
144 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Causal Bayesian NetworkX

Michael D. Pacer‡∗

https://www.youtube.com/watch?v=qWAQgWOD_nA

F

Abstract—Probabilistic graphical models are useful tools for modeling systems
governed by probabilistic structure. Bayesian networks are one class of prob-
abilistic graphical model that have proven useful for characterizing both formal
systems and for reasoning with those systems. Probabilistic dependencies in
Bayesian networks are graphically expressed in terms of directed links from
parents to their children. Casual Bayesian networks are a generalization of
Bayesian networks that allow one to "intervene" and perform "graph surgery"
— cutting nodes off from their parents. Causal theories are a formal framework
for generating causal Bayesian networks.

This report provides a brief introduction to the formal tools needed to com-
prehend Bayesian networks, including probability theory and graph theory. Then,
it describes Bayesian networks and causal Bayesian networks. It introduces
some of the most basic functionality of the extensive NetworkX python package
for working with complex graphs and networks [HSS08]. I introduce some
utilities I have build on top of NetworkX including conditional graph enumeration
and sampling from discrete valued Bayesian networks encoded in NetworkX
graphs [Pac15]. I call this Causal Bayesian NetworkX, or CBNX. I conclude by
introducing a formal framework for generating causal Bayesian networks called
theory based causal induction [GT09], out of which these utilities emerged. I
discuss the background motivations for frameworks of this sort, their use in
computational cognitive science, and the use of computational cognitive science
for the machine learning community at large.

Index Terms—probabilistic graphical models, causal theories, Bayesian net-
works, computational cognitive science, networkx

Introduction and Aims

My first goal in this paper is to provide enough of an introduction
to some formal/mathematical tools such that those familiar with
python and programming more generally will be able to appre-
ciate both why and how one might implement causal Bayesian
networks. Especially to exhibit how, I have developed parts of
a toolkit that allows the creation of these models on top of the
NetworkX python package:cite:networkx. Given the coincidence
of the names, it seemed most apt to refer to this toolkit as Causal
Bayesian NetworkX abbreviated as CBNX1.

In order to understand the tool-set requires the basics of prob-
abilistic graphical models, which requires understanding some
graph theory and some probability theory. The first few pages are
devoted to providing necessary background and illustrative cases
for conveying that understanding.

* Corresponding author: mpacer@berkeley.edu
‡ University of California at Berkeley

Copyright © 2015 Michael D. Pacer. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

1. Static code can be found at [Pac15], and the most recent version can be
found at CBNX. CBNX is licensed with the BSD 3-clause license.

Notably, contrary to how Bayesian networks are commonly in-
troduced, I say relatively little about inference from observed data.
This is intentional, as is this discussion of it. Many of the most
trenchant problems with Bayesian networks are found in critiques
of their use to infer these networks from observed data. But, many
of the aspects of Bayesian networks (especially causal Bayesian
networks) that are most useful for thinking about problems of
structure and probabilistic relations do not rely on inference from
observed data. In fact, I think the immediate focus on inference
has greatly hampered widespread understanding of the power and
representative capacity of this class of models. Equally – if not
more – importantly, I aim to discuss generalizations of Bayesian
networks such as those that appear in [GT09], and inference in
these cases requires a much longer treatment (if a comprehensive
treatment can be provided at all). If you are dissatisfied with this
approach and wish to read a more conventional introduction to
(causal) Bayesian networks I suggest consulting [Pea00].

The current instantiation of the CBNX toolkit can be seen as
consisting of two main parts: graph enumeration/filtering and the
storage and use of probabilistic graphical models in a NetworkX
compatible format [HSS08].

I focus first on establishing a means of building iterators over
sets of directed graphs. I then apply operations to those sets.
Beginning with the complete directed graph, we enumerate over
the subgraphs of that complete graph and enforce graph theoretic
conditions such as acyclicity over the entire graph, guarantees on
paths between nodes that are known to be able to communicate
with one another, or orphan-hood for individual nodes known to
have no parents. We accomplish this by using closures that take
graphs as their input along with any explicitly defined arguments
needed to define the exact desired conditions.

I then shift focus to a case where there is a specific known
directed acyclic graph that is imbued with a simple probabilistic
semantics over its nodes and edges, also known as a Bayesian
network. I demonstrate how to sample independent trials from
these variables in a way consistent with these semantics. I discuss
some of the challenges of encoding these semantics in dictionaries
as afforded by NetworkX without resorting to eval statements.

I conclude by discussing Computational Cognitive Science as
it relates to graphical models and machine learning in general. In
particular, I will discuss a framework called theory based causal
induction [GT09], or my preferred term: causal theories, which
allows for defining problems of causal induction. The perspective
expressed in this paper, the associated talk, and the CBNX toolkit
developed out of this framework.

https://www.youtube.com/watch?v=qWAQgWOD_nA
mailto:mpacer@berkeley.edu
https://github.com/michaelpacer/Causal-Bayesian-NetworkX

CAUSAL BAYESIAN NETWORKX 145

Graphical Models

Graphs are defined by a set of nodes (X , |X | = N) and a set of
edges between those nodes (E|e ∈ E ≡ e ∈ (X×X)).

Notes on notation

Nodes: In the examples in CBNX, nodes are given
explicit labels individuating them such as {A,B,C, . . .} or
{’rain’,’sprinkler’,’ground’}. Often, for the purposes of mathe-
matical notation, it is better to index nodes with integers over
a common variable label, e.g., using {X1,X2, . . .}.2

Edges: Defined in this way, edges are all directed in the
sense that an edge from X1 to X2 is not the same as the edge from
X2 to X1, or (X1,X2) 6= (X2,X1). An edge (X1,X2) will sometimes
be written as X1 → X2, and the relation may be described using
language like "X1 is the parent of X2" or "X2 is the child of X1".

Directed paths: Paths are a useful way to understand
sequences of edges and the structure of a graph. Informally, to
say there is a path between Xi and X j is to say that one can start
at Xi and by traveling from parent to child along the edges leading
out from the node that you are currently at, you can eventually
reach X j.

To define it recursively and more precisely, if the edge (Xi,X j)
is in the edge set or if the edges (Xi,Xk) and (Xk,X j) are in the
edge set there is a path from Xi to X j. Otherwise, a graph has a
path from node Xi to X j if there is a subset of its set of edges such
that the set contains edges (Xi,Xk) and (Xl ,X j) and there is a path
from Xk to Xl .

Adjacency Matrix Perspective

For a fixed set of nodes X of size N, each graph is uniquely defined
by its edge set, which can be seen as a binary N×N matrix, where
each index (i, j) in the matrix is 1 if the graph contains an edge
from Xi→ X j, and 0 if it does not contain such an edge. We will
refer to this matrix as A(G).

This means that any values of 1 found on the diagonal of the
adjacency matrix (i.e., where Xi → X j, i = j) indicate a self-loop
on the respective node.

Undirected Graphs

We can still have a coherent view of undirected graphs, despite
the fact that our primitive notion of an edge is that of a directed
edge. If a graph is undirected, then if it has an edge from Xi→ X j
then it has an edge from X j→ Xi. Equivalently, this means that the
adjacency matrix of the graph is symmetric, or A(G) = A(G)>.
However from the viewpoint of the undirected graph, that means
that it has only a single edge.

Directed Graphs

From the adjacency matrix perspective we’ve been considering,
all graphs are technically directed, and undirected graphs are a

2. Despite pythonic counting beginning with 0, I chose not to begin this se-
ries with 0 because when dealing with variables that might be used in statistical
regressions, the 0 subscript will have a specific meaning that separates it from
the rest of the notation. For example when expressing multivariate regression
as Y = βX + ε,ε ∼ N (0,Σ), β0 refers to the parameter associated with a
constant variable x0 = 1 and X is normally defined as x1,x2,x3, This allows
a simple additive constant to be estimated, which often is not of interest to
statistical tests, acting as a scaling constant. This makes for a simpler notation
than Y = β0 + βX + ε , because that is equivalent to Y = βX + ε if x0 = 1.
But, in other cases (e.g., [PG12]) 0 index will be used to indicate background
sources for events in a system.

special case where one (undirected) edge would be represented as
two symmetric edges.

The number of directed graphs that can be obtained from a set
of nodes of size n can be defined explicitly using the fact that they
can be encoded as a unique n×n matrix:

Rn = 2n2

Directed Acyclic Graphs: A cycle in a directed graph can
be understood as the existence of a path from a node to itself. This
can be as simple as a self-loop (i.e., if there is an edge (Xi,Xi) for
any node Xi).

Directed acyclic graphs(DAGs) are directed graphs that contain
no cycles.

The number of DAGs that obtainable from a set of n noddes
can be defined recursively as follows [MOR+04]:

Rn =
n

∑
k=1

(−1)k+1
(

n
k

)
2k(n−k)Rn−k

Note, because DAGs do not allow any cycles, this means that there
can be no self-loops. As a result, every value on the diagonal of a
DAG’s adjacency matrix will be 0.

Probability Distributions: Conditional, Joint and Marginal

A random variable defined by a conditional probability
distribution3 has a distribution indexed by the realization of some
other variable (which itself is often a random variable, especially
in the context of Bayesian networks).

The probability mass function (pmf) for discrete random
variable X with value x will be noted as P(X = x). Often, when
discussing the full set of potential values (and not just a single
value), we leave out the = x and just indicate P(X).4

The conditional probability of X with value x given another
variable Y with value y is P(X = x |Y = y). Much like above, if
we want to consider the probability of each possible event without
specifying one, sometimes this will be written as P(X |Y = y). If
we are considering conditioning on any of the possible values of
the known variable, we might use the notation P(X |Y), but that is
a slight abuse of the notation.

You can view P(X |Y) as a function over the X ×Y space. But
do not interpret that as a probability function. Rather, this defines
a probability function for X relative to each value of Y . Without
conditioning on Y we have many potential probability functions
for X. Equivalently, it denotes a family of probability functions on
X indexed by the values Y = y.

The joint probability of X and Y is the probability that both X
and Y occur in the event set in question. This is noted as P(X ,Y) or

3. Rather than choose a particular interpretation of probability over event
sets (e.g., Bayesian or frequentist), I will attempt to remain neutral, as those
concerns are not central to the issues of graphs and simple sampling.

4. If one is dealing with continuous quantities rather than discrete quantities
one will have to use a probability density function (pdf) which does not have as
straightforward an interpretation as a probability mass function. This difficult
stems from the fact that (under most cases) the probability of any particular
event occurring is "measure zero", or "almost surely" impossible. Without
getting into measure theory and the foundation of calculus and continuity we
can simply note that it is not that any individual event has non-zero probability,
but that sets of events have non-zero probability.As a result, continuous random
variables are more easily understood in terms a cumulative density function
(cdf), which states not how likely any individual event is, but how likely it is
that the event in question is less than a value x. The notation usually given
for a cdf of this sort is F(X ≤ x) =

∫ x
−∞

f (u)du, where f (u) is the associated
probability density function.

https://github.com/michaelpacer/Causal-Bayesian-NetworkX

146 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

P(X∩Y) (using the set theoretic intersection operation). Similar to
P(X |Y), you can view P(X ,Y) as a function over the space defined
by X ×Y . However, P(X ,Y) is a probability function in the sense
that the sum of P(X = x,Y = y) over all the possible events in the
space defined by (x,y) ∈ X×Y equals 1.

The marginal probability of X is just P(X). The term
"marginalization" refers to the notion of summing over values
of Y in their joint probability. When probabilities were recorded
in probability tables, the sum would be recorded in the margins.
Formally, this can be stated as P(X) = ∑y∈Y P(X ,Y).

Relating conditional and joint probabilities

Conditional probabilities are related to joint probabilities using the
following form:

P(X |Y = y) =
P(X ,Y = y)

P(Y = y)
=

P(X ,Y = y)
∑x∈X P(X = x,Y = y)

Equivalently:

P(X ,Y = y) = P(X |Y = y)P(X)

Bayes’ Theorem

Bayes’ Theorem can be seen as a result of how to relate con-
ditional and joint probabilities. Or more importantly, how to
compute the probability of a variable once you know something
about some other variable.

Namely, if we want to know P(X |Y) we can transform it
into P(X ,Y)

∑x∈X P(X=x,Y) , but then can also transform joint probabilities
(P(X ,Y)) into statements about conditional and marginal proba-
bilities (P(X |Y)P(X)). This leaves us with

P(X |Y) = P(Y |X)P(X)

∑x∈X P(Y |X = x)P(X = x)

Probabilistic Independence

To say that two variables are independent of each other means that
knowing/conditioning on the realization of one variable is irrele-
vant to the distribution of the other variable. This is equivalent to
saying that the joint probability is equal to the multiplication of
the probabilities of the two events.

If two variables are conditionally independent, that means that
conditional on some set of variables, condition

Example: Marginal Independence 6= Conditional Independence

Consider the following example:

X ∼ Bernoulli{0,1}(.5), Y ∼ Bernoulli{0,1}(.5)

Z = X⊕Y,⊕≡ XOR

Note that, X ⊥⊥ Y but X 6⊥⊥ Y |Z.

Bayesian Networks

Bayesian networks are a class of graphical models that have
particular probabilistic semantics attached to their nodes and
edges. This makes them probabilistic graphical models.

In Bayesian networks when a variable is conditioned on the
total set of its parents and children, it is conditionally independent
of any other variables in the graph. This is known as the "Markov
blanket" of that node.5

5. The word "Markov" refers to Andrei Markov and appears as a prefix
to many other terms. It most often indicates that some kind of independence
property holds. For example, a Markov chain is a sequence (chain) of variables
in which each variable depends only on the value of the immediately preceding
and postceding variables in the chain. Properties like this make computation
easier.

Common assumptions in Bayesian networks

While there are extensions to these models, a number of assump-
tions commonly hold.

Fixed node set: The network is considered to be compre-
hensive in the sense that there is a fixed set of n known nodes.
This rules out the possibility of hidden/latent variables as being
part of the network. From this perspective inducing hidden nodes
requires postulating a new graph that is potentially unrelated to
the previous graph.

Trial-based events, complete activation and DAG-hood:
Within a trial, all events are presumed to occur simultane-
ously.There is no notion of temporal asynchrony, where one
node/variable takes on a value before its children take on a value
(even if in reality – i.e., outside the model – that variable is known
to occur before its child). Additionally, the probabilistic semantics
will be defined over the entirety of the graph which means that
one cannot sample a proper subset of the nodes of a graph without
marginalizing out and incorporating information from the ignored
nodes into the subset in question.

This property also explains why Bayesian networks need to
be acyclic. Most of the time when we consider causal cycles
in the world the cycle relies on a temporal delay between the
causes and their effects to take place. If the cause and its effect is
simultaneous, it becomes difficult (if not nonsensical) to determine
which is the cause and which is the effect — they seem instead to
be mutually definitional. But, as noted above, when sampling in
Bayesian networks simultaneity is presumed for all of the nodes.

Independence in Bayes Nets

One of the standard ways of describing the relation between the
semantics (probability values) and syntax (graphical structure) of
Bayesian networks is how graph encodes particular conditional in-
dependence assumptions between the nodes of the graph. Indeed,
in some cases Bayesian networks merely play the role of a con-
venient representation for conditional and marginal independence
relationships between different variables.

It is the perspective of the graphs as merely representing the
independence relationships and the focus on inference that leads
to the focus on equivalence classes of Bayes nets. The set of
graphs {A→ B→C, A← B→C, and A← B←C} represent the
same conditional independence relationships, and thus cannot be
distinguished on the basis of observational evidence alone. This
also leads to the emphasis on finding V-structures or common-
cause structures where (at least) two arrows are directed into
the same child with no direct link between those parents(e.g.,
A → B ← C). V-structures are observationally distinguishable
because any reversing the direction of any of the arrows will alter
the conditional independence relations that are guaranteed by the
graphical structure.6

Though accurate, this eschews important aspects of the se-
mantics distinguishing arrows with different directions when you
consider the kinds of values variables take on.

Directional semantics between different types of nodes:
The conditional distributions of child nodes are usually defined
with parameter functions that take as arguments their parents’
realizations for that trial. Bayes nets often are used to exclusively

6. A more thorough analysis of this relation between graph structures
and implied conditional independence relations invokes the discussion of d-
separation. However, d-separation (despite claims that "[t]he intuition behind
[it] is simple") is a more subtle concept than it at first appears as it involves
both which nodes are observed and the underlying structure.

CAUSAL BAYESIAN NETWORKX 147

represent discrete (usually, binary) nodes the distribution is usually
defined as an arbitrary probability distribution associated with the
label of it’s parent’s realization.

If we allow (for example) positive continuous valued nodes to
exist in relation to discrete nodes the kind of distributions available
to describe relations between these nodes changes depending
upon the direction of the arrow. A continuous node taking on
positive real values mapping to an arbitrarily labeled binary node
taking on values {a,b} will require a function that maps from
R→ [0,1], where it maps to the probability that the child node
takes on (for instance) the value a7.However, if the relationship
goes the other direction, one would need to have a function that
maps from {a,b} → R. For example, this might be a Gaussian
distributions for a and b ((µa,σa),(µb,σb)). Regardless of the
particular distributions, the key is that the functional form of the
distributions are radically different.

Sampling and semantics in Bayes Nets

The procedure we will use to sample from Bayesian networks uses
an active sample set. This is the set of nodes for which we have
well-defined distributions at the time of sampling.

There will always be at least one node in a Bayesian network
that has no parents. We will call these nodes orphans. To sample
a trial from the Bayesian network we begin with the orphans.
Because orphans have no parents – in order for the Bayes net to
be well-defined – each orphan will have a well-defined probability
distribution available for direct sampling. The set of orphans is our
first active sample set.

After sampling from all of the orphans, we will take the union
of the sets of children of the orphans, and at least one of these
nodes will have values sampled for all of its parents. We take the
set of orphans whose entire parent-set has sampled values, and
sample from the conditional distributions defined relative to their
parents’ sampled values and make this the active sample set.

After sampling the active sample set, we will either have
new variables whose distributions are well-defined or will have
sampled all of the variables in the graph for that trial.

Example: Rain, Sprinkler & Ground

In the sprinkler Bayesian network in Figure 18, there three discrete
nodes that represent whether it Rains (yes or no), whether the
Sprinkler is on (on or off) and whether the Ground is wet (wet or
dry). The edges encode the fact that the rain listens to no one, that
the rain can alter the probability of whether the sprinkler is on,
and the rain and the sprinkler together determine how likely it is
that the ground is wet.

Causal Bayesian Networks

Causal Bayesian networks are Bayesian networks that are given an
interventional operation allowing for "graph surgery" by cutting
nodes off from their parents9. Interventions are cases where a

7. If the function maps directly to one of the labeled binary values this can
be represented as having probability 1 of mapping to either a or b.

8. This is an ill-specified Bayesian network, because while I have specified
the states and their relations, I left open the potential interpretation of the
parameters and how they relate to one another. I did so because it shows
both the limits and strengths of what is encoded knowing only the structure,
computing both conditional and marginal distributions for all variables.

Rain
{yes, no}

Sprinkler
{on, off}

Ground
{wet, dry}

P (R = yes) = p

P (G = wet) = pqyeswyes,on + p(1� qyes)wyes,off

+ (1� p)qnowno,on + (1� p)(1� qno)wno,off

P (S = on) = pqyes + (1� p)qno

Fig. 1: An Bayesian network describing the sprinkler example.
Including both conditional and marginal distributions.

causal force is able to exogenously set the values of individual
nodes, rendering intervened on nodes independent of their parents.

NetworkX [HSS08]

NetworkX is a package for using and analyzing graphs and
complex networks. It stores different kinds of graphs as variations
on a "dict of dicts of dicts" structure. For example, directed graphs
are stored as two dict-of-dicts-of-dicts structures10.

Basic NetworkX operations

NetworkX is usually imported using the nx abbreviation, and you
input nodes and edges as lists of tuples, which can be assigned
dictionaries as their last argument, which stores the dictionary as
the nodes’ or edges’ data.

import networkx as nx

G = nx.DiGraph() # init directed graph
G.add_edges_from(edge_list) # input edges
G.add_nodes_from(node_list) # input nodes
edge_list = G.edges(data=True) # output edges
node_list = G.nodes(data=True) # output nodes

9. This is technically a more general definition than that given in [Pea00] as
in that case there is a specific semantic flavor given to interventions as they
affect the probabilistic semantics of the variables within the network. This is
related to his notion of a do-operator which deterministically sets a node to
a particular value. Because here we are considering a version of intervention
that affects the structure of a set of graphs rather than an intervention’s results
on a specific parameterized graph, this greater specificity is unnecessary.

10. It can also represent multi-graphs (graphs where multiple versions of
"the same" edge from the adjacency matrix perspective can exist and will
(usually) carry different semantics). We will not be using the multigraph
feature of NetworkX, as multigraphs are not traditionally used in the context
of Bayesian networks.

148 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

CBNX: Graphs

Here we will look at some of the basic operations described in
the ipython notebook [JOP+] found at CBNX. For space and
formatting reasons this code may differ slightly from that either in
the variable names or comments, for the original version of these
code snippets see graph-builder-code.

Other packages

In addition to networkX, we need to import numpy [VDWCV11],
scipy [JOP+], and functions from itertools.

import numpy as np
import scipy
from itertools import chain, combinations, tee

Beginning with a max-graph

Starting with the max graph for a set of nodes (i.e., the graph with
N2 edges), we build an iterator that returns graphs by successively
removing subsets of edges. Because we start with the max graph,
this procedure will visit all possible subgraphs. One challenge that
arises when visiting all possible subgraphs is the sheer magnitude
of that search space (2N2

).

def completeDiGraph(nodes):
G = nx.DiGraph()
G.add_nodes_from(nodes)
edgelist = list(combinations(nodes,2))
edgelist.extend([(y,x) for x,y in edgelist)
edgelist.extend([(x,x) for x in nodes])
G.add_edges_from(edgelist)
return G

Preëmptive Filters

The graph explosion problem is helped by determining which
individual edges are known to always be present and which ones
are known to never be present. In this way we can reduce the size
of the edgeset over which we will be iterating.

Filters can be applied by using filter_Graph(), which
takes a graph and a filter_set as its arguments and returns a graph.
A filter_set is a set of functions that take each take (at least) a
graph as an argument and return a graph with a reduced edgeset
according to the semantics of the filter.

def filter_Graph(G,filter_set):
graph = G.copy()
for f in filter_set:

graph = f(graph)
return graph

Example filter: remove self-loops

By default the graph completed by completeDiGraph() will
have self-loops, often we will not want this (e.g., DAGs cannot
contain self-loops).

def extract_remove_self_loops_filter():
def remove_self_loops_filter(G):

g2 = G.copy()
g2.remove_edges_from(g2.selfloop_edges())
return g2

return remove_self_loops_filter

Conditions

The enumeration portion of this approach is defined in this
conditionalSubgraphs function.[#]_ This allows you to
pass in a graph from which you will want to sample subgraphs
that meet the conditions that you also pass in.

def conditionalSubgraphs(G,condition_list):
for edges in powerset(G.edges()):

G_test = G.copy()
G_test.remove_edges_from(edges)
if all([c(G_test) for c in condition_list]):

yield G_test

Example condition: requiring complete paths

This condition holds only if a graph has paths from the first node
to the second node for each 2-tuple in the node-pair list.

def create_path_complete_condition(n_p):
def path_complete_condition(G):

return all([nx.has_path(G,x,y) for x,y in n_p])
return path_complete_condition

Non-destructive conditional subgraph generators

Because conditionalSubgraph produces an iterator, apply-
ing a condition after that initial set is generated, requires splitting
it into two copies of the iterator. This involves the tee function
from the itertools core package.

def new_conditional_graph_set(graph_set,cond_list):
graph_set_newer, graph_set_test = tee(graph_set,2)
def gen():

for G in graph_set_test:
G_test = G.copy()
if all([c(G_test) for c in condition_list]):

yield G_test
return graph_set_newer, gen()

Filters versus Conditions: which to use: The structural
differences between filters and conditions highlight how they are
to be used. Filters are intended to apply a graph to reduce its edge
set in place; as such they return a graph. Conditions return truth
values — they are applied to graph set reducing the size of that
graph set.

CBNX: Representing probabilistic relations and sampling

We discuss an algorithm for sampling from Bayesian networks
above (sampling). But, most of the difficult parts of encoding a
sampling procedure prove (in this case) to do with the algorithm.
Rather, the most pressing difficulties arise from attempting to store
the relevant information within the NetworkX data dictionaries,
so that a self-contained graphical object can be imported and
exported. There is a general problem of a lack of standard storage
format for Bayesian networks (and probabilistic graphical models
in general). This is just one flavor of that problem.

A CBNX implementation for sprinkler graph

Below I will illustrate how to use NetworkX [HSS08] and node-
associated attributes to define and sample from a parameterized
version of the sprinkler Bayesian network represented in abstract,
graphical form in Figure 1. for space reasons comments and
formatting were reduced, if you wish to see the original code it
can be found at sampling-code.

11. Note that powerset will need to be built (see CBNX for details).

https://github.com/michaelpacer/Causal-Bayesian-NetworkX
https://github.com/michaelpacer/Causal-Bayesian-NetworkX/blob/master/graph_building_code_with_comments.py
https://github.com/michaelpacer/Causal-Bayesian-NetworkX/blob/master/graph_building_code_with_comments.py
https://github.com/michaelpacer/Causal-Bayesian-NetworkX

CAUSAL BAYESIAN NETWORKX 149

Sampling infrastructure

def sample_from_graph(G,f_dict=None,k = 1):
if f_dict == None:

f_dict = {"choice": np.random.choice}
n_dict = G.nodes(data = True)
n_ids = np.array(G.nodes())
n_states = [(n[0],n[1]["state_space"])

for n in n_dict]
orphans = [n for n in n_dict

if n[1]["parents"]==[]]
s_values = np.empty([len(n_states),k],dtype='U20')
s_nodes = []
for n in orphans:

samp_f = str_to_f(n[1]["sample_function"],
f_dict)

s_states = n[1]["state_space"]
s_dist = n[1]["dist"]
s_idx = G.nodes().index(n[0])
s_values[s_idx,:] = samp_f(s_states,

size=[1,k],p=s_dist)
s_nodes.append(n[0])

while set(s_nodes) < set(G.nodes()):
nodes_to_sample = has_full_parents(G,s_nodes)
for n in nodes_to_sample:

par_indices = [(par,G.nodes().index(par))
for par in G.node[n]["parents"]]

par_vals = [(par[0],s_values[par[1],:])
for par in par_indices]

samp_index = G.nodes().index(n)
s_values[samp_index,:] = cond_samp(G,n,

par_vals,f_dict,k)
s_nodes.append(n)

return s_values

def has_full_parents(G,s_n):
check_n = [x for x in G.nodes() if x not in s_n]
nodes_to_be_sampled = []
for n in G.nodes(data = True):

if (n[0] in check_n) & (n[1]["parents"]<=s_n):
nodes_to_be_sampled.append(n[0])

if len(nodes_to_be_sampled)==0:
raise RuntimeError("A node must be sampled")

return nodes_to_be_sampled

def nodeset_query(G,n_set,n_atr=[]):
if len(n_atr)==0:

return [n for n in G.nodes(data = True)
if n[0] in n_set]

else:
return_val = []
for n in G.nodes(data=True):

if n[0] in node_set:
return_val.append((n[0],
{attr:n[1][attr] for attr in n_atr}))

return return_val

def cond_samp(G,n,par_vals,f_dict, k = 1):
try: n in G
except KeyError:

print("{} is not in graph".format(n))
output = np.empty(k,dtype="U20")
for i in np.arange(k):

val_list = []
for p in par_vals:

val_list.append(tuple([p[0],p[1][i]]))
samp_dist = G.node[n]["dist"][tuple(val_list)]
samp_f = str_to_f(

G.node[n]["sample_function"],f_dict)
samp_states = G.node[n]["state_space"]
temp_output = samp_f(samp_states,

size=1,p=samp_dist)
output[i] = temp_output[0]

return output

def str_to_f(f_name, f_dict=None):
if f_dict == None:

f_dict = {"choice": np.random.choice}

try: f_dict[f_name]
except KeyError:

print("{} is not defined.".format(f_name))
return f_dict[f_name]

Sampling from the sprinkler Bayes net with CBNX

The following encodes the sprinkler network from Figure 1 with
parameters p = .2,qyes = .01,qno = .4,wyes,on = .99,wyes,off =
.8,wno,on = .9andwno,off=0. This distribution is meant to accord
with our intuitions that rain and sprinklers increase the probability
of the ground being wet, and that we are less likely to use the
sprinkler when it has rained.
node_prop_list = [("rain",{

"state_space":("yes","no"),
"sample_function": "choice",
"parents":[],
"dist":[.2,.8]}),
("sprinkler",{
"state_space":("on","off"),
"sample_function": "choice",
"parents":["rain"],
"dist":{(("rain","yes"),):[.01,.99],

(("rain","no"),):[.4,.6]}}),
("grass_wet",{
"state_space":("wet","dry"),
"sample_function": "choice",
"parents":["rain","sprinkler"],
"dist":{

(("rain","yes"),("sprinkler","on")):[.99,.01],
(("rain","yes"),("sprinkler","off")):[.8,.2],
(("rain","no"),("sprinkler","on")):[.9,.1],
(("rain","no"),("sprinkler","off")):[0,1]}})]

edge_list = [("sprinkler","grass_wet"),
("rain","sprinkler"),
("rain","grass_wet")]

G = nx.DiGraph()
G.clear()
G.add_edges_from(edge_list)
G.add_nodes_from(node_prop_list)
test = sample_from_graph(G,k=10)

Causal Theories and Computational Cognitive Science

Theory based causal induction is a formal framework arising out
of the tradition in computational cognitive science to approach
problems of human cognition with rational, computational-level
analyses [GT09]. Causal theories form generative models for
defining classes of parameterized probabilistic graphical models.
They rely on defining a set of classes of entities (ontology), poten-
tial relationships between those classes of entities and particular
entities (plausible relations), and particular parameterizations of
how those relations manifest in observable data (or in how other
relations eventually ground out into observable data). This allows
Griffiths and Tenenbaum to subsume the prediction of a wide
array of human causal inductive, learning and reasoning behavior
using this framework for generating graphical models and doing
inference over the structures they generate.

Rational analysis

Rational analysis is a technique that frees us from some of the
problems inherent in mechanistic modeling in cognition. We spec-
ify the goals of the cognitive system, the environment in which
it exists and minimal constraints on the computations available to
the agent. We translate this into mathematically precise accounts

150 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

of "mechanism-free casting[s] of psychological [theories]" for op-
timal behavior. These formal models provide empirical predictions
that can be evaluated by studying human cognitive behavior under
different observable environmental conditions [And90]11. If the
model disagrees with the empirical data, we iterate — reëvaluating
each component of the theory until we match a wide variety12 of
empirical data.

Computational-Level Analysis of Human Cognition

A computational-level analysis [Mar82] is one in which we model
a system in terms of its functional role(s) and how they would
be optimally solved. This is distinguished from algorithmic-
level analysis by not caring how this goal achievement state is
implemented in terms of the formal structure of the underlying
system and from mechanistic-level analysis by not caring about
the physical structure of how these systems are implemented
(which may vary widely while still meeting the structure of
the algorithmic-level which itself accomplishes the goals of the
computational level).

A classic example [Mar82] of the three-levels of analysis are
different ways of studying flying with the example of bird-flight.
The mechanistic-level analysis would be to study feathers, cells
and so on to understand the component subparts of individual
birds. The algorithmic-level analysis would look at how these
subparts fit together to form an active whole that is capable
of flying often by flapping its wings in a particular way. The
computational-level analysis would be a theory of aerodynamics
with specific accounts for the way forces interact to produce flight
through the particular motions of flying observed in the birds.

Causal theories: ontology, plausible relations, functional form

The causal theory framework generalizes specifying Bayesian
network in the same way first-order logic generalizes specifying
propositions in propositional logic. A causal theory requires ele-
ments necessary to populate nodes, those nodes with properties,
and relations between the nodes, stating which of those relations
are plausible (and how plausible), and a specific, precise formu-
lation for how those relations manifest in terms of a probabilistic
semantics. In the terms of [GT09]’s theory-based causal induction,
this requires specifying an ontology, plausible relations over
those ontologies, and functional forms for parameterizing those
relations.

Ontology: This specifies the full space of potential kinds of
entities, properties and relations that exist. This is the basis around
which everything else will be defined. It is straightforward popu-
late nodes with features using the data dictionary in NetworkX.

Plausible Relations: This specifies which of the total
set of relations allowed by the ontology are plausible and how
plausible. If you do not dramatically restrict the sets of relations
you consider, there will be an explosion of possibilities. People,
even young children, have many expectations about what sorts of
things can can feasibly be causally related to one another. This
sometimes has been interpreted as the plausible existence of a
mechanism linking cause and effect. For example, we know that
in most situations a fan is more likely than a tuning fork to blow
out a candle.

12. As Anderson notes, it is often the mathematization that proves to be the
most difficult aspect of this procedure [And90].

Functional form:
Even in the most basic cases of causal induction we

draw on expectations as to whether the effects of one
variable on another are positive or negative, whether
multiple causes interact or are independent, and what
type of events (binary, continuous, or rates) are relevant
to evaluating causal relationships.

—[GT09]
Of course, this allows for uncertainty about these functional

forms and indeed, quite different judgments can be warranted
depending on treats the underlying relation and structure of the
data (e.g., continuous vs. binary data [PG11]).

Generalizations to other kinds of logical/graphical conditions

The causal theory framework is richer than the set of examples
developed in [GT09]. It can express conditions of graphical
connectivity, context-sensitive functional forms, substructures of
constrained plausible relations, among others.

In [GT09], plausible relations are described in terms of suffi-
cient conditions, implicitly suggesting that most relations are not
plausible. However, we can also make necessary statements about
the kinds of relations that must be there. And one can see this as
selecting a subset of all the possible graphs implementable by the
set of nodes defined by the ontology. It is for this purpose that I
first arrived at the node enumeration.

One goal for CBNX is to enable causal theory programming.
The utilities in networkX, plus the enumerating, filtering and
conditioning functions in CBNX, ease implementing higher-order
graphical conditions (e.g., a directed path necessarily existing
between two nodes) than in the original notation described in
[GT09]. These ideas were expressible in the original mathematical
framework, but would have required a good deal more notational
infrastructure to represent. CBNX not only provides a notation, but
a programming infrastructure for expressing and using these kinds
of conditions.

Uses in modeling human cognition

Using this framework, Griffiths and Tenenbaum were able to pro-
vide comprehensive coverage for a number of human psychology
experiments. This allows them to model people’s inferences in
causal induction and learning regarding different functional forms,
at different points in development, with different amounts of data,
with and without interventions, and in continuous time and space
(to name only a few of the different conditions covered).

They successfully modeled human behavior using this frame-
work by treating people as optimal solvers of this computational
problem13 (at least as defined by their framework). Furthermore,
by examining different but related experiments, they were able
to demonstrate the different ways in which specific kinds of
prior knowledge are called upon differentially to inform human
causal induction resulting in quite different inferences on a rational
statistical basis.

Cognition as Benchmark, Compass, and Map

People have always been able to make judgments that are be-
yond machine learning’s state-of-the-art. In domains like object
recognition, we are generally confident in people’s judgments as

13. Optimality in these cases is taken to mean on average approximating the
posterior distribution of some inference problem defined by the authors in each
case.

https://github.com/michaelpacer/Causal-Bayesian-NetworkX

CAUSAL BAYESIAN NETWORKX 151

veridical, and – as such – they have been used as a benchmark
against which to test and train machine learning systems. The
eventual goal is that the system reaches a Turing point — the
point at which machine performance and human performance are
indistinguishable.

But that is not the only way human behavior can guide
machine learning. In domains like causal induction, people’s
judgments cannot form a benchmark in the traditional sense
because we cannot trust people to be "correct". Nonetheless,
people do make these judgments and, more importantly, these
judgments exhibit systematic patterns. This systematicity allows
the judgments output by cognition to be modeled using formal,
computational frameworks. Further, if we formally characterize
both the inputs to and outputs from cognition, we can define
judgments as optimal according to some model. Formal models
of individual cognitive processes can then act as a compass for
machine learning, providing a direction for how problems and
some solutions can be computed.

Formal frameworks for generating models (e.g., causal theo-
ries) can be even more powerful. Data can often be interpreted
in multiple ways, with each way requiring a model to generate
solutions. Holding the data constant, different goals merit different
kinds of solutions. Frameworks that generate models, optimality
criteria and solutions not only provide a direction for machine
learning, but lay out sets of possible directions. Generalized
methods that use one system for solving many kinds of problems
provide the ability to relate these different directions to each other.
Formalizing the inputs, processes and outputs of human cognition
produces a map of where machine learning could go, even if it
never goes to any particular destination. From this, navigators with
more details about the particular terrain can find newer and better
routes.

Acknowledgements

Thank you to Jess Hamrick for aiding in the design of the
underlying code, Katy Huff and Stéfan van der Walt for aiding in
getting the bibliography working and helping me navigate github
and the submission and review processes, Seb Benthall and Ankur
Ankan for helping reviews, and Elizabeth Seiver for comments
and support throughout the writing process.

REFERENCES

[And90] J. R. Anderson. The adaptive character of thought. Erlbaum,
Hillsdale, NJ, 1990.

[GT09] T. L. Griffiths and J. B. Tenenbaum. Theory-based causal
induction. Psychological review, 116(4), 2009.

[HSS08] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Ex-
ploring network structure, dynamics, and function using Net-
workX. In Proceedings of the 7th Python in Science Conference
(SciPy2008), pages 11–15, Pasadena, CA USA, August 2008.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open
source scientific tools for Python. http://www.scipy.org/, 2001–.
Online (accessed 2015-07-04).

[Mar82] D. Marr. Vision. W. H. Freeman, San Francisco, CA, 1982.
[MOR+04] Brendan D McKay, Frederique E Oggier, Gordon F Royle,

NJA Sloane, Ian M Wanless, and Herbert S Wilf. Acyclic
digraphs and eigenvalues of (0, 1)-matrices. Journal of Integer
Sequences, 7:3, 2004.

[Pac15] M.D. Pacer. Causal-Bayesian-NetworkX. http://dx.doi.org/10.
6084/m9.figshare.1471763, 2015. Online (accessed July 2,
2015). URL: http://dx.doi.org/10.6084/m9.figshare.1471763,
doi:10.6084/m9.figshare.1471763.

[Pea00] J. Pearl. Causality: Models, reasoning and inference. Cam-
bridge University Press, Cambridge, UK, 2000.

[PG11] M.D. Pacer and T.L. Griffiths. A rational model of causal
induction with continuous causes. In Advances in Neural
Information Processing Systems, volume 24, Cambridge, MA,
2011. MIT Press.

[PG12] M.D. Pacer and T.L. Griffiths. Elements of a rational framework
for continuous-time causal induction. In Proc. of the 34th Conf.
of the CogSci Society, 2012.

[VDWCV11] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The
numpy array: a structure for efficient numerical computation.
Computing in Science & Engineering, 13(2):22–30, 2011.

http://www.scipy.org/
http://dx.doi.org/10.6084/m9.figshare.1471763
http://dx.doi.org/10.6084/m9.figshare.1471763
http://dx.doi.org/10.6084/m9.figshare.1471763
http://dx.doi.org/10.6084/m9.figshare.1471763

	Introduction and Aims
	Graphical Models
	Notes on notation
	Adjacency Matrix Perspective
	Undirected Graphs
	Directed Graphs

	Probability Distributions: Conditional, Joint and Marginal
	Relating conditional and joint probabilities
	Bayes' Theorem
	Probabilistic Independence
	Example: Marginal Independence = Conditional Independence

	Bayesian Networks
	Common assumptions in Bayesian networks
	Independence in Bayes Nets
	Sampling and semantics in Bayes Nets
	Example: Rain, Sprinkler & Ground

	Causal Bayesian Networks
	NetworkX networkx
	Basic NetworkX operations

	cbnx: Graphs
	Other packages
	Beginning with a max-graph
	Preëmptive Filters
	Example filter: remove self-loops
	Conditions
	Example condition: requiring complete paths
	Non-destructive conditional subgraph generators

	cbnx: Representing probabilistic relations and sampling
	A cbnx implementation for sprinkler graph
	Sampling infrastructure
	Sampling from the sprinkler Bayes net with cbnx

	Causal Theories and Computational Cognitive Science
	Rational analysis
	Computational-Level Analysis of Human Cognition
	Causal theories: ontology, plausible relations, functional form
	Generalizations to other kinds of logical/graphical conditions
	Uses in modeling human cognition
	Cognition as Benchmark, Compass, and Map
	Acknowledgements

	References

