
182 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Visualizing physiological signals in real-time

Sebastián Sepúlveda‡∗, Pablo Reyes‡, Alejandro Weinstein‡

https://www.youtube.com/watch?v=6WxkOeTuX7w

F

Abstract—This article presents an open-source Python software package,
dubbed RTGraph, to visualize, process and record physiological signals (electro-
cardiography, electromyography, etc.) in real-time. RTGraph has a multiprocess
architecture. This allows RTGraph to take advantage of multiple cores and to
be able to handle data rates typically encountered during the acquisition and
processing of biomedical signals. It also allows RTGraph to have a clean separa-
tion between the communication and visualization code. The paper presents the
architecture and some programming details of RTGraph. It also includes three
examples where RTGraph was adapted to work with (i) signals from a Inertial
Measurement Unit (IMU) in the context of a biomechanical experiment; (ii)
electromyography signals to estimate muscle fatigue; and (iii) pressure signals
from a device used to monitor nutrition disorders in premature infants.

Index Terms—real-time processing, visualization, signal processing

Introduction

A common task in biomedical research is to record and visualize
physiological signals in real-time. Although there are several
options to do this, they are commonly based on proprietary
tools, associated with a particular signal acquisition device vendor.
This article presents RTGraph, an open-source software package
(under MIT license) written in Python, to visualize and record
physiological signals in real-time, such as electrocardiography,
electromyography and human movement. RTGraph is also capa-
ble of doing real-time processing, such as filtering and spectral
estimation. RTGraph is open-source,1 extensible, and has been
tested on different Linux distributions, including the RaspberryPi
(ARM architecture). RTGraph has a modular design, with a clear
separation among its different functionalities, making it easy to
add new signal processing tasks, to use different communication
protocols (serial, Bluetooth, Sockets, etc.), and customize the user
interface for the specific needs of the application.

The main aim of RTGraph is to display multiple signals in real-
time and to export them to a file. In the current implementation,
the communication between RTGraph and the acquisition device
is through the serial port, and it is implemented using the PySerial
library. Other communication protocols can be easily added. The
real-time display of the signals is implemented using the PyQt-
Graph library.2 RTGraph has a multiprocess architecture, based

* Corresponding author: ssepulveda.sm@gmail.com
‡ Escuela de Ingeniería Civil Biomédica, Facultad de Ingeniería, Universidad
de Valparaíso

Copyright © 2015 Sebastián Sepúlveda et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

1. Available at https://github.com/ssepulveda/RTGraph.

on the multiprocessing Python standard library. This allows having
concurrent processes for receiving, processing, and displaying the
data. Signal processing tasks, such as spectral estimation, are
based on the SciPy/NumPy stack [Ste11]. This architecture makes
it possible to ensure that no data is lost and that the user interface
has a fast response.

Software architecture

The applications described in this article can be classified as a
"data logger". A data logger needs to acquire a stream of data,
add a time stamp to the data (if required), and export the time-
stamped data to a file in a known file format, such as comma
separated value (CSV) format. Optionally, the application can do
some processing (filtering, spectral estimation, etc.) before saving
the data. In addition, it is also useful to be able to visualize, in
real-time, the stream of data.

When developing, evaluating, or validating new hardware or
software, it is important to control the outcome of the algorithms
and the fidelity and performance of the data acquisition process. In
particular, in the field of Biomedical Engineering, the acquisition
and processing of biological signals need to be reliable and with
a tight control over the sampling frequency. It is also fundamental
to ensure that no data is lost during the acquisition and logging
process. From a practical point of view, having to wait for the data
to be stored before visualizing it (possibly in another program) is
cumbersome, slowing down the development process. For these
reasons, in this article we present a program capable of: receiving
data from a variety of sources (serial port, Bluetooth, Zigbee,
Sockets, etc.); processing and visualizing the data in real-time;
and saving the data in a file.

The first version of this program was developed for biome-
chanical engineering research. In our case, this research involves
logging, processing and the display in real-time of the signals
generated by a nine degrees of freedom inertial measurement unit
(9DOF-IMU) [Roe06]. This requires acquiring nine signals with
a sampling rate of at least 100 Hz. Six additional signals are
computed through a sensor fusion algorithm [Mad11]. A total of
15 signals are displayed and exported as a CSV file. We designed
the architecture of the program with these requirements in mind.

Real-time graphics library

Real-time visualization is a key component of our program. To
satisfy our requirements we needed a fast and portable graphics
library. Since we implemented the GUI in PyQT, we also required
that the graphics library should be embeddable in this framework.

2. Available at http://www.pyqtgraph.org.

https://www.youtube.com/watch?v=6WxkOeTuX7w
mailto:ssepulveda.sm@gmail.com
https://github.com/ssepulveda/RTGraph
http://www.pyqtgraph.org

VISUALIZING PHYSIOLOGICAL SIGNALS IN REAL-TIME 183

We used Matplotlib [Hun20] in the first version of the pro-
gram. This option worked out of the box. We were able to embed
a Matplotlib plot in the GUI and interact with it through other
elements of the UI without major complications. Although this
approach worked for displaying one signal with a sampling rate of
30 Hz, we started to notice a degradation on performance as we
increased the number of signals. It is important to note that this is
not a flaw of Matplotlib, since the main focus of the library is the
production of publication of quality figures, and not the display of
real-time data.

Next, we tried PyQtGraph [Cam15]. It is a pure Python
implementation, with a focus on speed, portability and a rich set
of features. Unlike Matplotlib, PyQtGraph is designed to do real-
time plotting and interactive image analysis. It is built on top of
PyQt4/PySide, giving easy integration and full compatibility with
the Qt framework. This allows using tools like Qt Designer to
design the GUI. Using Qt Designer and the examples provided
with the PyQtGraph library, it is easy to configure and customize
the widgets. PyQtGraph is also built on top of NumPy, facilitating
and improving the performance of the manipulation of numerical
data. In addition, PyQtGraph wraps up some NumPy/SciPy signal
processing functions such as the Fast Fourier Transform and some
linear and non-linear filters.3

Threading versus Multiprocessing

After using PyQtGraph to its limits in a multithreaded archi-
tecture, we could not reliably achieve the desired performance.
The limitations of threads in Python [Bea10] combined with the
interaction between the UI (main thread) and communication
thread, resulted in data losses when the data rate was too high.
The Global Interpreter Lock (GIL) [Bea10] prevents threads from
taking advantage of multicore systems. In short, it means that
a mutex controls threads access to memory. There are ways to
work around this limitation. For instance, many of the NumPy
primitives take advantage of multiple cores.4 However, in our case
we need to parallelize the reception of the data, the visualization,
the processing, and the logging.

To overcome the GIL limitations we used the multiprocessing
module, belonging to the Python Standard Library. This module
provides an API similar to the threading module, but it uses
subprocesses instead of threads [Pyt15]. By letting the OS control
the subprocesses, it is possible to take advantage of the multiple
cores available on the platform.

Putting it all together

After selecting the key components of the program, the remaining
problem is to orchestrate the communication among the processes.
We pay special attention to data synchronization, since there are
specific considerations that should be taken into account when
working with multiple processes.

Figure 1 shows the architecture of RTGraph. The architecture
allow us to: (1) Have a multiplatform program; (2) have a sepa-
ration between the reception and parsing of input data stream and

3. We also evaluated the PyQwt library (http://qwt.sourceforge.net/). This
library provides a Python interface to the Qwt library. It is a light implementa-
tion with an easy QT integration. It is fast enough to support real-time display
of the data. However, this library is not currently maintained, and its author
recommended using PyQtGraph (see http://comments.gmane.org/gmane.comp.
graphics.qwt.python/506).

4. See http://wiki.scipy.org/ParallelProgramming for details.

queue

main process

QTimer

Signal
Processing

Plotting Logging

Parsing &
Timestamping

data
stream

communication
process

Fig. 1: Diagram of the software architecture. There are two inde-
pendent processes. The communication process reads the incoming
data stream, parses it, adds a time-stamp (if necessary), and puts the
processed data into a queue. The main process reads the data from
the queue, processes the data, and then updates the plot and logs the
data to a file.

the plotting and logging tasks. The following is a description of
each process.

1) Communication process: This process is responsible
for receiving and parsing the data stream sent by
the device. The implementation consists of an abstract
class, that subclasses the Process class from the
multiprocessing library. Therefore, the methods
__init__ and run are overwritten. We also added
methods start and stop to properly start and stop
the subprocesses. The class also has methods common to
different communication protocols (serial, sockets, etc.).
The details of each protocol are implemented in each
subclass. This process is also responsible of validating
the data and adding the time-stamp to the data, in case
the device does not provide it. This guarantees that the
data is always time-stamped.

2) Main process: The main process is responsible for initial-
izing the different subprocesses and for coordinating the
communication between them. As shown in figure 1, this
process instantiates the components that will allow the
communication between the subprocesses and also man-
age the different UI elements. A Queue, as implemented
by the multiprocessing module, is used to connect
the communication process with the main process. A
QtTimer is set to update the real-time plot. By updating
the plot at a known frequency, we can control the respon-
siveness of the program under different conditions. Each
time the QtTimer triggers a plot update (30 times per
second), the queue is processed. The queue is read until
it is empty and then the plot is updated.

Figure 2 shows the processes viewed by htop during the ex-
ecution of the program. The first process (PID 3095) corresponds
to the process initiated by the application. The second one is the
communication process (PID 3109).5

Programming details

The template for the communication process is implemented
through the CommunicationProcess class. This template
allows for processing data streams coming from a variety of

5. By default htop shows the processes and threads together. Pressing the
H key while the program is running shows or hides the threads. In figure 2, the
screen is configured to show only the processes.

http://qwt.sourceforge.net/
http://comments.gmane.org/gmane.comp.graphics.qwt.python/506
http://comments.gmane.org/gmane.comp.graphics.qwt.python/506
http://wiki.scipy.org/ParallelProgramming

184 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

protocols (serial, sockets, bluetooth, etc.). The design of the class
also allows changing some of the communication parameters
during run-time. In addition, since the class inherits from the
Process class, it is trivial to run several instances of the class
to receive from multiple devices simultaneously. For instance, it
is possible to instantiate the class twice to receive data form two
different serial ports at the same time. The following code snippet
shows the basic structure of the class.
class CommunicationProcess(Process):

def __init__(self, queue):
Process.__init__(self)
self.exit = Event()
self.queue = queue
Initialize the process ...
Initialize the acquisition method ...

def run(self):
self.init_time = time()
try:

while not self.exit.is_set():
do acquisition
and add time stamp ...

except:
raise

finally:
self.closePort()

def openPort(self, port):
Port configuration to open

def closePort():
self.exit.set()

One of the key methods of the CommunicationProccess
class is run. The following code snippets is an example of how
to write a serial port interface.
class SerialProcess(Process):

...
def run(self):

self.init_time = time()
try:

while self.ser.isOpen() and \
not self.exit.is_set()

data = self.ser.readline().strip()
try:

data = map(float, data.split(','))
self.queue.put([time() -

self.init_time] + data)
except:

pass
except:

raise
finally:

self.closePort()
...

In this case, run computes the time stamp, then checks if the serial
port is open and if the process is not exiting. If both statements
are true, a line is read from the serial port. Then, the data is parsed
(in this example, the data stream consists of CSV floats). Finally,
if the data is valid it is placed in the queue.

The main process is implemented through the MainWindow
class. It is a subclass of the QtGui.QMainWindow class. In-
side this class we define the proper acquisition method (serial,
sockets, bluetooth, etc.) and the basic plot configurations, and we
configure the timers used to update the plots, which trigger the
update_plot method. The following code snippet shows the
basic structure of the class.
class MainWindow(QtGui.QMainWindow):

def __init__(self):
QtGui.QMainWindow.__init__(self)

Fig. 2: Screenshot of htop showing the processes associated with
the program. The first process (PID 3095) corresponds to the process
initiated by the application. The second one is the communication
process (PID 3109).

self.ui = Ui_MainWindow()
self.ui.setupUi(self)
initialize plots ...
self.ui.plt.setBackground(background=None)
self.plt1 = self.ui.plt.addPlot(row=1, col=1)

initialize variables ...
initialize timers ...
QtCore.QObject.connect(self.timer_plot_update,

...)

def start(self):
self.data = CommunicationProcess(self.queue)
self.data.openPort(...)

self.timer_plot_update.start(...)
self.timer_freq_update.start(...)

def update_plot(self):
while self.queue.qsize() != 0:

data = self.queue.get(True, 1)

draw new data ...
self.plt1.clear()
self.plt1.plot(...)

def stop(self):
self.data.closePort()
self.data.join()
self.timer_plot_update.stop()

The start method initializes the communication process. This
method is triggered every time the Start button is pressed. This
allows to change the communication parameters (port name,
bauds, etc.) during execution time.

The plot details are also defined in the MainWindow class.
The following code snippets shows how to customize some PyQt-
Graph options, such as titles, labels, and line colors.

class MainWindow(QtGui.QMainWindow):
def __init__(self):

...
Initializes plots
self.ui.plt.setBackground(background=None)
self.plt1 = self.ui.plt.addPlot(row=1, col=1)
self.plt2 = self.ui.plt.addPlot(row=2, col=1)
...
self.configure_plot(self.plt1, "title1",

"unit1")
self.configure_plot(self.plt2, "title2",

"unit2")

@staticmethod
def configure_plot(plot,title, unit,

y_min=0, y_max=0,
label_color='#2196F3',
label_size='11pt'):

label_style = {'color': label_color,
'font-size': label_size}

plot.setLabel('left', title,
unit, **label_style)

plot.setLabel('bottom', 'Time',
's', **label_style)

plot.showGrid(x=False, y=True)
if y_min != y_max:

plot.setYRange(y_min, y_max)

VISUALIZING PHYSIOLOGICAL SIGNALS IN REAL-TIME 185

Fig. 3: Screenshot of RTGraph customized and modified to display
3 signals: an EMG signal (first panel), an estimation of the fatigue
level (second panel) based on the acquired EMG signal, and three
acceleration signals (third panel).

else:
plot.enableAutoRange(axis=None,

enable=True)
plot.setMouseEnabled(x=False, y=False)

The class sets the layout of the plots through calls to
self.ui.plt.addPlot methods. Then, each plot is config-
ured by the configure_plot method, where details such as
title, range, color, and font sizes are set.

Results

We have used RTGraph with a serial port data stream correspond-
ing to a signal with a sampling frequency of 2 kHz. We have also
used it with a data stream from a TCP/IP socket corresponding to
20 signals with a sampling frequency of 500 Hz.

In a biomechanical study we used our program to evaluate a
prototype of a wearable device used to estimate muscle fatigue
through the EMG signal. RTGraph was customized to acquire
and record these data. We also incorporated some steps of a
fatigue estimation algorithm [Dim03] in the processing pipeline.
We found that having real-time feedback of the signal simplified
the procedure to position the wearable device correctly, drastically
reducing the amount of time required by the experiments. Figure
3 shows a screenshot of the program while acquiring an EMG
signal using a wearable device to study muscle fatigue. The
figure shows an EMG signal (first panel), a real-time estimation
of the fatigue level (second panel) based on the acquired EMG
signal, and three acceleration signals (third panel). See the follow-
ing links for a video of RTGraph being used to acquire these
signals: https://www.youtube.com/watch?v=sdVygxpljII, https://
www.youtube.com/watch?v=6WxkOeTuX7w.

An important feature of our program is the ease with wich it
can be customized to a specific application. For instance, RTGraph
is being used to acquire a set of pressure signals from a device (as
seen in figure 4) used to monitor nutrition disorders in premature
infants. The customization included: (1) modifying RTGraph to
acquire two pressure signals using bluetooth; and (2) to perform

Fig. 4: Photo of the prototype device used to monitor nutrition
disorders in premature infants. An Arduino development platform
is used to acquire the signals (two pressure measurements). These
signals are acquired by a computer running a modified version of
RTGraph.

some specific signal processing before the visualization. In this
example it is important to emphasize that the changes to the
program were made by a researcher other than the main developer
of our program. We claim that this is possible because our program
is written in Python. This makes it easier to understand and modify
the code compared to a program written in a lower-level language.

The software package presented in this article has been tested
with different devices, communication protocols, platforms and
operating systems (OSs). The initial development was done and
tested on the platforms x86, x64 and ARM (RaspberryPy) running
Linux. However, this version of RTGraph did not work as expected
on OS X and Windows, due to some restrictions of the multipro-
cessing library in these OSs. Despite the fact that OS X is a Unix-
like OS, there are some multiprocessing methods not implemented
in the multiprocessing library. In particular, the method qsize,
used to get the approximate size of the queue, is not implemented
in OS X. The lack of the os.fork() call in Windows adds
some extra limitations when running a program on this OS. Since
in this case a child process can not access the parent resources,
it is necessary that subclasses of the Process class must be
picklable. Although the documentation of the library contains
some suggestions to overcome these restrictions, currently we are
not able to run our program on Windows.

Conclusions

In this article we presented a program developed to record, process
and visualize physiological signals in real-time. Although many
people consider Python as a "slow" language, this article shows
that it is possible to use Python to write applications able to work
in real-time. At the same time, the clarity and simplicity of Python
allowed us to end up with a program that it is easy to modify and
extend, even by people who are not familiar with the base code.

We also believe that our solution is a contribution to the
open-source and Do It Yourself (DIY) communities. Typically,
programs to receive and manipulate data in real-time are developed
using proprietary tools such as LabView or MATLAB. The cost
of these tools denies members of these communities access to

https://www.youtube.com/watch?v=sdVygxpljII
https://www.youtube.com/watch?v=6WxkOeTuX7w
https://www.youtube.com/watch?v=6WxkOeTuX7w

186 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

solutions like those described in this article. As we showed in
the results section, in many cases we have used the program with
an Arduino acting as an acquisition device. This is a common
situation, and we believe that our program can be extended to be
used in other fields in need of similar tools.

In the future our first priority is to make our program work
on platforms running OS X and Windows. We are currently
investigating how to overcome the restriction imposed by the
multiprocessing platform on these OSs. Next, we will focus on
improving the UI. In particular, we will add an option to change
some plotting and processing parameters on the fly, instead of
requiring a change in the source code. Finally, we will refactor
the architecture of the program to improve the performance, so we
can handle higher data rates. In this respect, the main change we
plan to do is to move the signal processing computation to another
process, leveraging the existence of multi-core machines.

Acknowledgments

This research was partially supported by the Advanced Center
for Electrical and Electronic Engineering, Basal Project FB0008,
Conicyt.

REFERENCES

[Bea10] D. Beazley. Understanding the Python GIL, In PyCON Python
Conference. Atlanta, Georgia, 2010.

[Cam15] L. Campagnola. PyQtGraph. Scientific Graphics and GUI Library
for Python, http://www.pyqtgraph.org/

[Dim03] N. Dimitrova and G. Dimitrov. Interpretation of EMG changes with
fatigue: facts, pitfalls, and fallacies. Journal of Electromyography
and Kinesiology 13.1 (2003): 13-36.

[Hun20] J. D. Hunter. Matplotlib: A 2D graphics environment, Computing In
Science & Engineering, 9(3):90-95, IEEE COMPUTER SOC, 2007.

[Mad11] S. Madgwick, Andrew JL Harrison, and Ravi Vaidyanathan. Esti-
mation of IMU and MARG orientation using a gradient descent al-
gorithm., Rehabilitation Robotics (ICORR), 2011 IEEE International
Conference on. IEEE, 2011.

[Pyt15] Python Software Foundation, 16.6 multiprocessing - Process-
based “threading” interface, https://docs.python.org/2/library/
multiprocessing.html

[Roe06] D. Roetenberg, Inertial and magnetic sensing of human motion.
University of Twente, 2006.

[Ste11] S. van der Walt, S.C. Colbert and G. Varoquaux, The NumPy Array:
A Structure for Efficient Numerical Computation, Computing in
Science & Engineering, 13, 22-30, 2011.

http://www.pyqtgraph.org/
https://docs.python.org/2/library/multiprocessing.html
https://docs.python.org/2/library/multiprocessing.html

	Introduction
	Software architecture
	Real-time graphics library
	Threading versus Multiprocessing
	Putting it all together

	Programming details
	Results
	Conclusions
	Acknowledgments
	References

