
PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015) 187
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Abstract—The notion of capturing each execution of a script and workflow and
its associated metadata is enormously appealing and should be at the heart of
any attempt to make scientific simulations repeatable and reproducible.

Most of the work in the literature focus in the terminology and the ap-
proaches to acquire those metadata. Those are critical but not enough. Since
one of the purposes of capturing an execution is to be able to recreate the same
execution environment as in the original run, there is a great need to investigate
ways to recreate a similar environment from those metadata and also to be able
to make them accessible to the community for collaboration. The so popular
social collaborative pull request mechanism in Github is a great example of how
cloud infrastructures can bring another layer of public collaboration. We think
reproducibility could benefit from a cloud social collaborative presence because
capturing the metadata about a simulation is far from being the end game of
making it reproducible, repeatable or of any use to another scientist that has
difficulties to easily get them.

In this paper we define a reproducibility record atom and the cloud infras-
tructure to support it. We also provide a use case example with the event based
simulation management tool Sumatra and the container system Docker.

Index Terms—metadata, simulations, repeatable, reproducible, Sumatra, cloud,
Docker.

Introduction

Reproducibility in general is important because it is the corner-
stone of scientific advancement. Either done manually or automat-
ically; reusability, refutability and discovery are the key proprieties
that make research results repeatable and reproducible.

One will find that in the literature many research have been
done in defining the terminology (repeatability, reproducibility
and replicability) [Slezak2011] and investigating approaches re-
garding the recording of simulations metadata using workflows
[Oinn2006], libraries [Langer2014] or event control systems
[Guo2012]). These research are critical because they focus on
getting to the point where the metadata about a simulation ex-
ecution have been captured in a qualitative and reliable way.
Yet the use of these metadata to recreate the proper execution
environment is challenging and is not only extremely valuable to
the scientist that ran the simulation. It is more valuable to other
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scientists that share the same interest and could benefit an easy
way to at least get the same results consistently. This is why we
think that reproducibility can gain from a more active presence
in the cloud through infrastructures that bring an easy access and
collaboration around those captured metadata. The social collab-
orative pull request mechanism from Github [MacDonnell2012]
is a great example about the importance of cloud infrastructures
in enhancing collaboration. In fact many scientific projects from
SciPy [Oliver2013] got some interest and contribution because of
their exposure on Github and its ease for collaboration.

In this paper we discuss on a structure of a reproducible record
atom. It is a record that we propose to ease the reconstruction
of the execution environment and allow an easy assessment of
its reproducibility by comparing it to others. Then we propose a
cloud platform to deliver an online collaborative access around
these record atoms. And finally we present an integration use
case with the data driven simulation management tool Sumatra
[Davidson2010].

A reproducible record atom

Defining what are the requirements that have to be recorded to bet-
ter enforce the reproducibility of a simulation is of good interest in
the community. From more general approaches like defining rules
that have to be fulfilled [Sandve2013], to more specific approaches
[Heroux2011], we can define a set of metadata that are useful to
determine the reproducibility of a simulation. To do so, we have
to go from the fact that the execution of a simulation involves
mostly five different components: the source code or executable,
the input files, the output files, the dependencies and the hosting
system. The source code or executable gives all the information
about what the simulation is, where it can be found (repository)
and how it was run. The input files are all the files being loaded
by the simulation during its execution. The output files are all
the files that the simulation produced during its execution. The
dependencies are all the libraries and tools that are needed by
the simulation to run. The hosting system is the system in which
the simulation is being ran. These components can be classified
into two groups regarding repeatability as a goal. To repeat a
simulation execution, the source code and the inputs are part of a
group of components that are kept as the same. The dependencies
and the host system on the other end are part of the components
that will most likely change from the original executing system to
another that is attempting a repeat. We think of them as a cause of
uncertainties that lead to variations in the outputs when the source
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code and inputs are still the same. To assess a reproducibility
property on a simulation, we provide the Table 1. It defines the
reproducibility properties involved (repeatable, reproducible, non-
repeatable, non-reproducible or unknown) when comparing the
source code, inputs and outputs of two simulations. This table
is used in conjunction with the models presented later to assess
the reproducibility property of any record atom in the system
compared to another through a requesting mechanism that will
be detailed further.

One thing is to be able to gather crucial information about a
simulation yet another challenging one is to be able to recreate the
same execution context as when the simulation was done the first
time. It is impossible to consistently reproduce a simulation across
platforms and machines if we do not have a uniform and portable
way to bundle the whole simulation execution environment.

We think that container based systems [Bottomley2014] are a
possible solution to ensure the consistency of the operating system
and dependencies on which the simulation runs. Building and
sharing a container that will deliver a runnable image in which
the simulation execution is well scoped and controlled will ensure
that across machines and platforms we get closer to a consistent
execution environment [Melia2014].

Thus we propose here a container based recording alternative
along with the captured metadata as a set of four models that
combined together should be enough to deliver a reproducible
record atom storage. We show here the project model in Table 2.

It describes the simulation. Its history field is the list of
container images that have been built each time that the project
source code changes. The container is setup directly from the
source code of the simulation. We also propose a container model
that is as simple as shown in the Table 3.

Based on the project’s model in Table 2, we designed a record
atom model shown in Table 4. A record is related to a project
and a container in the history of the project containers. When a
record atom is created, its container is the last container in the the
project’s history at that time. Thus, a record atom that will be done
on a modified project source code has to be performed after the
new container for this modified version of the project get pushed
to the history field. This way we ensure that two records with
different containers are from two different sources codes and also
two records with the same containers are from the same source
code.

A record atom reproducibility property assessment is done
through a differentiation process. A differentiation process is a
process that allows the resolution of a record atom reproducibility
property compared to another. In this situation, the two record
atoms are considered being from simulations that try to achieve
the same goals. It is quite hard to know at a high level standpoint
if two record atoms are the same because it will most likely be
a domain related decision that proves that both records support
the same claims. We focus here in an approach that provides some
basic differentiation methods and allow the definition of new ones.
Thus, the differentiation will most likely be based on the targeted
record atom owner domain knowledge and understanding on the
method used. Since the record atom is the state of a simulation
execution, the inputs, outputs, dependencies and system fields
have to be provided every time because from a run to another
any of those may be subject to a change. Sometimes an action
as simple as upgrading a library can have terrible and not easy
to determine consequences on the outputs of another execution of
the same simulation in the same system.

A differentiation request or shortly diff request is the contract
on which the mechanism described before runs. A requesting
record owner asks a targeted record atom owner to validate a
record atom reproducibility proposal from him. In this mechanism,
the requesting party has to define what the assessment is based
on: repeated, reproduced, non-reproduced and non-repeated. This
party also has to define the base differentiation method on which
the assessment has been made: default, visual and custom. A
default differentiation method is a Leveinstein distance1 based
differentiation on the text data. A visual one is a nobservation
based knowledge assessment. And custom is left to the requester to
define and propose to the targeted. It is important to point that the
Table 1 is the core scheme of comparison that all differentiation
request have to go through upon submission. To be accepted in
the platform, the diff request assessment has to comply with the
content of that Table. As such a diff request for two requests
that have different inputs contents cannot be assessed as a repeat
compared to one another because an input variation should lead to
a reproducible assessment as pointed in the Table 1. The targeted
record atom owner has to answer to the request by setting after
verification on his side, the status of the request to agreed or
denied. By default the status value is proposed. The table 5
represents the fields that a diff request contains. In fact one may
say that in a model level a solved diff request is a relationship of
reproducibility assessment between two records.

A project reproducibility property can be assessed from the
differentiation requests on its records. All the requests that have
a status to agreed represent a list of accepted couple of records
that have been resolved as: repeated, reproduced, non-repeated
and non-reproduced.

Data Driven Cloud Service Platform

To support simulation management tools metadata, we propose a
cloud platform that implements the reproducible assessable record
described previously. This platform has two sides. As shown in
the Figure 1, an API2 access and a Web Frontend3 access. These
two services are linked to a MongoDB4 database that contains:
the user accounts, the projects, the records, the containers and
the differentiation requests. We implemented some restrictions
depending on the type of access.

The API service exposes endpoints that are accessible by
the Simulation management tool from the executing machine.
It is a token based credential access that can be activated and
renewed only from the Web Frontend access. The API allows the
Simulation Management tools to push, pull and search projects
and records. The API documentation will be available publicly
and will present the endpoints, HTTP5 methods and the mandatory
fields in a structured JSON6 format request content.

The Web Frontend service on the other end is controlled by the
Cloud service. The Cloud service is accessible only from the Web
Frontend. Thus when the user interacts with the Web Frontend, he
is actually securely communicating with the Cloud service. This
strongly coupled design allows a flexible deployment and upgrades
but at the same time harden the security of the platform. The
frontend access allows the user to manage his account and handle
his API credentials which are used by the Simulation Management
tools to communicate with the platform. It also allows the user
to visualize his projects, records and requests. It is the only place

1. Levenshtein distance is a string metric for measuring the difference
between two sequences.
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Output Files Source Code and Input Files
Same and Same Same and Different Different and Same Different and Different

Same Repeatable Reproducible Reproducible Reproducible
Different non-repeatable Unknown Unknown Unknown

TABLE 1: Reproducibility assessment based on source code, inputs and outputs

Fig. 1: Platform Architecture.

Fields Descriptions

created string: simulation creation timestamp.
private boolean: false if project is public.
name string: project name.
description string: full description of the project.
goals string: project goals.
owner user: the creator of the project.
history list: container images list.

TABLE 2: Simulation metadata Project Model.

Fields Descriptions

created string: simulation creation timestamp.
system string: docker, rocket, ...
version dict: version control source code’s tag .
image string: path to the image in the cloud.

TABLE 3: Simulation metadata Container Model.

where the user can update some content regarding a project, record
or interact with his differentiation requests.

On the platform, the API is the only place where projects and
records are automatically created. On the Web side this is still
possible but it is a manual process.

A Simulation tool that needs to interact with the platform has
to follow the endpoints descriptions in Tables 6 and 7.

Fields Descriptions

created string: execution creation timestamp.
updated string: execution update timestamp.
program dictionary: command, version control,...
inputs list: input files.
outputs list: output files.
dependencies list: dependencies.
status string: unknown, started, paused, ...
system dictionary: machine and os information.
project project: the simulation project.
image container: reference to the container.

TABLE 4: Simulation metadata Record Model.

Fields Descriptions

created string: request creation timestamp.
sender user: responsible of the request.
toward record: targeted record.
from record: requesting record.
diff dictionary: method of differentiation.
proposition string: repeated,reproduced,...
status string: agreed,denied,proposed.

TABLE 5: Simulation Record Differentiation Request Model.



190 PROC. OF THE 14th PYTHON IN SCIENCE CONF. (SCIPY 2015)

Endpoint Content
Method Envelope

/api/v1/ < api− token > /pro ject/pull/ < pro ject −name > GET null. Note: pull metadata about the project.
/api/v1/ < api− token > /pro ject/push/ < pro ject −name > POST name, description, goal... custom. Note: push project metadata.

TABLE 6: REST Project endpoints

Endpoint Content
Method Envelope

/api/v1/ < api− token > /record/push/ < pro ject −name > POST program, inputs, outputs... Note: push metadata about the record.
/api/v1/ < api− token > /record/pull/ < pro ject −name > GET null. Note: pull the container.
/api/v1/ < api− token > /record/display/ < pro ject −name > GET null. Note: metadata of the record.

TABLE 7: REST Record endpoints

Integration with Sumatra and Use Case

Sumatra Integration
Sumatra is an open source event based simulation management

tool. To integrate the cloud API into Sumatra we briefly investigate
how Sumatra stores the metadata about a simulation execution.

To store records about executions, Sumatra implements record
stores. It also has data stores that allow the storage of the sim-
ulation results. As of today, Sumatra provides three data storage
options:

• FileSystemDataStore: It provides methods for accessing
files stored on a local file system, under a given root
directory.

• ArchivingFileSystemDataStore: It provides methods for
accessing files written to a local file system then archived
as .tar.gz.

• MirroredFileSystemDataStore: It provides methods for ac-
cessing files written to a local file system then mirrored to
a web server.

Sumatra also provides three ways of recording the simulation
metadata:

• ShelveRecordStore: It provides the Shelve based record
storage.

• DjangoRecordStore: It provides the Django based record
storage (if Django is installed).

• HttpRecordStore: It provides the HTTP based record stor-
age.

Regarding the visualization of the metadata from a simulation,
Sumatra provides a Django7 tool named smtweb. It is a local web
app that provides a web view to the project folder from where
it has been ran. For a simulation management tool like Sumatra
there are many advantages in integrating a cloud platform into its
record storage options:

• Cloud Storage capability: When pushed to the cloud, the
data is accessible from anywhere.

2. Application Programming Interface.
3. Client browser access.
4. An Agile, Scalable NoSQL Database: https://www.mongodb.org/
5. HyperText Transfert Protocol.
6. A Data-Interchange format: http://json.org/
7. Python Web Framework: https://www.djangoproject.com/

• Complexity reduction: There is no need for a local record
viewer. The scientist can have access to his records any-
time and anywhere.

• Discoverability enhancement: Everything about a simula-
tion execution is a click away to being publicly shared.

As presented in the list of record store options, Sumatra
already has an HTTP based record store available. Yet it does
not suite the requirements of the cloud platform. Firstly because
there is no automatic mechanism to push the data in the cloud.
The MirroredFileSystemDataStore has to be fully done by the
user. Secondly we think there is need for more atomicity. In fact,
Sumatra gather the metadata about the execution and store it at
the end of the execution, which can have many disadvantages
generally when the simulation process dies or the Sumatra instance
dies.

To integrate the cloud API and fully comply to the requirement
cited before, we had to implement and update some parts of the
Sumatra source code:

• DataStore: Currently the collect of newly created data
happens at the end of the execution. This creates many
issues regarding concurrent runs of the same projects
because the same files are going to be manipulated. We are
investigating two alternatives. The first is about running the
simulation in a labeled working directory. This way, many
runs can be done at the same time while having a private
labeled space to write to. The second alternative consists of
writing directly into the cloud. This will most likely break
the already implemented data and record store paradigm
in Sumatra.

• RecordStore: We make the point that the simulation man-
agement tool is the one that should comply to as many
API interfaces as possible to give the user as many inter-
operability as possible with cloud platforms that support
reproducible records. Thus, we intend to provide a total
new record store that will fully integrate the API into
Sumatra.

• Recording Mechanism: In Sumatra the knowledge of the
final result of the execution combined with atomic state
monitoring of the process will allow us to have a dynamic
state of the execution. We want to make Sumatra record
creation a dynamic many points recorder. In addition to an
active monitoring, this feature allows the scientist to have
basic informations about its runs may they crash or not.

https://www.mongodb.org/
http://json.org/
https://www.djangoproject.com/
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Example project with Sumatra
The Sumatra repository8 provides three test example projects.

This example is based on the python one9. We propose here an
example project as a base line to make the scientist’s simulation
comply with the principles described here. The platform currently
supports docker as a container based system and Sumatra as a
simulation management tool.

The example is the encapsulation of the execution of a python
simulation code main.py that is simply:
import numpy
import sys

__version__ = "1.2.3a"

# version numbers are deliberately different
# for testing purposes
def get_version():

return (1, 2, "3b")

def run():
parameter_file = sys.argv[1]
parameters = {}
# this way of reading parameters
execfile(parameter_file, parameters)
# is not necessarily recommended
numpy.random.seed(parameters["seed"])
distr = getattr(numpy.random,

parameters["distr"])
data = distr(size=parameters["n"])

numpy.savetxt("Data/example2.dat",
data)

if __name__ == "__main__":
run()

The input file to provide is default.param that contains:
# seed for random number generator
seed = 65785
# statistical distribution to draw values from
distr = "uniform"
# number of values to draw
n = 100

The instrumented project is organized as following:

• Python main: It’s the simulation main source code.
• Git ignore: It contains the files that will not be versioned

by git.
• Requirements: It contains all the python requirements

needed by the simulation.
• Dockerfile: It contains the simulation docker container

setup.
• Manage files: It’s a script that allows the scientist to

manage the container builds and the simulation executions.
• Sumatra integrate: It is a modified copy of Sumatra that

integrates the API.

This demo example is currently working in linux and OsX
systems and to run it, the scientist has to proceed as following:

• Get the source from github.
• To have an API key: Create an account on the platform

and login.
• Access the user profile: In the home page, the round user

floating image display two buttons that are the user profile

8. https://github.com/open-research/sumatra.git
9. https://github.com/faical-yannick-congo/ddsm-demo/tree/setup

access. Click the first one to view and the second one to
edit the profile.

• Get the API key: Go to view the user profile and copy the
string near the key image.

• Open the manage.sh file and replace the API key
3a8d4cc793bd3e5b85c733b523584... by this string. Up-
date data path to be where the default.param file is located
and the container path to be where the container image
will be placed. By default the container image is generated
in the demo-sumatra directory.

• Git global settings: Replace the git global username and
email by the scientist’s.

• Build the container image.
• Run the simulation: It will run main.py in the container

and push the record along with the container image to the
cloud space in the platform.

• Outcome: In the online dashboard, there will be a new
project named demo-sumatra with a record that can be
downloaded and executed with an input file like the de-
fault.param.

The following bash code, is the set of commands that will be
ran by the scientist. Note that the first echo is the step described
previously about replacing the API key in manage.sh by the
scientist’s one.

git clone github.com/faical-yannick-congo/ddsm-demo
cd ddsm-demo
git checkout setup
echo "Update the api key."
echo "To build the container image: "
./manage.sh --build --simulation demo-sumatra
echo "To run the simulation: "
./manage.sh --run-core --simulation demo-sumata

For a new simulation project we suggest that the scientist follow
the same source structure as done in the demo example. Then to
instrument his simulation, the scientist has to go through some few
steps:

• Source code: The scientist may remove the script main.py
and include his source code.

• Requirements: The scientist may provide the python li-
braries used by the simulation there.

• Dockerfile: Uncomment line 54 by removing the first
character. Also the installation of non python libraries
should be added here.

• Management: Here, the scientist has to update the API key
and the git global settings (username and email).

• Running command: The scientist has to determine the full
command that will be ran with the simulation and the input
data to provide. The -v argument for docker allows file
mapping from the local file system to the docker container.
The -c argument allows the user to run a string command in
the docker’s /bin/bash terminal. More information can be
found about those arguments. The scientist should update
the run string to fit the simulation execution.

After performing this instrumentation on his simulation source
code, the scientist has to build and run the simulation as done
previously for the demo example. In addition, it is important
that the scientist builds the container every time that the source
modifications are ready to be tested as justified before when
presenting the record model. In this case a newly exported image
will be available to be ran with Sumatra. After a build, a run will

https://github.com/open-research/sumatra.git
https://github.com/faical-yannick-congo/ddsm-demo/tree/setup
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execute the simulation and create the associated record that will
be pushed to the cloud API. The interesting part of such a design
is that the record image can be ran by any other scientist with the
possibility to change the input data. This allows reproducibility at
an input data level. For source code level modifications, the other
scientist has to recreate an instrumented project. In the manage
script, an API token is required to be able to access the cloud
API. The scientist will have to put his own. A further detailed
documentation will be provided. The source code of the demo can
be found here10. It has been tested on an Ubuntu 15.04 machine
and will work on any Linux or OsX machine that has docker
installed.

The instrumented example presented here, has been done
from a local development instance of the platform. AWS11 server
instances are being setup to host a public access to a production
version of this platform. To reproduce this example demo, the
url inside the manage.sh will have to be update accordingly to
the location of the API endpoint. Further information will be
delivered.

Conclusion and Perspective

Scientific computational experiments through simulation is getting
more support to enhance the reproducibility of research results.
Execution metadata recording systems through event control,
workflows and libraries are the approaches that are investigated
and quite a good number of softwares and tools implement
them. Yet the aspect of having these records discoverable in
a reproducible manner is still an unfulfilled need. This paper
proposes a container based reproducible record atom and the cloud
platform to support it. The cloud platform provides an API that
can easily be integrated to the existing Data Driven Simulation
Management tools and allow: reproducibility assessments, world
wide web exposure and sharing. We described an integration use
case with Sumatra and explained how beneficial and useful it is
for Sumatra users to link the cloud API to their Sumatra tool.
This platform main focus is to provide standard and generic ways
for scientists to collaborate through reproducible record atoms
and interact by the mean of differentiation procedures that will
allow them to assess if a simulation is repeatable, reproducible,
non-repeatable, non-reproducible or if its an ongoing research. A
differentiation request description has been provided and can be
presented as a hand shake between scientists regarding the result
of simulation runs. One can request a reproducibility assessment
property validation from a record against another.

We are under integration investigation for other simulation
management tools used in the community. In the short term this
platform will hopefully be a space where scientists could clone the
entire execution environment that another scientist did. And from
there be able to verify the claims of the project and investigate
other execution on different input data. The container based record
described here, we hope, will allow a better standard environment
control across repeats and reproductions, which is a very hard
battle currently for all simulation management tools. Operating
systems, compilers and dependencies variations are the nightmare
of reproducibility tools because the information is usually not fully
accessible and recreating the appropriate environment is not an
easy straight forward task.

10. https://github.com/faical-yannick-congo/ddsm-demo
11. Amazon Web Services: http://aws.amazon.com/

Finally it is important to point out that in some cases the five
components (source code, inputs, hosting system, dependencies
and outputs) cited before are not sufficient because the design of
the simulation itself has to follow a rigorous method to better
enforce reproducibility. Parallel stochastic simulations presents
this requirement of determining the right techniques for generating
parallel pseudorandom numbers [Hill2015].
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