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Case study: Real-world machine learning application
for hardware failure detection
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Abstract—When designing microprocessors, engineers must verify whether the
proposed design, defined in hardware description language, does what is in-
tended. During this verification process, engineers run simulation tests and can
fix bugs if the tests have failed. Due to the complexity of the design, the baseline
approach is to provide random stimuli to verify random parts of the design. How-
ever, this method is time-consuming and redundant especially when the design
becomes mature and thus failure rate is low. To increase efficiency and detect
failures faster, it is possible to train machine learning models by using previously
run tests, and assess the likelihood of failure of new test candidates before
running them. This way, instead of running random tests agnostically, engineers
use the model prediction on a new set of test candidates and run a subset of
them (i.e., "filtering" the tests) that are more likely to fail. Due to the severe
imbalance (1% failure rate), | trained an ensemble of supervised (classification)
and unsupervised (outlier detection) models and used the union of the prediction
from both models to catch more failures. The tool has been deployed in an
internal high performance computing (HPC) cluster early this year, as a comple-
mentary workflow which does not interfere with the existing workflow. After the
deployment, | found performance instability in post-deployment performance and
ran various experiments to address the issue, such as by identifying the effect
of the randomness in the test generation process. In addition to introducing the
relatively new data-driven approach in hardware design verification, this study
also discusses the details of post-deployment evaluation such as retraining, and
working around real-world constraints, which are sometimes not discussed in
machine learning and data science research.

Index Terms—hardware verification, machine learning, outlier detection, de-
ployment, retraining, model evaluation

Introduction
Simulation-based hardware verification

Hardware verification is the process of checking that a given
design correctly implements the specifications, which are the tech-
nical description of the computer’s components and capabilities.
It is recognized as the largest task in silicon development and
as such has the biggest impact on the key business drivers of
quality, schedule and cost. In the computer hardware design cycle,
microprocessor manufacturing companies often spend 60-70% of
the cycle dedicated to the verification procedure. Traditionally, two
techniques have been used: formal and simulation-based (random-
constraint) methods [loal2]. The former adopts a mathemati-
cal approach such as theorem proving and requirement checks
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[Wil05], which provides exhaustiveness but doesn’t scale well
with design complexity. Due to the exponentially-growing design
complexity, the more widely used approach is the simulation-
based testing, which simulates a design by providing stimuli to
tests. These stimuli can be considered as arbitrary values that
control certain functionalities of the design that were expressed
in hardware description language such as whether to turn on or
off a specific setting. During simulation-based testing, verification
engineers provide a set of constraints to stimuli so that they can
direct tests toward a certain direction. However, it is not easy to
target certain design parts deterministically and engineers often
depend on previous knowledge or intuition.

Failures (bugs) in hardware verification

Hardware verification can be compared to unit testing in software
engineering, especially since design functionalities are realized
in hardware description language (HDL) like Verilog. Similar to
software testing, hardware verification process involves checking
whether simulations of the code written in HDL with a set of
given input values (i.e., tests with certain inputs), show desirable
behavior. If a test returns undesirable output, it is considered as
a failure (bug). To fix the failures, engineers modify the HDL
source code such as by fixing "assign" statements or by correcting
or adding conditions (e.g., "if" statements), and so on [SudO8].
The HDL-level hardware verification is one of the many steps in
hardware testing, which precedes physical design implementation.
This low-level verification is a critical step in hardware testing
because fixing a bug in a higher level (e.g., in physical design or
even in a product) is more costly and challenging because it is
hard to identify which previous steps have bugs.

Previous machine-learning based approach

The ultimate goal of hardware verification is to have a (close-to)
failure-free design. From the simulation-based testing perspective,
this is an exploration problem where machine learning can be
useful. For instance, reinforcement learning algorithms can be
used to explore the complex space of test stimuli by learning
a reward function [loal2]. However, this approach is not fea-
sible because the simulation-based testing is non-deterministic
and intractable, which makes it difficult to estimate the level
of stochasticity. This is mainly because the motivation for the
simulation-based approach is randomization, often implemented in
multiple steps (i.e., a value in an input setting randomizes a value
in the next step, which then randomizes a value of a different
setting in the following step, etc.). The testing tools have not
been built to track these setting values and the information on
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Fig. 1: Overview of the prototype pipeline. Top: the existing workflow
(the randomized testing). Bottom: the complementary machine learn-
ing (ML) flow. By default, engineers run all tests that are randomly
generated. In the ML flow, before running tests, the test candidates
(input settings) are shown to the models first. The models then flag
which tests are likely to fail. In the end, engineers can run the flagged
test candidates only. In the final deployed version, approximately 1000
test candidates are provided to the ML flow, which passed about 400
tests. This corresponds to 10% of the number of tests in the top flow.
The cubes correspond to the pre-trained machine learning models
(blue: a supervised model, green: an unsupervised model).

probability distributions used in the randomization process have
been left out. To address this, a few studies [Bar08], [Fin09]
adopted a probabilistic approach but they failed to mention actual
implementation in production cycle and scalability issue. The
majority of the previous research on hardware verification with
the simulation-based testing approach has focused on supervised
learning [Mam16], [Bar08], [Wag07] and evolutionary algorithms
[Ber13], [Crul3]. [Mam16] has shown a study that is the closest
to this study in nature but the authors focused on high-level
instruction set simulator (ISS), which generates instructions at a
higher level (related to hardware performance, a high-level metric)
than the design level.

Simulation-based testing in practice

In practice, engineers build a testbench to house all the compo-
nents that are needed for the verification process: test generator,
interface, driver, monitor, model, and scoreboard. To run tests,
verification engineers define a set of values as input settings, which
can be compared to input arguments to a function. These values are
passed to the test generator, and under certain constraints, a series
of subsequent values that stimulate various parts of the design
are randomly generated. This information is then passed to the
interface through the driver. The interface interacts with a design
part (register-transfer level (RTL) design written in HDL) and then
the returned output is fed into the monitor. To evaluate the result,
the desirable output should be retrieved. This information is stored
in the model, which is connected to the driver. A test is identified
as a failure when the desirable output from the driver (through the
model) and the output from the monitor do not match. In addition
to the binary label of pass or failure, the testbench also returns
a log file of the failure, if the test has failed. This log contains
detailed information of the failure. Each failure log is encoded as
an 8-digit hexadecimal code by a hash function. This code is called
unique failure signature (UFS). In general, instead of inspecting
every failure log, engineers are more interested in maximizing the
number of UFS that are collected after a batch of tests. Collecting
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a large number of UFS means failures with a great variety have
been hunted down. Having a larger variety of failures is important
because it means the tests have explored various parts of the design
and thus, it’s likely to discover failures associated with rare edge
cases or problems overlooked before. Once a new UFS is found,
engineers starts a debugging process to fix the failure.

Random generation of the test settings in the test generator is
used to run a batch of tests automatically almost daily to explore
random parts of the design with efficiency. In practice, engineers
run tests with certain input settings and collect the results after
the tests are simulated. The way that engineers control the input
settings varies widely. In an extreme case, they only control the
seed number of a pseudo-random number generator in the test
generator for the entire set of the input settings of test candidates.
Normally for a test, engineers have a set of input settings, not
just the seed, which either turns a setting on and off or controls
stochastic behavior a setting by defining what kind of values the
setting can take. For instance, if a certain input setting has a string
value of "I-5", it indicates that the actual stimulus that goes into
the simulation can be any integer from I to 5. Unfortunately, the
testbench does not track this information and it is not possible to
know which value ended up getting chosen eventually. Hence, it is
extremely challenging to guide a testbench to generate a specific
value of the input settings. This is why building a machine learning
model is challenging because two tests with the exact same
values of an input setting can result in two different outcomes.
Additionally, engineers make changes to the design almost every
day, which includes a new implementation or modification in the
design, or bug fixes. This affects the test behavior and in turn, data
generation process, which implies that the data distribution can
potentially change almost daily (i.e., frequent data drift).

Working around the stochastic test generation

This situation requires a unique approach. It is impossible to
eliminate randomness in the test generation step, which makes
it difficult to guide testbench to test specific input values or parts
of the system (cf. it is possible to target a specific module but
the process is still not deterministic). Instead, we leave the inputs
to be generated randomly and filter them afterward. By using
the labeled data from previous tests (i.e., tests that were already
simulated), a machine learning model (classifier) can be trained
to predict whether a test will fail or pass with a given set of
input settings. Then, it is possible to provide a large set of test
candidates (a number of tests with random input setting values,
i.e., providing the new input values) to the trained model that
assesses which subset of the test candidates will fail. This way, it
is possible to run the subset of tests only, instead of running the
entire test candidates agnostically. This can bring cluster savings
and make the verification process more efficient. However, the
existing simulation-based testing with random constraints should
remain because we still have to explore new design parts, which
in turn provides new training data for model update. Hence, two
parallel pathways can be proposed (Fig. 1); one with the default
randomized testing and the other with machine learning models,
where an additional set of test candidates are provided and then
only the tests flagged by the models are filtered and run. This
way, it is possible to continue collecting novel data from the first
pathway to explore a new input space while utilizing the data from
previous tests via the ML flow.
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Fig. 2: Relationship between the number of failures (x axis) and the
number of unique fail signatures (UFS) on the y axis (mean and
standard error). To generate the error bar, I ran 100 simulations where
in each simulation, I draw N failed tests among a pool of 250k tests
and counted the number of UFs. The more failures occur, the more
UFS are found.

Post-deployment analysis

I used both supervised and unsupervised models to address the
severe class imbalance problem and used the union of the pre-
diction from both models. This means, a test is predicted to fail
when at least one of the two models predict it will fail. With this
approach, for a set of independent testing datasets, it was possible
to find 80% of unique failure signatures (Fig. 3) by running only
40% of tests on average, compared to running tests based on the
original simulation-based method. The tool has been deployed in
production since early this year in our internal cluster as a part of
daily verification workflow, which is used by verification engineers
in the production team. It is not common in both machine learning
and hardware verification literature to find how suggested models
perform in a real-world setting. Often machine learning studies
show performance based on a single limited dataset or commonly
used benchmark datasets. In this paper, I address this and attempt
to provide practical insights to the post-deployment process such
as decisions regarding the automation of model retraining and
addressing randomness in the post-deployment period.

Methods
Data

Simulation-based testing is run almost every day via a testbench.
Every simulated test and outcome (i.e., test success (pass or
failure) and unique failure signature (UFS) if a test has failed)
are stored in a database. To address the issue of data drift over
time, two datasets are collected. The first dataset ("snapshot") is
generated from a same version of testbench (115k tests). Model
evaluation with this dataset provides information on the baseline
model performance when data doesn’t change over time. For the
second set, a month’s worth of data (ca. 6k tests per day) is
collected. The second dataset ("1-month") is used specifically to
simulate retraining scenarios and to challenge our model for every-
day changes in the testbench (150k). Both datasets are from a
specific unit of a microprocessor with a specific test scenario. The
input dataset has individual tests as rows and test settings (stimuli)
as columns. These settings are specified by verification engineers.
The total number of settings are in the range of several hundreds.
The output dataset has tests as rows and two columns, one for
the pass-failure binary label and the other for the unique failure
signatures of the failed tests.

Data preprocessing

The input data was preprocessed based on the domain knowledge
of the verification engineers. In the raw data, roughly 70% of
the data was missing, which corresponds to input settings that
were not modified from the defaults. Using a software analogy,
this is similar to not having to specify an input argument value
in a function, if it already has a default value for that argument.
The engineers were able to obtain the default values, which fixed
the missing data issue. There were about 20% object (i.e., non-
numerical) columns. Some of them were nominal columns (e.g.,
"namel", "name2") but the majority turned out to be numerical
values in quotes (e.g., "5", "100"), quoted ranges (e.g., "1-5", "50-
100") or a dictionary with key-value pairs in quotes. For the quoted
numerical values, I simply stripped the quotes and converted them
to numbers. For the quoted ranges, it was not straightforward
because these columns have uncertainty information in them. For
instance, "1-5" means any values from 1 to 5 and there was no way
to know which value was chosen in the end and also what type of
probability distribution was used for the random draw. Although
I initially considered treating them as nominal, I decided to take
the mean of the minimum and maximum values of a range value:
for "1-5", it would be represented as (1+5)/2 = 3. This way, it
might be possible to preserve some numerical information about
the range in the input data. For the quoted dictionary, I parsed
them and expanded to multiple columns so that each key became a
column in the input dataset. Finally, I dropped columns that were
non-informative (i.e., single unique value) and duplicates. This
resulted in about 10% increase of the number of columns, which
was still in the range of several hundreds. Whenever a change is
made to the design, the set of the input settings may change. In this
project, on average, less than 5 columns (including 0) were either
added or removed every time the tests were run. When building a
training dataset from tests across multiple days with different input
settings, I used the union to include all. Here, to impute missing
values from the settings absent in the past, I used the domain
knowledge of the verification engineers. When preprocessing a set
of new test candidates for prediction, I dropped the input settings
that are absent in the feature set of the pre-trained models. The
output datasets did not require preprocessing.

Models

I used an ensemble of a supervised and an unsupervised learning
models. Due to the severe class imbalance between passes and
failures (near 99% pass and 1% failure rate) in the training data,
it is possible to either train a supervised model with adjusted
class weight or train an unsupervised model that detects outliers
(i.e. failures). For the unsupervised, because the majority of the
training data is passed tests, it is possible to consider the failures
as outliers or abnormalities. In a preliminary analysis, [ found that
the supervised and the unsupervised models provided predictions
that were qualitatively different; the unique failure signatures
(UFS) from the supervised model’s and the unsupervised one’s
predictions were not identical although there were some overlaps.
Thus, when the union of both predictions were computed, there
was a small increase of UFS recovery across many testing datasets.
Hence, I decided to use both models and take the union of the
predictions. This means, when test candidates are passed to the
model for prediction, a candidate will be flagged as failure either
of the supervised or the unsupervised predicts it as failure.

Due to the frequent changes in data generation process, I
decided to use algorithms robust to frequent retraining and tuning
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Model Recall Efficiency
candidates
#1 0.70 1.25
#2 (chosen) 0.66 1.85
#3 0.85 0.55
#4 0.25 2.50

TABLE 1: Example of model candidate scores and how the best
model is chosen. In the tuning process, both recall and efficiency are
considered. Efficiency of 1 means the ML flow is as efficient as the
random flow. This becomes the lower bound of model performance.
#3 is ruled out because even though it has the highest recall, the
efficiency is lower than 1 (baseline). Then, #1 is the model with the
highest recall. However, instead of choosing this, I look at other
candidates within a margin (0.05 in this case) from the maximum
value of the recall, meaning all the candidates that have recall values
between 0.70 (maximum) and 0.65 (=0.70-0.05). In this example, #2
has higher efficiency than #1 and is within the recall margin. Hence,
#2 is chosen as the best model.

(i.e., faster training time). I used a group of non-neural-net scikit-
learn (v0.20.2) classifiers as supervised and isolation forest as
unsupervised learning algorithms. For both cases, I conducted
randomized search to tune the hyperparameters and select the
best model. For the supervised, I used algorithms such as logistic
regression and tree-based ensemble methods (random forest, gra-
dient boosting, and extra trees). The winning algorithm was the
logistic regression with L2 regularization, potentially because the
preprocessed input data had high sparsity (i.e., more than 50% was
0 after imputation).

Engineers care more about the unique failure signatures than
simple binary labels. When a number of failures are found in
test simulation, if the majority have the same failure signatures, it
means engineers found failures that are very similar to each other,
which has little value to them; the ultimate goal of verification is
to find every possible type of failure (bug) to make the design bug-
free. The more UFS engineers find, the more likely to find novel
failures. Moreover, if we find more UFS by running fewer tests,
it bring higher efficiency in the procedure. Hence, it would make
sense to have an objective function that maximizes the number of
UFS found, for instance, by formulating the problem as multi-class
classification where each class corresponds to a failure signature.
In the training data, each failure signature is found mostly just
once or a few times, which makes it difficult to use in model
training. However, I found that the number of failure signatures
increases with the number of failures (Fig. 2); the more failures
we find, the more unique failure signatures are retrieved. This
suggests that as long as the binary approach works well and catch
more failures, it will be natural to retrieve more unique failure
signatures.

Metrics and hyperparameter tuning

For both supervised and unsupervised models, I used recall and
precision as basic metrics (for model selection in the tuning
process). In general, it is not easy to evaluate unsupervised models
but in this case, I have labeled datasets and hence it was possible
to use the classification metrics. I also used more practical metrics
to increase interpretability and address unique failure signatures,
which engineers care about. I defined the following two metrics:
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Fig. 3: The unique failure signature (UFS) recovery rate (left) and
efficiency (right) metrics across 15-day (1 month, the tests were
not generated daily during this duration) performance for the three
models (union, supervised and unsupervised). The dashed orange line
in the efficiency plot shows average fail-discovery rate (the lower
bound of the efficiency metric). Note that the union approach catches
more UFS but lowers efficiency because more tests should be run.

unique failure signature (UFS) recovery rate and efficiency.
card(Sy—1)
card(Sy—1)’

where S is a set of UFS, y and j are true and predicted labels of
failure (0 as pass and 1 as failure), and card(S) is the cardinality
of the set S, also known as the unique count of the set. Hence,
card(Sy—;) means the number of the UFS in the tests that are
predicted as failure and card(Sy—;) as the total number of UFS
in all failed tests in training data. This metric is similar to recall
but here the focus is on the retrieval of UFS instead of the binary
labels.

UFS recovery rate! =

Precision

Zﬁi] Yi
N

Efficiency =

where N is the total number of the tests in the training data. In the
deployment setting where both the default and ML flows exist, N
is the total number of the tests in the default flow. The efficiency
metric is defined to easily understand how efficient the ML flow
is compared to the baseline (the random flow). The numerator is
the precision of the ML flow. The denominator is the proportion
of the failures in training data (or the tests in the random flow),
which means how often failures are found on average when
running randomized tests (i.e., average fail-discovery rate). This
metric can be used as a lower bound of model performance. Since
engineers want to discover as many failures as possible, this would
mean maximizing recall. Due to the trade-off between recall and
precision, this attempt would decrease precision. However, the
precision should not be lower than the average fail-discovery rate,
because otherwise, the random flow would be enough or even
more efficient than the ML flow at finding failures. Therefore,
desired model performance should show the efficiency score larger
than 1.

Since the efficiency metric provides a lower bound to model
performance, when tuning the hyperparameters, instead of looking
at the combination with best recall, I use the following rule
to select the best model. First, the model candidates with the

1. This metric is the same as the Jaccard similarity of Sy—; and Sy—;. When
Jaccard similarity is used as a metric between two arbitrary sets A and B, it is
often assumed that |A — B| and |B— A| are non-zero (i.e., A ¢ B and B ¢ A).
In this case, Sy—1 C Sy—1, and thus I defined the UFS recovery rate with set
cardinality.
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Fig. 4: First 17 days (3k-4k tests per day) of model performance
(efficiency) after deployment. The performance fluctuates widely (all
the way up to more than 5 then sometimes plummet to zero). Note that
the models have not been retrained during this period.

efficiency score smaller than 1 are dropped because they are less
efficient than the baseline. Next, the maximum of the recall values
from the rest of the candidates is identified. Instead of selecting the
candidate with the maximum recall, I set up a recall margin (0.05)
from the maximum recall and check whether there are candidates
that are within the margin. Consider this as looking at not just a
single model with the best recall but multiple models with close-
to the best recall values. Among these candidates, I chose the one
with the highest efficiency. This way, without compromising the
recall too much, the model with higher efficiency can be chosen.
The example is shown in Tab. 1.

Results

For the snapshot dataset, the testing data (50% holdout data in 10
different sets; each set is generated independently) shows that the
union predictions from the trained supervised and unsupervised
models achieved a UFS recovery rate of 82+2 % (mean + sem)
and an efficiency of 1.8 +0.1 (mean £ sem). Similar results were
obtained in the 7-month dataset (Fig. 3). Note that in the figure,
the UFS recovery rate increased for the union approach but the
efficiency was sacrificed because the union approach naturally
required running more tests. Since the precision score was very
low (due to the class imbalance), I ran a permutation test as a
sanity check (100 runs) and found the model performance was
significantly different from the permuted runs (p = 0.010 for the
snapshot dataset). Overall, in both datasets, on average, the union
approach flagged about 40% of the tests and was able to retrieve
80% of the unique failure signatures. This suggests that with the
ML flow, it is possible to find 80% of UFS by running only 40%
tests, compared to the random flow (baseline).

Post-deployment analysis

Deployment

Several productions engineers and I wrote Python and shell scripts
to build a command-line tool that verification engineers can run
without changing their main random flow. The script takes test
candidates as input and makes a binary prediction on a test
candidate’s success (pass or failure) based on the pre-trained
models (both the supervised and the unsupervised and then their
union). Whenever new test candidates are provided to the tool, the
input settings of those are preprocessed so that they are consistent
with the training data. The tool is provided with 1k test candidates,
generated from the testbench, and it flags about 400 tests on
average. The number of test candidates provided depends on the

UFS recovery rate
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Fig. 5: Average model performance metrics obtained by simulating
retraining scenarios for the training data size (rolling window) and the
relative importance of recent data (weight decay). The x axis shows
decay parameter, which decides the weights applied to training data.
The larger the weights, the faster the decay, meaning old tests become
much less important. The y axis shows the rolling window size as
the number of days. This decides the training data size; 10 means
the training data consists of the tests gathered for the past 10-days.
For both plots, brighter colors indicate more desirable results. The
marked orange squares show the final decision on training (i.e., 14-
day window without decay)

computational resources available in the internal cluster. In the
flagging (i.e., prediction) process, the script returns the unique
identifier of the flagged test candidates. Then it invokes a testbench
simulation where only the filtered tests are run. The scripts are
deployed as a part of the production team’s continuous integration.

After the deployment, model performance started showing
high variability, sometimes very different from the pre-deployment
model performance. Figure 4 shows the model performance of the
first 17 days of post-deployment period. Note that the models were
not retrained during this period. During this period, the efficiency
scores were often larger than one but they changed dramatically
sometimes. In the following sections, I will discuss how to identify
the cause of the performance variability in the context of model
retraining, and other issues found during the post-deployment
stage.

Data for retraining

During the initial period of post-deployment, the models were
manually retrained whenever major changes were made either in
the tool or in the design. To automate the retraining process, I
tested ideas related to the model retraining. First, for any retrain-
ing, the size of training data should be determined. Technically, it
is possible to use the entire historic data from the very beginning
of the testing process. However, this is not a good idea because the
training data will be too big and very old tests would be useless
since the design would have changed a lot since then. To determine
how much training data is needed, I conducted an experiment
by considering these two factors: rolling window size and weight
decay. The rolling window size corresponds to N consecutive days
(N =3,5,7,10,14) to look back to build a training dataset. For
instance, if N =7, tests that were run for the past 7 days become
the training data.

The weight decay is related to how fresh the data is. If tests
were generated more recently, they might be more important
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Fig. 6: The effect of the number of tests that are provided to the models
and the performance variability. Each vertical line in the raster plots
represents a single simulated run. The model performance is more
variable when fewer tests are provided to the models. It may imply
that the performance depends on the quality of the test candidates,
which can vary more if the number of the test candidates provided is
smaller. The more tests we provide, the less variable the performance
becomes.

because the design then is more similar to the current day’s
compared to older tests. The multiplicative power decay is used
to compute the weight w, (w(t) = x!, where x is the power
parameter (0.3, 0.6, 0.9, 1 (=no decay)) and ¢ is the number
of days counting from today). Using the power law, x = 0.9
would mean tests from yesterday are 10% less important than
today’s. Once the weights are computed, they are applied to the
objective function during training by using sample_weight
parameter in scikit-learn models’ £it () module. It allows users
to assign weights during model fitting for every data point. Since
multiple tests are generated on a day, they each get the same
weights and the weights only vary on the day-level. Note that this
weight adjustment is added on top of the class weight adjustment
(class_weight="'balanced").

All combinatorial scenarios between the rolling window and
weight decay were tested via simulation across multiple datasets
(Fig. 5). When the rolling window was too small (e.g., N = 3),
performance was low for both the UFS recovery rate and the
efficiency, which suggests the 3-day window might be too small
to construct a good training dataset. A faster decay (small power
parameter) tends to mimic the effect of having a smaller rolling
window and generally degraded performance. As shown in Fig. 5
as an orange box in each grid, the final decision was to have a 14-
day window without any decay even though the efficiency value
was slightly higher in the 7-day without any decay. This was to
consider the fact that it is possible to run a smaller number of tests
in the future due to the potential cluster resource constraints and
thus the 7-day window might not provide enough tests for training.

Random-draw effect

It is suspected that the fluctuation in model performance (Fig.
4) might be related to the quality of the test candidates. This
is because the test candidates were generated randomly in the
testbench independently and we have no control over it. Hence, by
chance, it is possible that the test candidates on a certain day might
be more challenging to the models (e.g., samples that are closer
to the decision boundary), which may result in low performance
(i.e., "random-draw" effect). To test this idea, I simulated the effect
of the random draw by varying the number of test candidates
provided to the models (Fig. 6). I found that when more candidates
were provided, model performance was more stable for both UFS
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recovery rate and efficiency. In the actual deployment, about 1000
test candidates were provided to the tool. As shown in Fig. 6, it
is very much possible that with 1000 candidates, the efficiency
can be lower than one or as high as four in certain draws. For
the simulation in Fig. 6, I drew tests from a pool of 250k tests
but considering that the actual number of possible test candidates
that can be ever generated is astronomical, variability in model
performance due to the random-draw effect could be more severe
in reality.

Top-K approach with periodic retraining

Although the predictions from the supervised and the unsupervised
models are binary in the deployed tool, in fact both models
(logistic regression and isolation forest) can return a continuous
score, which can be used as a measure of likelihood of failure.
For the supervised model, this is prediction probability and for the
unsupervised, this is anomaly score. In the default setting (as in
the deployed tool), the supervised model classifies the candidates
with the probability of failure larger than 0.5 as failures, and
the unsupervised flags the ones with negative anomaly scores as
outliers.

To address the random-draw effect, it might be better to use
these likelihood metrics. With these metrics, the test candidates
can be ranked and the tool can choose the top candidates, which
are more likely to fail (prediction probability for a supervised
model) or more abnormal (anomaly score of an unsupervised
model) than other candidates. Then it is possible to provide a
larger number of test candidates to the models, which can simply
choose the top K candidates. This allows the models to see more
test candidates, which can potentially reduce the random-draw
effect. It also works well with the deployed tool because the test
candidate generation is very fast and doesn’t cost much. Assuming
that enough test candidates are provided to the models, it is not
necessary to set specific cut-offs for the likelihood measures but
to pick the top K tests where K will simply depend on the cluster
resource constraints, which is more straightforward.

To test the idea of the top K approach, I ran simulations using
the tests collected during the post-deployment period, retrospec-
tively (cf. note that tests were not run every day) (Fig. 7) and
also simulated model retraining. I set K = 400, then simulated and
compared the following three scenarios:

e Random K: K tests that were randomly drawn from the
tests that were run in the existing random flow. Approx-
imately, 3k-4k tests were run daily and thus, a subset of
K tests (K = 400) were randomly drawn and this process
was repeated multiple times. Note that this flow does not
involve the ML models. This simulation is to approximate
the average outcome of the random flow when K tests are
run. It is represented as gray dot-line (mean and sem from
100 random simulations) in Fig. 7.

o Top K without any retraining: Top K candidates flagged as
failure by the models. The models saw the input settings
of the tests that were run in the existing random flow
(the same 3k-4k tests from the Random K). Using the
same tests as in the "Random K" is important to make
the comparison fair and consistent. In this scenario, both
supervised and unsupervised models were never retrained.
This is shown as blue dots in Fig. 7.

o Top K with retraining under "three-strikes" rule: Same
as the previous but both models were retrained whenever
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Fig. 7: Comparison in UFS counts between the randomly drawn K tests and the model-filtered K tests (K=400) for 36 days after deployment.
The prediction probability and the anomaly score were used to rank the filtered test candidates and choose the top K tests to run (the orange
crosses and blue dots), for the supervised and the unsupervised model, respectively. For the orange crosses, the models were retrained and
tuned whenever the model performance was worse than the baseline, three days in a row. The blue dots show the scenario without any
retraining throughout the whole period. The gray dot-line plot shows mean and 95% confidence interval of performance generated from 100
random draws from a pool of 3k tests from the random flow (daily). Since all scenarios that are compared here have the same number of tests,

direct comparison of the UFS counts is available.

model performance was lower than the Random K’s, three
days in a row. It is shown as orange crosses in Fig. 7.

Since all scenarios have the same K = 400, it is possible to
compare the unique failure signature (UFS) counts (the y axis in
Fig. 7) instead of the UFS recovery rate. Although the models
did not always perform better than the baseline, when they did
(the middle section of the figure), retraining the models based
on the "three-strikes rule" did help. This rule kept the models
relatively new but also helped keeping good models without
retraining too frequently. In the middle section of the figure, it
was possible to use the same models without retraining for almost
two weeks. Theoretically, it is possible to retrain the models every
day. However, model retraining is not free and it still consumes
computational resources in the internal cluster. This means, too
frequent retraining can undermine the benefit of using the ML
models.

This simulation was based on the 3k-4k tests that were run
almost daily. To compare the model performance and the random-
testing results, it was important to use the same set of tests for
the simulation; the models saw the input settings of the same 3k-
4k tests and made predictions which were then compared to the
actual results. In this case, the models have seen only 3k-4k of test
candidates but in reality, if the top K approach is adopted, it will
be possible to increase the number of candidates provided to the
models, which may potentially increase model performance given
that the models see a larger number of the candidates. During
the mid two-week period in Fig. 7, on average, the "top K with
retraining" approach was able to obtain 2.62 4+ 1.21 (mean =+ std)
more UFS compared to the random flow. According to verification
engineers, even a single additional UFS is valuable once the design
is mature and failure rate is low. Hence, if the top K approach is
applied with a larger number of test candidates, it will be possible
to find even more UFS.

Opportunities for enhancement

This project still has room for improvement in terms of data
and modeling. From the data perspective, first, it’s necessary to
gather more information on data drift to easily debug abnormal

model performance. Aside from the above-mentioned random-
draw effect, the main culprit of the decrease in model performance
is a change in the design or the testbench. Currently, it is difficult
to understand a change with immediacy and to measure its degree.
For instance, in Fig. 7, model performance was worse than the
baseline for multiple days and it was very difficult to pinpoint the
reason; the only option was to increase the retraining frequency. A
possible idea to cope with this problem is to measure a change in
the design or the testbench, by comparing commits although this
might not necessarily reflect a high-level functional modification.
Thus, further discussion with domain experts is needed to find a
better solution.

Second, the input dataset quality can be improved by reducing
the randomness of the input settings. An important modeling
challenge comes from the fact that two identical input settings
can result in different outcomes because there is stochasticity in
the test generation process. Considering that a testbench cannot
be completely deterministic without a design overhaul, exposing
subsequent settings controlled by the input settings can provide
additional features to the input dataset.

Third, how to measure failure signatures can be improved
as well. Currently, the unique failure signatures are 8-digit hex-
adecimal codes from a hash function based on failure log files.
Engineers do not use any similarity metrics between hexadecimal
codes and whether a distance between two hexadecimal codes is
meaningful is unknown. Instead of using a hash function, it is
possible to directly extract semantic information from the failure
logs and use it to group and label failures in a meaningful way.
This can improve interpretability of the failure signatures and
make it possible to build a multi-class classifier, if the log files
can be categorized into several groups.

The quality of the union approach depends on the perfor-
mance of both supervised and unsupervised models. Currently,
the vote from each model has the same weight; when one of
the models flags a test candidate, the candidate is predicted as
failure. However, it is possible that the two models have different
performance, meaning one model might have better reliability than
the other. In fact, in the early stage of the post-deployment period,
I found that the supervised model performance was better than
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the unsupervised but in the later stage, it was the opposite. This
might have been caused by the design maturation over time, which
decreased the number of failures in the training dataset. Therefore,
it is possible to consider the difference in model performance
when using the ensemble approach. Related to this issue, it is
possible to apply different rolling window sizes to the two models.
For instance, the supervised model might require a larger training
dataset to obtain more failure examples. It would be possible to
find the optimal rolling window size for each model by running
an experiment similar to Fig. 5.

Conclusions

Hardware verification is a costly process in microprocessor manu-
facturing, especially when design is mature and failures are rarely
found. At this stage, the default randomized testing gets redundant
and manual intervention from verification engineers is often re-
quired, which is time-consuming. By using the input setting values
and test outcomes from the tests that were run previously (99%
pass rate), it was possible to train machine learning models that
reduce the number of tests to run by 60% while retrieving 80%
of unique failure signatures on average. This indicates, engineers
can run fewer tests to retrieve similar number of unique failure
signatures. Currently, the models have been deployed and used
by production engineers to make the verification process more
efficient.

In real-world scenarios, it is often the case where a machine
learning approach faces many practical constraints. Hardware
verification turns out to be a good example. Verification tests are
randomly generated and the information about the randomization
is intractable, which makes it difficult to control test generation or
measure the degree of the stochastic behavior. Also, ML models
are only useful in the later stage of hardware verification when it
is not easy to find failures by running random tests because in the
beginning, the random testing can find a number of failures easily.
This means, to use machine learning for the failure detection
in hardware verification, one will inevitably face severe class
imbalance. Modifying the objective function so that it actually
considers the metric of interest, unique failure signature, is not
easy because simply there are not enough training examples for
each signature. On top of this, the design and even the testbench
itself change frequently, suggesting that the data generation pro-
cess goes through frequent changes.

To address these issues, this study shows a prototype that
provides test candidates and filters out failure-prone tests instead
of trying to guide the testbench itself. To work with the class
imbalance issues, I used both supervised and unsupervised models
to address the problem as classification and outlier detection at the
same time. I chose a customized approach for model selection
by evaluating multiple metrics to be more practical and be able to
make a compromise between the metrics. Finally, I have conducted
experiments in the post-deployment process to address the details
of retraining and identifying the cause of performance variability,
which are often overlooked but crucial in deployment. In sum-
mary, this study proves that a machine learning approach can be
used for failure detection in hardware verification. It also provides
an example to work under practical constraints and investigate
performance-related issues in building actual machine learning
products.
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