

1) Be easily usable by an undergraduate with limited or no
programming experience.

2) Work on Windows and Mac.

3) Have its operation well tested in published articles and/or
be open source so that the details of its implementation
can be examined.

4) Leave behind a record of the settings used by the software
in calibrating the images and measuring star brightness.

5) Be maintained by a large, thriving community of devel-
opers.

Commercial software, like MaxIm DL, typically meets the
first criteria. Past MSUM students were able to learn the software
quickly. However, it leaves behind almost no record of how
calibration was done: a fully calibrated image has one keyword
added to its metadata: CALSTAT="'BDF'. While this does in-
dicate which corrections have been made®, it omits important
information like whether cosmic rays were removed from the
calibration images and how the individual calibration images were
combined.

The most extensively-tested and widely-used professional-
grade package for -calibration and photometry is IRAF
[IRAF1993]. IRAF is both a scripting language and a set of pre-
defined scripts for carrying out common operations. It is certainly
widely used, with approximately 450 citations of the paper, and,
because IRAF scripts store settings in text files, there is a record
of what was done.

However, there are several challenges to using IRAF. It is
easiest to install in Linux, though distributions exist for Mac
and it is possible to use on Windows with Cygwin®. The IRAF
command language (CL) is difficult to learn; undergraduates who
have worked with it in summer REU programs report spending 3-
4 weeks learning IRAF. That makes it infeasible to use as part of
a one-semester research project. It is also no longer maintained®.

One option that comes close to meeting all of the criteria is
AstroImage]’, a set of astronomy plug-ins for the Java-based Im-
ageJ [Image]2012]. It has a nice graphical interface that students
in both an introductory astronomy course for non-majors and an
upper-level course for majors found easy to use, is open source,
free, and available on all platforms. It has a rich set of features,
including both image calibrating and aperture photometry, and
very flexible configuration. Its two weaknesses are that it leaves
an incomplete record of the settings used in calibrating data and
measuring brightness and it does not have an extensive support
community.

3. http://www.cyanogen.com/

4. The bias offset and dark current were subtracted and the result divided by
a flat frame to correct for non-uniform illumination.

5. http://www.cygwin.com/

6. The last update was in 2012 according to the IRAF web site, http://iraf.
noao.edu

7. http://www.astro.louisville.edu/software/astroimagej/

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

The solution, broadly

Two relatively recent developments suggest the broad outlines of
a solution that is sustainable in the long run:

o Initiation of the Astropy project in 2011, which unified
what had previously been several independent effort to
develop python software for astronomy. In addition to
developing the core Astropy package, the Astropy orga-
nization gives affiliate status to packages that request it
and meet its documentation, testing and coding standards®

« Addition of widgets to IPython notebooks in IPython,
version 2. From the developer perspective, widgets are
helpful because the Python API for widgets is rich enough
to allow construction of complicated interfaces. There is
no need to learn JavaScript to use the widgets effectively.

It is the combination of high-quality python packages for both
the back-end and front-end that made development of reducer
relatively straightforward.

A notebook-based solution offers a couple of other advantages
over even the strongest of the GUI tools discussed in the previous
section. The first is that exposure to programming broadly is useful
to both the few students who become professional astronomers
and the ones who do not. Though no programming is required to
use reducer, there is code in several of the notebook cells. It
represents something intermediate between a fully GUI applica-
tion and script-only interface. Another is that exposure to Python
programming is useful to both students who work immediately
after graduation and those who go on to become scientists.

The reducer package and notebook

reducer is a pure Python package available on PyPI and as a
conda package’. The user-facing part of the package is a single
script, also called reducer. When invoked, it creates an [Python
notebook, called reduction.ipynb, in the directory in which
it is invoked.

The notebook will not overwrite images. The intent is that the
raw, uncalibrated images are stored in a directory separate than the
one containing the notebook. The calibrated images are saved, by
default, in the same directory as the notebook, leaving a human-
readable record with the images describing the choices made in
calibration.

The notebook also does not provide an easy way to re- run the
calibration short of deleting any calibrated files in the directory
with the notebook and starting fresh. In discussions with students
while developing reducer it became clear that it would be
difficult or impossible to ensure that the state of the notebook
reflected the state of the calibrated files, since it is possible for
some notebook cells to be re-executed without all cells being re-
executed.

That design decision simplified the package, allowed the
notebook to refuse to overwrite files in the directory in which
it is stored, and led to a focus on making sure a human could
read the record of what was done. The package itself makes it
easy to re-run the calibration with different settings should a later
researcher choose to do so.

8. See http://www.astropy.org/affiliated for a list of affiliated packages and
criteria.

9. Use channel mwcraig to get the conda package.

http://www.cyanogen.com/
http://www.cygwin.com/
http://iraf.noao.edu
http://iraf.noao.edu
http://www.astro.louisville.edu/software/astroimagej/
http://www.astropy.org/affiliated

WIDGETS AND ASTROPY: ACCOMPLISHING PRODUCTIVE RESEARCH WITH UNDERGRADUATES 123

Image calibration

All of the calibration steps in reducer are performed by ccdproc,
an Astropy affiliated package for astronomical image reduction
[ccdproc]. Some of the reducer widgets contain some logic for
automatically grouping and selecting images based on metadata in
the image headers, described in more detail below.

This section begins with examples of the individual widgets
that appear and the notebook, followed by an outline of the
structure of the notebook as a whole.

Most of the widgets in reduction.ipynb are geared
towards image calibration. There are two broad types, one for
applying calibrations to a set of images, the other for combining
calibration images.

Each widget has four states:

« Unselected; the widget is a simple button.

e Activated, but with incorrect or incomplete settings, shown
in Fig. 1 for a CombinerWidget.

e Activated and ready for action, with settings that enable
the action to be completed, shown in Fig. 2.

o Locked, after execution of calibration step in the widget,
shown in Fig. 3. Note that the IPython notebook does not
store the widget state in the notebook.' When a reducer
notebook is re-opened the only record guaranteed to be
preserved is the printed text below the widget.

Clip before combining? -
Combine images? 8
Group by:

Keywords (comma-separated) = exposure, filter

Fig. 1: Example widget for combining images before settings have
been set in a self-consistent way. Compare to Fig. 2

Make Master Flat

Clip before combining?

Combine images?

Combination method: =~ Average = Median

Scale before combining?

Which property should scale to same value? mean

© median
Group by:

Keywords (comma-separated) = exposure, filter

Lock settings and Go!

Fig. 2: Same widget as Fig. 1 after consistent settings have been
chosen. Note that the style of the top button changes and a "Go"
button appears when settings are sensible; in this case the user needs
to at least select a combination method. The additional options under
"Combine images" are presented when the checkbox is selected.

A few features of the CombinerWidget illustrate the logic
used in reducer to semi-automatically select the images on

Clip before combining?
Combine images?

Combination method: ~ Average ~ Median

Scale before combining?

Which property should scale to same value? mean

median
Group by:

Keywords (comma-separated) = exposure, filter

Make Master Flat Yes

Clip before combining? No
Combine images? Yes
Combination method:: Average
Scale before combining? Yes
Which property should scale to same value?: median

Group by: Yes
Keywords (comma-separated): exposure, filter

Fig. 3: Same widget as Fig. 2, after executing the calibration step.
Note that a record of the settings is printed into the notebook cell
below the widget to ensure a record remains in the notebook after
reopening it.

which it should act. An apply_to argument to the initializer
controls which calibrated images the widget will act on; in this
case its value is { 'imagetyp': 'flat'}, which selects the
calibration images used to correct non-uniform illumination. A
group_by argument to the widget initializer controls controls
how the images selected by apply_to are combined. In the
example shown, all images with the same filter and exposure time
will be combined by averaging, after each image has been scaled
to the same median value.

Each image, including the images used in the calibration itself,
is processed by a ReductionWidget, like that shown in Fig.
4. That examples is for a "light" image, an image that contains
the objects of interest. Each of the calibration images has some of
these steps applied also, though some of the calibration steps are
not displayed for some of the calibration images.

As with the CombinerWidget, an apply_to argument to
the widget constructor determines which images are processed by
the widget.

The calibration part of the notebook is composed of four pairs
of widgets, one pair for calibrating and combining bias images,
and additional pairs for darks, flats, and science images. One of the
strengths of widget-based notebooks is that they are user- editable
applications. If there is a particular calibration step that is not
needed, the cells that create those widgets can simply be deleted.

Image browser

Reducer also contains a basic image browser, which organizes the
images based on a table of metadata, and displays, when an image
is selected, the image and all of the metadata in that image in
separate tabs in the widget. An example is shown in Fig. 5.

10. In IPython 2.x it is impossible to easily save the widget state, and the
widget is not part of the DOM, so it is not stored when the notebook is saved.
In 3.x the widget is preserved, but saving the state takes additional developer
work.

124

Subtract overscan?

Trim (specify region to keep)?

Regionis alongallof = axis0 axis1 = and on the other axis from index 0 up to (but not including): 1535

Clean cosmic rays?

Subtract bias?

Subtract Dark?

Source: Created in this notebook File on disk

Scale dark by exposure time (if needed) Yes No

Flat correct?

Source: Created in this notebook File on disk

Fig. 4: Widget that applies calibrations to a set of images. Display of
some of the individual steps (e.g. subtracting bias) can be suppressed
with optional arguments when the widget object is created. Red
borders are drawn around each instance of the base widget class
described in the section "reducer widget structure”.

In [5]: tt = msumastro.TableTree(images.summary_info, ['imagetyp', 'exposure'], 'file')
fits_browser = reducer.gui.ImageBrowserWidget(tt, demo=False, directory=data_dir)
fits browser.display()
fits_browser.set_css('padding', '10px')

imagetyp: DARK Image Header

imagetyp: FLAT
imagetyp: BIAS

imagetyp: LIGHT

exposure: 60.0 (10 images)

exposure: 30.0 (30 images)

SA112-SF1-0091.fit
SA112-SF1-009R1.fit
SA112-SF1-009V1.fit
SA112-SF1-01001.fit
SA112-SF1-010R1.fit
SA112-SF1-010V1.fit

Fig. 5: The image display widget arranges images nested by image
metadata values. In this case the two keywords used for grouping
the images were imagetyp and exposure. When an file name is
selected, either the image or its metadata can be displayed.

reducer widget structure

At the base of the reducer widget structure is an ex-
tension of a container widget from IPython. This class,
ToggleContainerWidget, adds a toggle to control display
of the contents of the container, and a list of child widgets dis-
played in the container.!' Since a ToggleContainerWidget
can have another ToggleContainerWidget as a child, this
immediately provides an interface for presenting a user with a
nested list of options. Fig. ?? has a thin red border drawn around
each element that is a subclass of*“ToggleContainerWidget*

In IPython 2 it is not possible to preserve the state of widgets
between sessions, and in IPython 3 it remains difficult, so the
ToggleContainerWidget class defines a __ str_ method
to facilitate printing the contents of the widget. The purpose of this
is not to provide a way to progammatically rebuild the widget; it
is to provide a human reader of the notebook a history of what
was done in the notebook.

The code below implements a basic
ToggleContainerWidget called MyControl. The widget
it produces is shown in Fig. 6.

PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

from reducer.gui import ToggleContainerWidget
from reducer.astro_gui import override_str_factory
from IPython.html.widgets import CheckboxWidget

class MyControl (ToggleContainerWidget) :

mn

Straight forward reducer-widget subclass.
o
def _ init__ (self, *arg, =**kwd):
super (MyControl, self).__init__ (xarg, =xkwd)

b_box is a plain IPython checkbox with a more
meaningful string representation.
b_box = override_str_factory (\

CheckboxWidget (description="'Check me'))
Another plain check box, but
string representation.

[OREEN

These children are contained in the
MyControl widget
self.add_child (b_box)

self.add_child (c_box)

The is_sane property of a ToggleContainerWidget can
be overridden by subclasses to indicate that the settings in the
widget are sensible. This provides some minimal validation of user
input. The code below implements is_sane for MyControl.
@property

def is_sane(self):

nmn

"Check me"
"Don't check me" box is

box 1is
unchecked.

Settings are correct when the
checked and the

mn

return (self.container.children[0].value and

not self.container.children[1].value)

The widget also has an action method. This method must be
overridden by subclasses to do anything useful. It is used in some
cases to set up an environment for acting on data files and to invoke
the action of each child widget on each data file, in the order the
children are listed in the widget. In other cases, the action simply
invokes a function that acts on the data file.

The action method for this example is below.

def action(self):

mmn

A simple action, one for each child.

mmn

import time

for child in self.container.children:
time.sleep(0.5)

One subclass of ToggleContainerWidget, a
ToggleGoWidget, styles the toggle as a button instead
of a checkbox, and adds a "Start" button that is displayed only
when the settings of the widget and all of its children is "sane"
as defined by the is_sane method. What the "Start" button is
pushed it invokes the act i on method of the ToggleGoWidget
and displays a progress bar while working. In Fig. 4, the outermost
container is a ToggleGoWidget.

The code below creates a ToggleGoWidget, adds an in-
stance of MyControl to it, and displays it, creating the widget
in Fig. 6.
from reducer.gui import ToggleGoWidget
go_widget = ToggleGoWidget (description='Sample widget',

toggle_type="button')
control = MyControl (description="Activate me')

go_widget.add_child(control)
go_widget.display ()

with the default

box = CheckboxWidget (description="Don't check me")

WIDGETS AND ASTROPY: ACCOMPLISHING PRODUCTIVE RESEARCH WITH UNDERGRADUATES

s N

Activate me

Check me

Don't check me

Unlock settings
Sample widget Yes

Activate me Yes
Check me: True
<IPython.html.widgets.widget_bool.CheckboxWidget object at 0x109fc26d0>

Fig. 6: The widget produced by the sample code in the section
“reducer* widget structure. Note the string output of the checkbox
"Don’t check me", whose ___str___ method has not been overridden.

Use with students

This package has been used with 8 undergraduate physics majors
ranging from first-semester freshman to seniors; it was also used
in an astronomical imaging course that included two non-physics
majors. It typically took one 1-hour session to train the students to
use the notebook. The other graphical tool used in the course took
considerably longer for the students to set up and left no record
the steps and settings the students followed in calibrating the data.

Conclusion

IPython widgets provide a convenient glue for connecting novice
users with expert-developed software. The notebook interface
preserves a bare-bones record of the actions taken by the user,
sufficient for another user to reproduce the calibration steps taken.

Appendix: Bootstrapping a computing environment for stu-
dents

While the goal of this work is to minimize the amount of
programming new users need to do, there are a few things that
cannot be avoided: installing Python and the SciPy [scipy2001]
stack, and learning a little about how to use a terminal.

Students find the Anaconda Python distribution'? easy to
install and it is available for all platforms. From a developer
point of view, it also provides a platform for distributing binary
packages, particularly useful to the students on Windows.

Students also need minimal familiarity with the terminal to
install the reducer package, generate a notebook for analyzing
their data and launching the notebook. The Command Line Crash
Course from Learn Code the Hard Way'? is an excellent intro-
duction, has tracks for each major platform, and is very modular.

REFERENCES

[Astropy2013] Astropy Collaboration, Robitaille, T.~P., Tollerud, E.~J., et
al., Astropy: A community Python package for astronomy,
Astronomy & Astrophysics, 558: A33, October 2013.

Jones, E., Oliphant, T., Peterson, P. et al, SciPy: Open source
scientific tools for Python, http://scipy.org/ 2001

[scipy2001]

11. Classes in the current version of reducer use IPython 2-style class
names ending in "Widget". Part of upgrading the package to IPython 3 widgets
will be removing that ending.

12. https://store.continuum.io/cshop/anaconda/
13. http://cli.learncodethehardway.org/book/

[Pérez2007]

[ccdproc]

[Lopatto2004]

[IRAF1993]

[Image]2012]

125

Pérez, F. and Granger, B.E. IPython: A System for Interactive
Scientific Computing, Computing in Science and Engineering,
9(3):21-29, May/June 2007

Crawford, S and Craig, M., https://github.com/ccdproc
Lopatto, D. Survey of undergraduate research experiences
(SURE): First findings. Cell biology education 3.4 (2004).
Tody, D., IRAF in the Nineties, Astronomical Data Analysis
Software and Systems II, A.S.P. Conference Series, Vol. 52,
1993

Schneider, C.A., Rasband, W.S., Eliceiri, K.W. NIH Image to
Imagel: 25 years of image analysis, Nature Methods 9, 671-
675, 2012.

http://scipy.org/
https://store.continuum.io/cshop/anaconda/
http://cli.learncodethehardway.org/book/
https://github.com/ccdproc

	Introduction
	Background: Image analysis in optical stellar astronomy
	The problem
	The solution, broadly
	The reducer package and notebook
	Image calibration

	Image browser
	reducer widget structure
	Use with students
	Conclusion
	Appendix: Bootstrapping a computing environment for students
	References

