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Abstract—In this paper we demonstrate how Python can be used throughout
the entire life cycle of a graduate program in Data Science. In interdisciplinary
fields, such as Data Science, the students often come from a variety of different
backgrounds where, for example, some students may have strong mathematical
training but less experience in programming. Python’s ease of use, open source
license, and access to a vast array of libraries make it particularly suited for such
students. In particular, we will discuss how Python, IPython notebooks, scikit-
learn, NumPy, SciPy, and pandas can be used in several phases of graduate
Data Science education, starting from introductory classes (covering topics such
as data gathering, data cleaning, statistics, regression, classification, machine
learning, etc.) and culminating in degree capstone research projects using more
advanced ideas such as convex optimization, non-linear dimension reduction,
and compressed sensing. One particular item of note is the scikit-learn library,
which provides numerous routines for machine learning. Having access to such
a library allows interesting problems to be addressed early in the educational
process and the experience gained with such “black box” routines provides a firm
foundation for the students own software development, analysis, and research
later in their academic experience.

Index Terms—data science, education, machine learning

Introduction

Data Science is a burgeoning field of study that lies at the
intersection of statistics, computer science, and numerous applied
scientific domains. As is common within such interdisciplinary
domains of study, Data Science education, mentoring, and research
draws ideas from, and is inspired by, several other domains
such as the mathematical sciences, computer science, and various
businesses and application domains. Perhaps just as importantly,
students who wish to pursue education and careers in Data
Science come from similarly diverse backgrounds. Accordingly,
the challenges and opportunities of being an educator in such a
domain requires one to reflect on appropriate tools and approaches
that promote educational success. It is the authors’ view, and
experience, that the Python scripting language can be an effective
part of the Data Science curriculum for several reasons such as its
ease of use, its open source license, and its access to a vast array
of libraries covering many topics of interest to Data Science.
Worcester Polytechnic Institute (WPI) has recently (fall 2014)
begun admitting students into its new Data Science Master’s
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degree program and, as of spring 2015, has also initiated a Data
Science Ph.D. program. Even at this early stage, the program has
been quite fortunate to receive many more applications from stu-
dents then it can reasonably admit. The authors have the pleasure
of being faculty members in the program and have the honor of
teaching a number of the courses on offer. In addition, as long
time Python users (for one of them since 1997 in fact [Paf99]),
the authors were intrigued by the possibility of leveraging Python
in the graduate Data Science curriculum and this monograph
describes some of the experiences, both successes and challenges,
gained from that effort. Of course, it is much too early to make
any comments on the sustained effect of using Python for graduate
Data Science education, however, perhaps the reader will find
some value in the authors’ experiences, even at this early date.

Of course, we are not the first to suggest Python’s effectiveness
in an education and research environment. In fact, the Python
scripting language is quite popular in numerous problem domains
and Python has seen wide used in education, see e.g., [Mye(07]
and [Sta00]. In fact, it ranks quite highly in many surveys of
programming language popularity [OGrl14], it is seeing substan-
tial growth within the Data Science community [Sinl4], and is
generally speaking quite easy to learn [Lutl3].

However, it is not our purpose here to focus on Python in
general, but rather to focus on its use in Data Science education
and research. With that in mind, herein we will focus on a small
number of case studies that provide insights into how we have
leveraged Python in that domain.

In particular, herein we will discuss the use of Python at three
different levels of Data Science education and research. First,
one of the courses that is offered as part of our Data Science
curriculum, and in which the authors and others have leveraged
Python, is DS501-"Introduction to Data Science". The idea of
DS501 is to provide an introductory overview of the many fields
that comprise Data Science and it is intended that DS501 be
one of the first classes a new student takes when entering the
program. Second, one of the authors has also used Python to
support MA542—"Regression Analysis". MA542 is a somewhat
more advanced class that is a (core) elective in the Data Science
program as well as being a class taken by many students who
are seeking degrees in the Mathematical Sciences department.
Finally, the authors mentor a number of students’ research projects
within the Data Science Program, the Mathematical Sciences
Department, and the Computer Science Department. Many of
these research projects leverage Python in various ways, and
having access to a common code base allows the various student
projects to build off of one another.

Two key themes will permeate our discussion in the following
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sections. First, the Python community provides easy access to a
vast array of libraries. Even though Data Science education and
research draws from many other domains, Python was always
there with a library ready to support our work. Second, and
perhaps more subtly, having access to a language which is easy
to use, but provides access to many advanced libraries, allows
one to carefully craft the difficulty and scope of homework
assignments, class projects, and research problems. In particular,
Python allows students to tackle specific aspects of real world
problems, without being overly burdened with details that are
extraneous to their particular learning objectives. Both properties
make Python particularly advantageous.

Finally, in an effort to assist the reader who is not steeped in
Python, we will attempt to provide a range of references so that
the interested reader can learn more about the specific libraries
we leverage in our work. While in certain circles the libraries we
mention are well known, we thought it would be useful to collect
these references together into a single document.

DS501 Introduction to Data Science

DS501-"Introduction to Data Science" is intended to be one of the
first classes a new student takes when entering the Data Science
program at WPI, and the goal is to provide a high level overview
of a wide swath of the material that a burgeoning Data Scientist
should know. In particular, the course is described as:

This course provides an overview of Data Science,
covering a broad selection of key challenges in and
methodologies for working with big data. Topics to
be covered include data collection, integration, man-
agement, modeling, analysis, visualization, prediction
and informed decision making, as well as data security
and data privacy. This introductory course is integrative
across the core disciplines of Data Science, including
databases, data warehousing, statistics, data mining, data
visualization, high performance computing, cloud com-
puting, and business intelligence. Professional skills,
such as communication, presentation, and storytelling
with data, will be fostered. Students will acquire a
working knowledge of data science through hands-on
projects and case studies in a variety of business, engi-
neering, social sciences, or life sciences domains. Issues
of ethics, leadership, and teamwork are highlighted. —

http://www.wpi.edu/academics/catalogs/grad/dscourses.html

As one might imagine from such an ambitious description,
finding the right level of detail for the course can be quite
challenging. One must consider the fact that many of the students
have quite varied backgrounds. Some students are experts in
mathematics and have less training in computer science or soft-
ware development, while others find themselves in the opposite
situation.

Space does not allow for a fulsome description of the class
content and, in any event, such a discussion would distract us from
our focus on Python. However, in the authors’ view, one important
feature of such a class is that the students should be able to get
"their hands dirty" playing with real data both early and often.
Students can often find inspiration by seeing the ideas developed
as part of the lectures being put to use on problems of practical
interest.

With all of the above in mind, it was decided to have four
interconnected case studies as major learning activities for the
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class. Each case study is intended to build upon the previous one
with the students solving interesting and pertinent problems in
Data Science at every step. Accordingly, our focus here will be on
these case studies and the substantial role that Python had to play
in their development.

Case Study One

The idea of the first case study in DS501 is to perform basic
data gathering, cleaning, and collection of statistics. For this case
study we choose our data source to be the Twitter Data Streaming
API [Rus13], [Twil5]. Already, Python begins to demonstrate its
usefulness, since it allows ready access to the Twitter API through
the python-twitter library [Ptw15].

Another key feature of the case studies in DS501 is that
we chose to use IPython notebooks [Per07] both to provide the
assignments to the students and to have the students submit
their results. Using IPython notebooks for both of these tasks
provided a number of advantages. First and foremost, it let the
instructors provide the students with skeleton implementations
of their assignments and allowed the students to focus on their
learning objectives. Second, it provide a uniform and easy to use
development environment for the students’ efforts. As DS501 is
not a programming class, per se, leveraging IPython notebooks
made the introduction of Python to those students unfamiliar with
it substantially easier.

For example, in the IPython notebooks we are able to provide
code examples to get the students started with their development
work. For example, we could provide code similar to the following
as a launching pad for their efforts (see [Twil5] for details and
code example is based upon [Rus13]):

# Define a Function to

def oauth_login():

4 - h ~e /St P
# Go to http://twitter.cor

457 Fhat

redentials that
ace of these empty
ned as placeholders.

app and get values for

need to provide in

4
# ng values that are def
# > https://dev.twitter.c ‘docs/auth/oauth

for more information on T ter's OAuth

implementation.

CONSUMER_KEY = '<Insert your key>'
CONSUMER_SECRET ='<Insert your key>"
OAUTH_TOKEN = '<Insert your token>'
OAUTH_TOKEN_SECRET = '<Insert your token>'
auth = twitter.oauth.OAuth (OAUTH_TOKEN,
OAUTH_TOKEN_SECRET,
CONSUMER_KEY,
CONSUMER_SECRET)

twitter_api = twitter.Twitter (auth=auth)
return twitter_api

~ code starts here

# Please add comments or text cells in between

# 2in the general idea of e 1) block of the
# lease feel free to add more cells below
# if necessary.

In this example we provide a skeleton that allows the students
to focus on the objective of analyzing tweets and hashtags with
frequency analysis and not have to struggle with the details
of Twitter authentication. Using Python, and the skeleton code
provided by the instructors, the student were able to gather and
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analyze many thousands of tweets and learn important lessons
about data gathering, data APIs, data storage, and basic analytics.

Case Study Two

Building upon the skills gained in the first case study, the second
case study asks the students to analyze the MovieLens 1M Data
Set [Mov15], which contains data about how users rate movies.
The key learning objectives are to analyze the data set, make
conjectures, support or refute those conjectures with data, and
use the data to tell a compelling story. In particular, the students
are not only asked to perform several technical tasks, but they
must also propose a business question that they think this data can
answer. In effect, they are expected to play the role of a Data
Scientist at a movie company and they must convince "upper
management”, who are not presumed to be technically minded,
that their conjecture is correct.

While a seemingly tall order for only the second case study,
Python again shows its utility. In particular, just as in case study 1,
the assignment is provided in an IPython notebook, and the student
is required to submit their work in the same format, thereby
leveraging the skills learned in the first case study.

However, in this case study we introduce several important
Python libraries that support Data Science including Numpy
[Wall1], matplotlib [Hun07], and, perhaps most importantly, pan-
das [McK10]. As is perhaps well known to the readers of this
text, Numpy provides a vast selection of routines for numerical
processing, including powerful array and matrix/vector classes,
while matplotlib allows for plotting of data and generation of
compelling figures. Finally, pandas provides many tools for data
processing, including a structure called a DataFrame (inspired by
a data structure with the same name in the R language [RCT13]),
which facilitates many data manipulations. Note, we are certainly
not the first to consider this collection of libraries to be important
for Data Science, and this particular case study was inspired by
the excellent book "Python for Data Analysis: Data Wrangling
with Pandas, NumPy, and IPython", by Wes McKinney [McK12]
(which is required reading for this particular assignment).

Many of the tasks in this case study revolve around question
like:

« How many movies have an average rating over 4.5 overall?

« How many movies have an average rating over 4.5 among
men? How about women?

« How many movies have a median rating over 4.5 among
men over age 30? How about women over age 30?

« What are the ten most popular movies given a reasonable,
student derived, definition of "popular"?

and the visualization of the data by way of:

« Plotting a histogram of the ratings of all movies.

o Plotting a histogram of the number of ratings each movie
received.

« Plotting a histogram of the average rating for each movie.

« Plotting a histogram of the average rating for movies
which are rated more than 100 times.

« Making a scatter plot of men versus women and their mean
rating for every movie.

o Making a scatter plot of men versus women and their mean
rating for movies rated more than 200 times.

Note, there are a number of important learning objectives
that we wish to support. First, several terms are, intentionally,
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only vaguely defined in the assignment. For example, the precise
definition of "popular” is left to the student to derive. As is often
the case is real world Data Science, one of the key first steps of
analysis is to decide precisely what the question of interest is.
Second, the student is expected to make hypotheses or conjectures
based upon the definitions they come up with. For example, the
student might conjecture that men’s and women’s rating for certain
genres are highly correlated, while for other genres their ratings
more independent. Finally, the students must try to either prove,
or just as interestingly, disprove their conjectures based upon the
data.

Diving a bit more deeply into some of the specific functionality
that we leverage in Python, we note that pandas [McKI10] is
particularly useful for these kinds of data analysis questions. In
particular, to any Python aficionado, it is likely to be clear that
there are many ways to process the data to answer the questions
above, ranging from the brute force to the elegant.

To begin, we note that the MovieLens 1M Data Set itself is
actually provided in three different files. First is a file containing
the information regarding individual users, indexed by a unique
user_id. Second is a file containing the information regarding each
movie, indexed by a unique movie_id. Finally, and perhaps most
importantly, is a file which contains ratings (and time stamps)
indexed by a pair of user_id and movie_id.

Already we can perceive a thorny issue. Clearly, the questions
of interest can only be answered by appropriate cross referencing
between these three files. For example, all three files must be refer-
enced to answer a question as seemingly straight forward as "how
many action movies do men rate higher than 4?" While perhaps not
too troublesome for students who are adept programmers, the cross
referencing between the files presents an unnecessary impediment
to less proficient students and overcoming this sort of impediment
does not support the learning goals for this assignment.

Of course, a straightforward answer would be for the instruc-
tors to preprocess the data appropriately. However, using the power
of Python one can easily arm the students with a general tool,
while at the same time avoiding unnecessary hurdles. In particular,
pandas has a merge function [PMel5] that provides exactly the
required functionality in a quite general framework. In particular,
one can use the code below to easily merge the three data files into
a single DataFrame.

import pandas as pd
#

# Read in the user data into a DataFrame
unames = ['user_id', 'gender', 'age',
'occupation', 'zip']
users = pd.read_table('ml-1m/users.dat’,
sep='::"', header=None,
names=unames)
# Read in the rating data into a DataF
rnames = ['user_id', 'movie_id',
'rating', 'timestamp']
ratings = pd.read_table('ml-1lm/ratings.dat’',
sep='::"', header=None,
names=rnames)
# Read in the movie data into a Data Frame
mnames = ['movie_id', 'title', 'genres']
movies = pd.read_table('ml-Im/movies.dat"',
sep='::"', header=None,
names=mnames)
# Merge all the data into one DataFrame

data = pd.merge (pd.merge (ratings,
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users),
movies)

Of course, even once the data files have been merged, there are
many places where a student might fall astray. Fortunately, pandas
provides another tool which allows for elegant and compact code,
namely the pivot-table. For example, one can imagine writing
complicated loops and conditionals to perform the task of printing
out all movies that have a median rating of 5 by men or women.
However, using pivot-tables, such a question can be answered with
just three lines of code (using the Python 2 "print" statement versus
the Python 3 "print()" function):

# Create a pivot table to aggregate the data
mean_ratings = data[datal['age'] > 30].\
pivot_table (values='rating',
rows='title',
cols='gender',
aggfunc= i )
# Only print out movies wi at least one rating
print (mean_ratings[mean_ratings['M'].notnull()].\
sort ('M',ascending=False) ['M'] > 4.5) .nonzero ()
print (mean_ratings[mean_ratings['F'].notnull()].\
sort ('F',ascending=False) ['F'] > 4.5) .nonzero ()

Of course, one might be tempted to argue that having students
develop their own code, rather than leveraging such black box
routines leads to a deeper learning experience. While we certainly
appreciate this point of view, we wish to emphasize that the
class in question is an introductory Data Science class, and not
a programming or data structure class. Accordingly, using Python,
and the powerful features of libraries such as Pandas, allows us
to focus on the Data Science learning goals, while at the same
time allowing the students to utilize large scale, real world, and
sometimes messy data sources. This theme of using Python to
allow for focused learning goals, using real world data, is a key
message of this text.

Case Study Three

The third case study is substantially more challenging than the
second case study, but builds on the foundations already laid
down. While case study two focused on analyzing numerical
movie reviews, case study three focuses on detecting positive and
negative reviews from raw text using natural language processing.

In particular, in case study three, the class turns its attention
to the Movie Review Data v2.0 from http://www.cs.cornell.edu/
people/pabo/movie-review-data. This data set contains written
reviews of movies divided into positive and negative reviews, and
the goal is to learn how to automatically distinguish between the
two cases.

Of course, tackling such problems is well known to be difficult,
and there are many open research problems in this domain. On
the other hand, such problems are clearly of importance in many
domains, and it is not at all difficult to get students interested
in solving them. The question remains, how can students in their
very first Data Science class be expected to approach such difficult
and important problems, and still be able to make meaningful
progress? Of course, the answer is, again, Python.

In particular, we base this case study on the excellent scikit-
learn [Pedl1] Python library. Scikit-learn provides easy to use
and efficient tools for data analysis. Most importantly, it provides
routines for many important Data Science concepts such as ma-
chine learning, cross validation, etc. In fact, this case study is
inspired by the scikit-learn tutorial "Working With Text Data"
which can be found at http://scikit-learn.org/stable/tutorial/text_
analytics/working_with_text_data.html.
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Following our theme of leveraging Python to quickly get to
interesting Data Science problems, the students in case study three
are encouraged to start their work based upon various examples
provided in the scikit-learn library. In particular, the students
leverage the exercise_02_sentiment.py files from the directories:

o doc/tutorial/text_analytics/skeletons/
o doc/tutorial/text_analytics/solutions/

One version of the file is merely a skeleton of a natural
language processing example, while the other contains the full
source code.

For DS501 there are two key learning goals for this case
study. First, the students need to derive features from the raw text
that they feel would be useful in predicting positive and negative
sentiments. Second, they must make predictions by processing
these features using a variety of supervised machine learning
algorithms.

Feature Generation: Classically, rather than attempting to
do machine learning on raw text, Data Science practitioners will
first process the raw text to derive features for downstream pro-
cessing. A detailed description of text feature generation is beyond
the scope of the current text (the interested reader may see [Rajl11],
and references therein, for more details). However, Python and
scikit-learn [Ped11] provide easy access to the exact functionality
required by the students by way of the TfidVectorizer class which
implements the term frequency—inverse document frequency (TF-
IDF) statistic [Rajl1]. For our purposes we merely observe that
there are several parameters that the student can explore to get
a feel for feature generation from raw text, including min_df
and max_df parameters (which control thresholds on document
frequencies) and ngram_range (which controls how many words
are conglomerated into a single token). Experimenting with these
parameters provide many important insights for feature generation
from real world text data, not the least of which is that large values
of ngram_range may take a long time to run.

Supervised Machine Learning: Now, given a collection
of reviews, each represented by a set of features sometimes
called predictors, one can imagine many interesting problems. For
example, a classic problem in machine learning involves using a
set of reviews which have appropriate labels (in this case positive
or negative) to predict labels of other reviews which do not already
have labels. This process is called supervised machine learning.
The idea is that the labeled data is used to supervise the training
of an algorithm which, after training, can attempt to compute
labels just from the raw features. Again, supervised machine
learning is a vast subject, and space does not allow us to treat
the subject even at the more superficial level here (the interested
read may see [FriO1], [Jam13], [Bis06], and references therein,
for more details). However, we will note that scikit-learn provides
functions and classes for many standard algorithms, allowing the
students to become familiar with important machine learning and
Data Science concepts, without being expected to have too many
prerequisites. For example, scikit-learn provides access to classic
and powerful algorithms such as K-nearest neighbors, support vec-
tor classifiers, and principal component analysis [FriO1], [Jam13],
[Bis06].

Using such routines, several important learning objectives can
be supported, such as error estimation, by way of techniques such
as cross-validation and confusion matrices. In fact, one particu-
larly effective learning experience revolved around the following
challenge. Using their favorite technique the student is asked to
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find a two dimensional plot of the data where the positive and
negative reviews are separated. While easy to state, practitioners
of natural language processing will recognize that actually solving
the problem is exceptionally difficult, and the instructors admit
that they are not in possession of an actual solution. For some
students this may be the first time they have been presented with
a problem they are expected to tackle for which their instructor
does not know the solution. The student’s ability to begin thinking
about such open problems so early in their Data Science career
is substantially supported by a language such as Python and the
libraries it provides.

Case Study Four

The final case study, and in some sense the capstone of the class,
revolves around the Yelp Dataset Challenge http://www.yelp.com/
dataset_challenge. This case study involves a large data set with
approximately 42,153 business, 252,898 users, and 1,125,458
reviews in Phoenix, Las Vegas, Madison, Waterloo and Edinburgh.

Again, building off of the previous case studies, the students
are expected to process the data, generate statistics, process
reviews using TfidVectorizer, etc. However, for this case study the
students are also expected to process the data using MapReduce
[Dea08]. As is well known in certain circles, MapReduce is a pro-
gramming model (with various implementations) for distributed
processing of large scale data sets. Distributed processing models,
and MapReduce in particular, are essential elements of modern
Data Science and we would have felt remiss if students in a class
such as DS501 were not able to experience, at least at some level,
the beauty and power of such methods.

Fortunately, and we fear that we are repeating ourselves,
Python provides precisely the functionality we required. In partic-
ular, there are several MapReduce interfaces for Python, and the
mrjob package [MrJ15] was chosen to support the students learn-
ing objectives. This package is especially useful in a classroom
environment since it can be used locally on a single computer (for
testing) and in a cluster environment. Accordingly, the students
can learn about MapReduce with the need for access to large scale
computing resources.

Introductory Data Science: Final Thoughts

Of course, Python is not the only choice for an Introductory Data
Science course. For example, the scripting language R [RCT13] is
also a popular choice which has also used successfully in the Data
Science curriculum. In particular, R offers much, if not all, of the
functionality mentioned above, including interfaces to MapReduce
[Usul4]. Accordingly, the choice of language for such a class may
be considered a matter of taste.

However, there is mounting evidence of Python’s growing
popularity within the Data Science community [Sinl4] and the
software development community at large [OGr14]. Perhaps, if
we may be forgiven a small measure of Python bias, we will
merely emphasize that Python’s popularity cuts across many
problem domains. For example, the authors are not aware of any
customer relationship management applications, system adminis-
tration tools, or web servers!, to name just a handful of areas
outside of statistical and data analysis, currently being developed
in R, nor many other domains in which Python has made inroads.
The fact that Python is as generally applicable as it is, while
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perhaps still being just as popular as R for Data Science, is a
testament to its advantages.

MA542 Regression Analysis

Leaving aside introductory classes, we now make brief mention
of Python’s usefulness in more advanced classes. In particular,
one of the authors recently taught a Regression Analysis class
(using the text Applied linear regression models [Kut04]), for the
first time, with all of the development in the class being Python
focused. Regression Analysis is a more advanced class with a
greater concentration of mathematically focused students who take
the class. In addition, many students were first time Python users,
with the majority of the exceptions being Data Science students
who had taken DS501-"Introduction to Data Science" previously.

Just as in DS501, Numpy [Walll], matplotlib [Hun07], and
pandas [McK10] provided almost all of the functionality the
students required for the learning objectives in the class. Also as in
DS501, the instructor can use Python and its vast array of libraries
to carefully control the difficulty and scope of assignments. In fact,
one of the challenges in this class was that Python perhaps does
too good of a job providing functionality to the students.

In particular, Python provides so many libraries that, for exam-
ple, many of the computationally oriented homework questions are
trivially answerable if the students look hard enough. Accordingly,
as an instructor, one needs to be careful that the ground rules
are set correctly so that the learning objectives are achieved. For
example, if the learning objective is for the student to understand
the details of a particular mathematical concept, say the normal
equations, rather than just a numerical procedure, such as linear
regression on a particular data set, then the expectations for the
assignment need to be carefully delineated.

Accordingly, to maintain the integrity of the learning objec-
tives, a tactic used by the authors was to carefully delineate
what parts of the assignment are allowed to be Python "black
boxes" and which parts must be hand coded. In addition, we
require the students to hand in their Python code, even though
the code itself is not graded. The learning objectives of the class
are mathematical, and not programming. Accordingly, the quality
of the implementations is not a focus. However, having access to
the code allows the instructor to verify that the desired learning
objectives are being met.

As one final note, one tactic that was quite successful was to
encourage the students to check their hand coded results against
those provided by any black box routine they are able to use.
It was quite useful for the students in debugging their own
implementations and understanding of the mathematical concepts.
It was quite empowering for the students when their answers
would exactly match those of the black box. They then appreciated
that they understood, in a deep way, what the "professionals" were
doing.

Student research projects and theses

Python has had an important part to play in the authors’ research
since 1997 [Paf99]. Currently, we perform research involving,
and mentor students in, several topics revolving around semi-
supervised and unsupervised machine learning applied to several

1. We would be remiss not to at least mention the quite beautiful R web
application framework Shiny [Shil4]. However, we believe our point still
stands.
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different domains, with a focus on cyber-defense (see, for exam-
ple, [Paf13]). Accordingly, one of our key goals is to support the
training of the next generation of researchers in these domains.
We will not burden the reader with the mathematical details
of our research directions, but just observe that our work, and
the work of our students, draws from a laundry list of ideas
from mathematics, statistics, and Data Science, including convex
optimization [Boy04], deep learning [Denl4], graphical models
[Lau96], and scientific visualization [Warl0].

For the current purpose, it is merely important to note that
Python libraries are available that support all of these subject
areas. For example, we have:

« Statistical modeling: Statsmodels [StM15]

« Convex optimization: cvxopt [Dah06], CVXPY [Dial4]

o Deep learning: Theano [Berl1]

o Graphical models: libpgm [Kar14], pgmpy [Pgm15]

o Scientific visualization: Mayavi [Ramll], Matplotlib
[HunO7], Bokeh [Bok15], Seaborn [Was14]

Accordingly, students who are trained in classes such as
DS501 and MA542 can leverage that training to get a running
start on their research subjects. Perhaps this is the single biggest
advantage of using a language such as Python from the earliest
stages of Data Science education. In addition to being easy to
learn [Lut13], and providing access to many libraries that support
Data Science education, Python provides ready access to a broad
swath of cutting edge Data Science research.

We use all of these libraries in our work, where we are
especially interested in large scale robust principle component
analysis [Canl1], [Paf13] and non-linear dimension reduction
problems [Lee07]. These problem domains are mathematically
subtle, computationally intensive, and lead to, in the authors’
opinion, rather intriguing visualization problems, which are also
supported by Python through libraries such as Mayavi, as shown
in the figure below.

Beyond the mathematical research that Python supports, there
are a vast array of computational resources that are at the fingertips
of those well versed in Python. For example, our research group
is interested in developing algorithms for modern distributed
supercomputers that leverage GPUs to accelerate computations.
Again, Python displays its usefulness with the pycuda [Klo12]
and mpidpy [Dal08] libraries.

As one can see, Python is an effective tool for cutting edge
Data Science research. Of course, there are many such tools, and
often the specific choice of language for Data Science research
is a matter of taste. However, we would respectfully submit that
few languages have the broad range of support for Data Science
research that Python provides.

Conclusion

We have discussed how Python can be used throughout the entire
life cycle of a graduate program in Data Science. Python is easy
to learn and use, but it also provides access to a vast array of
libraries for cutting edge Data Science research. In particular,
IPython notebooks, scikit-learn, NumPy, SciPy, and pandas can be
used to support many aspects of the Data Science education. These
libraries allow instructors to focus on desired learning objectives,
while leaving many of the less important details to the libraries.
Having access to such libraries allow interesting problems to be
addressed early in the educational process and the experience
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Fig. 1: An example of a 3D visualization of a manifold using
Mayavi [Ramll]. In our work we attempt to detect the non-linear
dependencies in such data, even when the data is noisy and unevenly
distributed. In this synthetic example we see data which is intrinsically
two-dimensional (since it is a flat surface) embedded in a three-
dimensional space. The two-dimensional structure is non-trivial to
detect based upon the non-linear nature of the data, noise, and regions
with no data points.

gained with such Python libraries supports the student’s own
software development, analysis, and research throughout their
academic career and beyond.
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