
PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019) 27

Analyzing Particle Systems for Machine Learning and
Data Visualization with freud

Bradley D. Dice‡∗, Vyas Ramasubramani§, Eric S. Harper∗∗, Matthew P. Spellings§, Joshua A. Anderson§, Sharon C.
Glotzer‡§¶‖

F

Abstract—The freud Python library analyzes particle data output from
molecular dynamics simulations. The library’s design and its variety of high-
performance methods make it a powerful tool for many modern applications.
In particular, freud can be used as part of the data generation pipeline for
machine learning (ML) algorithms for analyzing particle simulations, and it can
be easily integrated with various simulation visualization tools for simultaneous
visualization and real-time analysis. Here, we present numerous examples both
of using freud to analyze nano-scale particle systems by coupling traditional
simulational analyses to machine learning libraries and of visualizing per-particle
quantities calculated by freud analysis methods. We include code and exam-
ples of this visualization, showing that in general the introduction of freud
into existing ML and visualization workflows is smooth and unintrusive. We
demonstrate that among Python packages used in the computational molecular
sciences, freud offers a unique set of analysis methods with efficient compu-
tations and seamless coupling into powerful data analysis pipelines.

Index Terms—molecular dynamics, analysis, particle simulation, particle sys-
tem, computational physics, computational chemistry

Introduction

The availability of "off-the-shelf" molecular dynamics engines
(e.g. HOOMD-blue [ALT08], [GNA+15], LAMMPS [Pli95],
GROMACS [BvdSvD95]) has made simulating complex systems
possible across many scientific fields. Simulations of systems
ranging from large biomolecules to colloids are now common,
allowing researchers to ask new questions about reconfigurable
materials [CDA+18] and develop coarse-graining approaches to
access increasing timescales [SZR+19]. Various tools have arisen
to facilitate the analysis of these simulations, many of which are
immediately interoperable with the most popular simulation tools.
The freud library is one such analysis package that differentiates
itself from others through its focus on colloidal and nano-scale
systems.

Due to their diversity and adaptability, colloidal materials are a
powerful model system for exploring soft matter physics [GS07].

* Corresponding author: bdice@umich.edu
‡ Department of Physics, University of Michigan, Ann Arbor
§ Department of Chemical Engineering, University of Michigan, Ann Arbor
** Department of Materials Science & Engineering, University of Michigan,
Ann Arbor
¶ Department of Materials Science and Engineering, University of Michigan,
Ann Arbor
|| Biointerfaces Institute, University of Michigan, Ann Arbor

Copyright © 2019 Bradley D. Dice et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Such materials are also a viable platform for harnessing photonic
[CDA+18], plasmonic [TCLC11], and other useful structurally-
derived properties. In colloidal systems, features like particle
anisotropy play an important role in creating complex crystal
structures, some of which have no atomic analogues [DEG12].
Design spaces encompassing wide ranges of particle morphology
[DEG12] and interparticle interactions [AADG18] have been
shown to yield phase diagrams filled with complex behavior.

The freud Python package offers a unique feature set that
targets the analysis of colloidal systems. The library avoids
trajectory management and the analysis of chemically bonded
structures, which are the province of most other analysis plat-
forms like MDAnalysis and MDTraj (see also 1) [MADWB11],
[MBH+15]. In particular, freud excels at performing analyses
based on characterizing local particle environments, which makes
it a powerful tool for tasks such as calculating order parameters to
track crystallization or finding prenucleation clusters. Among the
unique methods present in freud are the potential of mean force
and torque, which allows users to understand the effects of particle
anisotropy on entropic self-assembly [vAAS+14], [vAKA+14],
[KGG16], [HMA+15], [AAM+17], and various tools for identi-
fying and clustering particles by their local crystal environments
[TvAG19]. All such tasks are accelerated by freud’s extremely
fast neighbor finding routines and are automatically parallelized,
making it an ideal tool for researchers performing peta- or exascale
simulations of particle systems. The freud library’s scalability
is exemplified by its use in computing correlation functions on
systems of over a million particles, calculations that were used to
illuminate the elusive hexatic phase transition in two-dimensional
systems of hard polygons [AAM+17]. More details on the use
of freud can be found in [RDH+19]. In this paper, we will
demonstrate that freud is uniquely well-suited to usage in the
context of data pipelines for visualization and machine learning
applications.

Data Pipelines

The freud package is especially useful because it can be or-
ganically integrated into a data pipeline. Many research tasks in
computational molecular sciences can be expressed in terms of
data pipelines; in molecular simulations, such a pipeline typically
involves:

1) Generating an input file that defines a simulation.
2) Simulating the system of interest, saving its trajectory to

a file.

mailto:bdice@umich.edu

28 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

biomolecules
MDAnalysis*

MDTraj*
pytraj*

atomic
crystals
pymatgen*

atomic scale

coarse
grained
models

colloidal
crystals

nanoparticles

molecular scale
nanoscale

mesoscale

*existing codes

Fig. 1: Common Python tools for simulation analysis at varying length scales. The freud library is designed for nanoscale systems, such
as colloidal crystals and nanoparticle assemblies. In such systems, interactions are described by coarse-grained models where particles’
atomic constituents are often irrelevant and particle anisotropy (non-spherical shape) is common, thus requiring a generalized concept of
particle "types" and orientation-sensitive analyses. These features contrast the assumptions of most analysis tools designed for biomolecular
simulations and materials science.

3) Analyzing the resulting data by computing and storing
various quantities.

4) Visualizing the trajectory, using colors or styles deter-
mined from previous analyses.

However, in modern workflows the lines between these stages
is typically blurred, particularly with respect to analysis. While
direct visualization of simulation trajectories can provide insights
into the behavior of a system, integrating higher-order analyses is
often necessary to provide real-time interpretable visualizations in
that allow researchers to identify meaningful features like defects
and ordered domains of self-assembled structures. Studies of
complex systems are also often aided or accelerated by a real-time
coupling of simulations with on-the-fly analysis. This simultane-
ous usage of simulation and analysis is especially relevant because
modern machine learning techniques frequently involve wrapping
this pipeline entirely within a higher-level optimization problem,
since analysis methods can be used to construct objective functions
targeting a specific materials design problem, for instance.

Following, we provide demonstrations of how freud can be
integrated with popular tools in the scientific Python ecosystem
like TensorFlow, Scikit-learn, SciPy, or Matplotlib. In the context
of machine learning algorithms, we will discuss how the analyses
in freud can reduce the 6N-dimensional space of particle posi-
tions and orientations into a tractable set of features that can be
fed into machine learning algorithms. We will further show that
freud can be used for visualizations even outside of scripting
contexts, enabling a wide range of forward-thinking applications
including Jupyter notebook integrations, versatile 3D renderings,
and integration with various standard tools for visualizing sim-
ulation trajectories. These topics are aimed at computational
molecular scientists and data scientists alike, with discussions of
real-world usage as well as theoretical motivation and conceptual
exploration. The full source code of all examples in this paper can
be found online1.

Performance and Integrability

Using freud to compute features for machine learning algo-
rithms and visualization is straightforward because it adheres to a
UNIX-like philosophy of providing modular, composable features.
This design is evidenced by the library’s reliance on NumPy

1. https://github.com/glotzerlab/freud-examples

arrays [Oli06] for all inputs and outputs, a format that is naturally
integrated with most other tools in the scientific Python ecosystem.
In general, the analyses in freud are designed around analyses
of raw particle trajectories, meaning that the inputs are typically
(N,3) arrays of particle positions and (N,4) arrays of particle
orientations, and analyses that involve many frames over time
use accumulate methods that are called once for each frame.
This general approach enables freud to be used for a range
of input data, including molecular dynamics and Monte Carlo
simulations as well as experimental data (e.g. positions extracted
via particle tracking) in both 3D and 2D. The direct usage of
numerical arrays indicates a different usage pattern than that of
tools, such as MDAnalysis [MADWB11] and MDTraj [MBH+15],
for which trajectory parsing is a core feature. Due to the existence
of many such tools which are capable of reading simulation
engines’ output files, as well as certain formats like gsd2 that
provide their own parsers, freud eschews any form of trajectory
management and instead relies on other tools to provide input
arrays. If input data is to be read from a file, binary data formats
such as gsd or NumPy’s npy or npz are strongly preferred for
efficient I/O. Though it is possible to use a library like Pandas
to load data stored in a comma-separated value (CSV) or other
text-based data format, such files are often much slower when
reading and writing large numerical arrays. Decoupling freud
from file parsing and specific trajectory representations allows
it to be efficiently integrated into simulations, machine learning
applications, and visualization toolkits with no I/O overhead and
limited additional code complexity, while the universal usage of
NumPy arrays makes such integrations very natural.

In keeping with this focus on composable features, freud
also abstracts and directly exposes the task of finding particle
neighbors, the task most central to all other analyses in freud.
Since neighbor finding is a common need, the neighbor finding
routines in freud are highly optimized and natively support
periodic systems, a crucial feature for any analysis of particle
simulations (which often employ periodic boundary conditions).
In figure 2, a comparison is shown between the neighbor finding
algorithms in freud and SciPy [JOPo01]. For each system
size, N particles are uniformly distributed in a 3D periodic cube
such that each particle has an average of 12 neighbors within a
distance of rcut = 1.0. Neighbors are found for each particle by

2. https://github.com/glotzerlab/gsd

https://github.com/glotzerlab/freud-examples
https://github.com/glotzerlab/gsd

ANALYZING PARTICLE SYSTEMS FOR MACHINE LEARNING AND DATA VISUALIZATION WITH FREUD 29

0 1000 2000 3000 4000 5000
Number of points N

0.0

0.5

1.0

1.5

2.0

Ru
nt

im
e

fo
r 1

00
 it

er
at

io
ns

 (s
)

Neighbor finding for 12 average neighbors
scipy v1.3.0 cKDTree
freud v1.1.0 AABBQuery
freud v1.1.0 LinkCell

Fig. 2: Comparison of runtime for neighbor finding algorithms in
freud and SciPy for varied system sizes. See text for details.

searching within the cutoff distance rcut . The methods compared
are scipy.spatial.cKDTree’s query_ball_tree,
freud.locality.AABBQuery’s queryBall, and
freud.locality.LinkCell’s compute. The benchmarks
were performed with 5 replicates on a 3.6 GHz Intel Core
i3-8100B processor with 16 GB 2667 MHz DDR4 RAM.

Evidently, freud performs very well on this core task
and scales well to larger systems. The parallel C++ back-
end implemented with Cython and Intel Threading Building
Blocks makes freud perform quickly even for large systems
[BBC+11], [Int18]. Furthermore, freud supports periodicity in
arbitrary triclinic volumes, a common feature found in many
simulations. This support distinguishes it from other tools like
scipy.spatial.cKDTree, which only supports cubic boxes.
The fast neighbor finding in freud and the ease of integrating its
outputs into other analyses not only make it easy to add fast new
analysis methods into freud, they are also central to why freud
can be easily integrated into workflows for machine learning and
visualization.

Machine Learning

A wide range of problems in soft matter and nano-scale simu-
lations have been addressed using machine learning techniques,
such as crystal structure identification [SG18]. In machine learn-
ing workflows, freud is used to generate features, which are
then used in classification or regression models, clusterings, or
dimensionality reduction methods. For example, Harper et al.
used freud to compute the cubatic order parameter and gen-
erate high-dimensional descriptors of structural motifs, which
were visualized with t-SNE dimensionality reduction [HWG19],
[vdMH08]. The library has also been used in the optimization
and inverse design of pair potentials [AADG18], to compute
fitness functions based on the radial distribution function. The
open-source pythia3 library offers a number of descriptor sets
useful for crystal structure identification, leveraging freud for
fast computations. Included among the descriptors in pythia
are quantities based on bond angles and distances, spherical
harmonics, and Voronoi diagrams.

Computing a set of descriptors tuned for a particular system
of interest (e.g. using values of Ql , the higher-order Steinhardt
Wl parameters, or other order parameters provided by freud) is

0.00 0.25 0.50 0.75 1.00
0

200

400

600

800 sc
bcc
fcc

Fig. 3: Histogram of the Steinhardt Q6 order parameter for 4000
particles in simple cubic, body-centered cubic, and face-centered
cubic structures with added Gaussian noise.

possible with just a few lines of code. Descriptors like these (ex-
emplified in the pythia library) have been used with TensorFlow
for supervised and unsupervised learning of crystal structures in
complex phase diagrams [SG18], [AAB+15].

Another useful module for machine learning with freud is
freud.cluster, which uses a distance-based cutoff to locate
clusters of particles while accounting for 2D or 3D periodicity.
Locating clusters in this way can identify crystalline grains,
helpful for building a training set for machine learning models.

To demonstrate a concrete example, we focus on a common
challenge in molecular sciences: identifying crystal structures.
Recently, several approaches have been developed that use ma-
chine learning for detecting ordered phases [SCKL15], [SG18],
[FSM19], [SNR83], [LD08]. The Steinhardt order parameters are
often used as a structural fingerprint, and are derived from rotation-
ally invariant combinations of spherical harmonics. In the example
below, we create face-centered cubic (fcc), body-centered cubic
(bcc), and simple cubic (sc) crystals with added Gaussian noise,
and use Steinhardt order parameters with a support vector machine
to train a simple crystal structure identifier. Steinhardt order
parameters characterize the spherical arrangement of neighbors
around a central particle, and combining values of Ql for a range
of l often gives a unique signature for simple crystal structures.
This example demonstrates a simple case of how freud can be
used to help solve the problem of structural identification, which
often requires a sophisticated approach for complex crystals.

In figure 3, we show the distribution of Q6 values for sample
structures with 4000 particles. Here, we demonstrate how to
compute the Steinhardt Q6, using neighbors found via a periodic
Voronoi diagram. Neighbors with small facets in the Voronoi
polytope are filtered out to reduce noise.
import freud
import numpy as np
from util import make_fcc

def get_features(box, positions, structure):
Create a Voronoi compute object
voro = freud.voronoi.Voronoi(

box, buff=max(box.L)/2)
voro.computeNeighbors(positions)

Filter the Voronoi NeighborList
nlist = voro.nlist
nlist.filter(nlist.weights > 0.1)

3. https://github.com/glotzerlab/pythia

https://github.com/glotzerlab/pythia

30 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Compute Steinhardt order parameters
features = {}
for l in [4, 6, 8, 10, 12]:

ql = freud.order.LocalQl(
box, rmax=max(box.L)/2, l=l)

ql.compute(positions, nlist)
features['q{}'.format(l)] = ql.Ql.copy()

return features

Create a freud box object and an array of
3D positions for a face-centered cubic
structure with 4000 particles
fcc_box, fcc_positions = make_fcc(

nx=10, ny=10, nz=10, noise=0.1)

structures = {}
structures['fcc'] = get_features(

fcc_box, fcc_positions, 'fcc')
... repeat for all structures

Then, using Pandas and Scikit-learn, we can train a support vector
machine to identify these structures:
Build dictionary of DataFrames,
labeled by structure
structure_dfs = {}
for i, struct in enumerate(structures):

df = pd.DataFrame.from_dict(structures[struct])
df['class'] = i
structure_dfs[struct] = df

Combine DataFrames for input to SVM
df = pd.concat(structure_dfs.values())
df = df.reset_index(drop=True)

from sklearn.preprocessing import normalize
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC

We use the normalized Steinhardt order parameters
to predict the crystal structure
X = df.drop('class', axis=1).values
X = normalize(X)
y = df['class'].values
X_train, X_test, y_train, y_test = train_test_split(

X, y, test_size=0.33, random_state=42)

svm = SVC()
svm.fit(X_train, y_train)
print('Score:', svm.score(X_test, y_test))
The model is ~98% accurate.

To interpret crystal identification models like this, it can be
helpful to use a dimensionality reduction tool such as Uniform
Manifold Approximation and Projection (UMAP) [MH18], as
shown in figure 4. The low-dimensional UMAP projection shown
is generated directly from the Pandas DataFrame:
from umap import UMAP
umap = UMAP()

Project the high-dimensional descriptors
to a two dimensional manifold
data = umap.fit_transform(df)
plt.plot(data[:, 0], data[:, 1])

Visualization

Many analyses performed by the freud library provide a
plot(ax=None) method (new in v1.2.0) that allows their com-
puted quantities to be visualized with Matplotlib. Additionally,
these plottable analyses offer IPython representations, allowing
Jupyter notebooks to render a graph such as a radial distri-
bution function g(r) just by returning the compute object at

15 10 5 0 5 10 15

4

2

0

2

4

sc
bcc
fcc

Fig. 4: UMAP of particle descriptors computed for simple cubic,
body-centered cubic, and face-centered cubic structures of 4000
particles with added Gaussian noise. The particle descriptors include
Ql for l ∈ {4,6,8,10,12}. Some noisy configurations of bcc can be
confused as fcc and vice versa, which accounts for the small number
of errors in the support vector machine’s test classification.

the end of a cell. Analyses like the radial distribution function
or correlation functions return data that is binned as a one-
dimensional histogram -- these are visualized with a line graph
via matplotlib.pyplot.plot, with the bin locations and
bin counts given by properties of the compute object. Other classes
provide multi-dimensional histograms, like the Gaussian density
or Potential of Mean Force and Torque, which are plotted with
matplotlib.pyplot.imshow.

The most complex case for visualization is that of per-particle
properties, which also comprises some of the most useful features
in freud. Quantities that are computed on a per-particle level
can be continuous (e.g. Steinhardt order parameters) or discrete
(e.g. clustering, where the integer value corresponds to a unique
cluster ID). Continuous quantities can be plotted as a histogram
over particles, but typically the most helpful visualizations use
these quantities with a color map assigned to particles in a two-
or three-dimensional view of the system itself. For such particle
visualizations, several open-source tools exist that interoperate
well with freud. Below are examples of how one can integrate
freud with plato4, fresnel5, and OVITO6 [Stu10].

plato

plato is an open-source graphics package that expresses a
common interface for defining two- or three-dimensional scenes
which can be rendered as an interactive Jupyter widget or saved to
a high-resolution image using one of several backends (PyThreejs,
Matplotlib, fresnel, POVray7, and Blender8, among others).
Below is an example of how to render particles from a HOOMD-
blue snapshot, colored by the density of their local environment
[ALT08], [GNA+15]. The result is shown in figure 5.
import plato
import plato.draw.pythreejs as draw
import numpy as np

4. https://github.com/glotzerlab/plato
5. https://github.com/glotzerlab/fresnel
6. https://ovito.org/
7. https://www.povray.org/
8. https://www.blender.org/

https://github.com/glotzerlab/plato
https://github.com/glotzerlab/fresnel
https://ovito.org/
https://www.povray.org/
https://www.blender.org/

ANALYZING PARTICLE SYSTEMS FOR MACHINE LEARNING AND DATA VISUALIZATION WITH FREUD 31

Fig. 5: Interactive visualization of a Lennard-Jones particle system,
rendered in a Jupyter notebook using plato with the pythreejs
backend.

Fig. 6: Hard tetrahedra colored by local density, path traced with
fresnel.

import matplotlib.cm
import freud
from sklearn.preprocessing import minmax_scale

snap comes from a previous HOOMD-blue simulation
box = freud.box.Box.from_box(snap.box)
positions = snap.particles.position

Compute the local density of each particle
ld = freud.density.LocalDensity(

r_cut=3.0, volume=1.0, diameter=1.0)
ld.compute(box, positions)

Create a scene for visualization,
colored by local density
radii = 0.5 * np.ones(len(positions))
colors = matplotlib.cm.viridis(

minmax_scale(ld.density))
spheres_primitive = draw.Spheres(

positions=positions,
radii=radii,
colors=colors)

scene = draw.Scene(spheres_primitive, zoom=2)
scene.show() # Interactive view in Jupyter

fresnel

fresnel9 is a GPU-accelerated ray tracer designed for particle
simulations, with customizable material types and scene lighting,
as well as support for a set of common anisotropic shapes. Its fea-
ture set is especially well suited for publication-quality graphics.
Its use of ray tracing also means that an image’s rendering time
scales most strongly with the image size, instead of the number
of particles -- a desirable feature for extremely large simulations.
An example of how to integrate fresnel is shown below and

rendered in figure 6.

Generate a snapshot of tetrahedra using HOOMD-blue
import hoomd
import hoomd.hpmc
hoomd.context.initialize('')

Create an 8x8x8 simple cubic lattice
system = hoomd.init.create_lattice(

unitcell=hoomd.lattice.sc(a=1.5), n=8)

Create tetrahedra, configure HPMC integrator
mc = hoomd.hpmc.integrate.convex_polyhedron(seed=123)
mc.set_params(d=0.2, a=0.1)
vertices = [(0.5, 0.5, 0.5),

(-0.5,-0.5, 0.5),
(-0.5, 0.5,-0.5),
(0.5,-0.5,-0.5)]

mc.shape_param.set('A', vertices=vertices)

Run for 5,000 steps
hoomd.run(5e3)
snap = system.take_snapshot()

Import analysis & visualization libraries
import fresnel
import freud
import matplotlib.cm
from matplotlib.colors import Normalize
import numpy as np
device = fresnel.Device()

Compute local density and prepare geometry
poly_info = \

fresnel.util.convex_polyhedron_from_vertices(
vertices)

positions = snap.particles.position
orientations = snap.particles.orientation
box = freud.box.Box.from_box(snap.box)
ld = freud.density.LocalDensity(3.0, 1.0, 1.0)
ld.compute(box, positions)
colors = matplotlib.cm.viridis(

Normalize()(ld.density))
box_points = np.asarray([

box.makeCoordinates(
[[0, 0, 0], [0, 0, 0], [0, 0, 0],
[1, 1, 0], [1, 1, 0], [1, 1, 0],
[0, 1, 1], [0, 1, 1], [0, 1, 1],
[1, 0, 1], [1, 0, 1], [1, 0, 1]]),

box.makeCoordinates(
[[1, 0, 0], [0, 1, 0], [0, 0, 1],
[1, 0, 0], [0, 1, 0], [1, 1, 1],
[1, 1, 1], [0, 1, 0], [0, 0, 1],
[0, 0, 1], [1, 1, 1], [1, 0, 0]])])

Create scene
scene = fresnel.Scene(device)
geometry = fresnel.geometry.ConvexPolyhedron(

scene, poly_info,
position=positions,
orientation=orientations,
color=fresnel.color.linear(colors))

geometry.material = fresnel.material.Material(
color=fresnel.color.linear([0.25, 0.5, 0.9]),
roughness=0.8, primitive_color_mix=1.0)

geometry.outline_width = 0.05
box_geometry = fresnel.geometry.Cylinder(

scene, points=box_points.swapaxes(0, 1))
box_geometry.radius[:] = 0.1
box_geometry.color[:] = np.tile(

[0, 0, 0], (12, 2, 1))
box_geometry.material.primitive_color_mix = 1.0
scene.camera = fresnel.camera.fit(

scene, view='isometric', margin=0.1)
scene.lights = fresnel.light.lightbox()

9. https://github.com/glotzerlab/fresnel

https://github.com/glotzerlab/fresnel

32 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 7: A crystalline grain identified using freud’s LocalDensity
module and cut out for display using OVITO. The image shows a tP30-
CrFe structure formed from an isotropic pair potential optimized to
generate this structure [AADG18].

Path trace the scene
fresnel.pathtrace(scene, light_samples=64,

w=800, h=800)

OVITO

OVITO is a GUI application with features for particle selection,
making movies, and support for many trajectory formats [Stu10].
OVITO has several built-in analysis functions (e.g. Polyhedral
Template Matching), which complement the methods in freud.
The Python scripting functionality built into OVITO enables the
use of freud modules, demonstrated in the code below and
shown in figure 7.
import freud

def modify(frame, input, output):

if input.particles != None:
box = freud.box.Box.from_matrix(

input.cell.matrix)
ld = freud.density.LocalDensity(

r_cut=3, volume=1, diameter=0.05)
ld.compute(box, input.particles.position)
output.create_user_particle_property(

name='LocalDensity',
data_type=float,
data=ld.density.copy())

Conclusions

The freud library offers a unique set of high-performance
algorithms designed to accelerate the study of nanoscale and
colloidal systems. These algorithms are enabled by a fast, easy-
to-use set of tools for identifying particle neighbors, a common
first step in nearly all such analyses. The efficiency of both the
core neighbor finding algorithms and the higher-level analyses
makes them suitable for incorporation into real-time visualization
environments, and, in conjunction with the transparent NumPy-
based interface, allows integration into machine learning work-
flows using iterative optimization routines that require frequent
recomputation of these analyses. The use of freud for real-
time visualization has the potential to simplify and accelerate

existing simulation visualization pipelines, which typically involve
slower and less easily integrable solutions to performing real-
time analysis during visualization. The application of freud
to machine learning, on the other hand, opens up entirely new
avenues of research based on treating well-known analyses of
particle simulations as descriptors or optimization targets. In these
ways, freud can facilitate research in the field of computational
molecular science, and we hope these examples will spark new
ideas for scientific exploration in this field.

Getting freud

The freud library is tested for Python 2.7 and 3.5+ and is
compatible with Linux, macOS, and Windows. To install freud,
execute
conda install -c conda-forge freud

or
pip install freud-analysis

Its source code is available on GitHub10 and its documentation is
available via ReadTheDocs11.

Acknowledgments

Thanks to Jin Soo Ihm for benchmarking the neighbor finding
features of freud against SciPy. The freud library’s code
development and public code releases are supported by the Na-
tional Science Foundation, Division of Materials Research under
a Computational and Data-Enabled Science & Engineering Award
DMR 1409620 (2014-2018) and the Office of Advanced Cy-
berinfrastructure Award # OAC 1835612 (2018-2021). B.D. is
supported by a National Science Foundation Graduate Research
Fellowship Grant DGE 1256260. M.P.S acknowledges funding
from the Toyota Research Institute; this article solely reflects the
opinions and conclusions of its authors and not TRI or any other
Toyota entity. Data for Figure 7 generated on the Extreme Sci-
ence and Engineering Discovery Environment (XSEDE), which
is supported by National Science Foundation grant number ACI-
1053575; XSEDE award DMR 140129.

REFERENCES

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,
Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfel-
low, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing
Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore,
Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker,
Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol
Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available
from tensorflow.org. URL: https://www.tensorflow.org/.

[AADG18] Carl S. Adorf, James Antonaglia, Julia Dshemuchadse, and
Sharon C. Glotzer. Inverse design of simple pair potentials
for the self-assembly of complex structures. The Journal
of Chemical Physics, 149(20):204102, 11 2018. doi:10.
1063/1.5063802.

[AAM+17] Joshua A. Anderson, James Antonaglia, Jaime A. Millan,
Michael Engel, and Sharon C. Glotzer. Shape and Symme-
try Determine Two-Dimensional Melting Transitions of Hard
Regular Polygons. Physical Review X, 7(2):021001, 4 2017.
doi:10.1103/PhysRevX.7.021001.

10. https://github.com/glotzerlab/freud
11. https://freud.readthedocs.io/

https://www.tensorflow.org/
http://dx.doi.org/10.1063/1.5063802
http://dx.doi.org/10.1063/1.5063802
http://dx.doi.org/10.1103/PhysRevX.7.021001
https://github.com/glotzerlab/freud
https://freud.readthedocs.io/

ANALYZING PARTICLE SYSTEMS FOR MACHINE LEARNING AND DATA VISUALIZATION WITH FREUD 33

[ALT08] Joshua A. Anderson, Chris D. Lorenz, and A. Travesset.
General purpose molecular dynamics simulations fully imple-
mented on graphics processing units. Journal of Computa-
tional Physics, 227(10):5342 – 5359, 2008. doi:https:
//doi.org/10.1016/j.jcp.2008.01.047.

[BBC+11] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin,
Dag Sverre Seljebotn, and Kurt Smith. Cython: The Best of
Both Worlds. Computing in Science & Engineering, 13(2):31–
39, 3 2011. doi:10.1109/MCSE.2010.118.

[BvdSvD95] H.J.C. Berendsen, D. van der Spoel, and R. van Drunen. GRO-
MACS: A message-passing parallel molecular dynamics imple-
mentation. Computer Physics Communications, 91(1-3):43–56,
9 1995. doi:10.1016/0010-4655(95)00042-E.

[CDA+18] Rose K. Cersonsky, Julia Dshemuchadse, James A. Antonaglia,
Greg van Anders, and Sharon C. Glotzer. Pressure-Tunable
Photonic Band Gaps in an Entropic Colloidal Crystal. Phys-
ical Review Materials, 2:125201, 2018. doi:10.1103/
PhysRevMaterials.2.125201.

[DEG12] Pablo F. Damasceno, Michael Engel, and Sharon C. Glotzer.
Predictive Self-Assembly of Polyhedra into Complex Struc-
tures. Science, 337(6093):453–457, 7 2012. doi:10.1126/
science.1220869.

[FSM19] Maxwell Fulford, Matteo Salvalaglio, and Carla Molteni.
DeepIce: a Deep Neural Network Approach to Identify Ice
and Water Molecules. Journal of Chemical Information and
Modeling, page acs.jcim.9b00005, 3 2019. doi:10.1021/
acs.jcim.9b00005.

[GNA+15] Jens Glaser, Trung Dac Nguyen, Joshua A. Anderson, Pak
Lui, Filippo Spiga, Jaime A. Millan, David C. Morse, and
Sharon C. Glotzer. Strong scaling of general-purpose molecular
dynamics simulations on GPUs. Computer Physics Communi-
cations, 192:97–107, 2015. doi:10.1016/j.cpc.2015.
02.028.

[GS07] Sharon C. Glotzer and Michael J. Solomon. Anisotropy of
building blocks and their assembly into complex structures.
Nature Materials, 6:557–562, Aug 2007. URL: https://doi.org/
10.1038/nmat1949.

[HMA+15] Eric S. Harper, Ryan L. Marson, Joshua A. Anderson, Greg
van Anders, and Sharon C. Glotzer. Shape allophiles improve
entropic assembly. Soft Matter, 11(37):7250–7256, 9 2015.
doi:10.1039/C5SM01351H.

[HWG19] Eric S. Harper, Brendon Waters, and Sharon C. Glotzer. Hi-
erarchical self-assembly of hard cube derivatives. Soft Matter,
15:3733–3739, 2019. doi:10.1039/C8SM02619J.

[Int18] Intel. Intel Threading Building Blocks, 2018. URL: https:
//www.threadingbuildingblocks.org/.

[JOPo01] Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy:
Open source scientific tools for Python, 2001. URL: https:
//www.scipy.org/.

[KGG16] Andrew S. Karas, Jens Glaser, and Sharon C. Glotzer. Us-
ing depletion to control colloidal crystal assemblies of hard
cuboctahedra. Soft Matter, 12(23):5199–5204, 6 2016. doi:
10.1039/C6SM00620E.

[LD08] Wolfgang Lechner and Christoph Dellago. Accurate deter-
mination of crystal structures based on averaged local bond
order parameters. Journal of Chemical Physics, 129(11), 2008.
doi:10.1063/1.2977970.

[MADWB11] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B.
Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for
the analysis of molecular dynamics simulations. Journal of
Computational Chemistry, 32(10):2319–2327, 7 2011. doi:
10.1002/jcc.21787.

[MBH+15] Robert T. McGibbon, Kyle A. Beauchamp, Matthew P. Harri-
gan, Christoph Klein, Jason M. Swails, Carlos X. Hernández,
Christian R. Schwantes, Lee-Ping Wang, Thomas J. Lane, and
Vijay S. Pande. MDTraj: A Modern Open Library for the
Analysis of Molecular Dynamics Trajectories. Biophysical
Journal, 109(8):1528–1532, 10 2015. doi:10.1016/J.
BPJ.2015.08.015.

[MH18] Leland McInnes and John Healy. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction. Feb
2018. arXiv:1802.03426.

[Oli06] Travis E. Oliphant. A guide to NumPy. Trelgol Publishing,
2006.

[Pli95] Steve Plimpton. Fast Parallel Algorithms for Short-Range
Molecular Dynamics. Journal of Computational Physics,

117(1):1–19, Mar 1995. doi:10.1006/JCPH.1995.
1039.

[RDH+19] Vyas Ramasubramani, Bradley D. Dice, Eric S. Harper,
Matthew P Spellings, Joshua A. Anderson, and Sharon C.
Glotzer. freud: A Software Suite for High Throughput Analysis
of Particle Simulation Data. June 2019. arXiv:1906.
06317.

[SCKL15] S S Schoenholz, E D Cubuk, E Kaxiras, and a J Liu. A struc-
tural approach to relaxation in glassy liquids. Nature Physics,
(February):1–11, 2015. doi:10.1038/nphys3644.

[SG18] Matthew Spellings and Sharon C. Glotzer. Machine learn-
ing for crystal identification and discovery. AIChE Journal,
64(6):2198–2206, 6 2018. doi:10.1002/aic.16157.

[SNR83] Paul J. Steinhardt, David R Nelson, and Marco Ronchetti.
Bond-orientational order in liquids and glasses. Physical
Review B, 28(2), 1983.

[Stu10] Alexander Stukowski. Visualization and analysis of atomistic
simulation data with OVITO–the Open Visualization Tool.
Modelling and Simulation in Materials Science and Engineer-
ing, 18(1):015012, 1 2010. doi:10.1088/0965-0393/
18/1/015012.

[SZR+19] Anna J Simon, Yi Zhou, Vyas Ramasubramani, Jens Glaser,
Arti Pothukuchy, Jimmy Gollihar, Jillian C. Gerberich, Janelle
Leggere, Barrett R Morrow, Cheulhee Jung, Sharon C Glotzer,
David W Taylor, and Andrew D Ellington. Supercharging
enables organized assembly of synthetic biomolecules. Nature
Chemistry, 11:204–212, 2019. doi:10.1038/s41557-
018-0196-3.

[TCLC11] Shawn J. Tan, Michael J. Campolongo, Dan Luo, and Wenlong
Cheng. Building plasmonic nanostructures with DNA. Nature
Nanotechnology, 6(5):268–276, 5 2011. doi:10.1038/
nnano.2011.49.

[TvAG19] Erin G. Teich, Greg van Anders, and Sharon C. Glotzer.
Identity crisis in alchemical space drives the entropic colloidal
glass transition. Nature Communications, 10(1):64, 12 2019.
doi:10.1038/s41467-018-07977-2.

[vAAS+14] Greg van Anders, N. Khalid Ahmed, Ross Smith, Michael
Engel, and Sharon C. Glotzer. Entropically patchy parti-
cles: Engineering valence through shape entropy. ACS Nano,
8(1):931–940, 2014. doi:10.1021/nn4057353.

[vAKA+14] Greg van Anders, Daphne Klotsa, N. Khalid Ahmed, Michael
Engel, and Sharon C. Glotzer. Understanding shape entropy
through local dense packing. Proceedings of the National
Academy of Sciences, 111(45):E4812–E4821, 2014. doi:
10.1073/pnas.1418159111.

[vdMH08] Laurens van der Maaten and Geoffrey Hinton. Visualizing data
using t-SNE. Journal of Machine Learning Research, 9:2579–
2605, 2008.

http://dx.doi.org/https://doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1109/MCSE.2010.118
http://dx.doi.org/10.1016/0010-4655(95)00042-E
http://dx.doi.org/10.1103/PhysRevMaterials.2.125201
http://dx.doi.org/10.1103/PhysRevMaterials.2.125201
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1021/acs.jcim.9b00005
http://dx.doi.org/10.1021/acs.jcim.9b00005
http://dx.doi.org/10.1016/j.cpc.2015.02.028
http://dx.doi.org/10.1016/j.cpc.2015.02.028
https://doi.org/10.1038/nmat1949
https://doi.org/10.1038/nmat1949
http://dx.doi.org/10.1039/C5SM01351H
http://dx.doi.org/10.1039/C8SM02619J
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://www.scipy.org/
https://www.scipy.org/
http://dx.doi.org/10.1039/C6SM00620E
http://dx.doi.org/10.1039/C6SM00620E
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1002/jcc.21787
http://dx.doi.org/10.1016/J.BPJ.2015.08.015
http://dx.doi.org/10.1016/J.BPJ.2015.08.015
http://arxiv.org/abs/1802.03426
http://dx.doi.org/10.1006/JCPH.1995.1039
http://dx.doi.org/10.1006/JCPH.1995.1039
http://arxiv.org/abs/1906.06317
http://arxiv.org/abs/1906.06317
http://dx.doi.org/10.1038/nphys3644
http://dx.doi.org/10.1002/aic.16157
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1088/0965-0393/18/1/015012
http://dx.doi.org/10.1038/s41557-018-0196-3
http://dx.doi.org/10.1038/s41557-018-0196-3
http://dx.doi.org/10.1038/nnano.2011.49
http://dx.doi.org/10.1038/nnano.2011.49
http://dx.doi.org/10.1038/s41467-018-07977-2
http://dx.doi.org/10.1021/nn4057353
http://dx.doi.org/10.1073/pnas.1418159111
http://dx.doi.org/10.1073/pnas.1418159111

	Introduction
	Data Pipelines

	Performance and Integrability
	Machine Learning
	Visualization
	plato
	fresnel
	OVITO

	Conclusions
	Getting freud
	Acknowledgments
	References

