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CAF Implementation on FPGA Using Python Tools
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Abstract—The purpose of this project is to provide a real time geolocation
solution by generating code for the complex ambiguity function (CAF) in a
hardware description language (HDL) and the implementation on FPGA hard-
ware. The CAF has many practical applications, the more traditional being radar
or sonar type systems. By using scientific Python tools, this project provides
a solution for testing signals and the ability to customize modules to target
multiple devices. The processing for this implementation will be done on a
PYNQ board designed by Xilinx. The PYNQ board provides a Zynq chip which
has both an ARM CPU and FPGA fabric. All required mathematical operations
for the CAF are returned to the user through Python classes which produce
synthesizable code in the Verilog HDL. The Python classes use Jinja templates
integrated into the Verilog code to allow for configuration changes that a user will
need to change for investigation and simulation, development, and test. Helper
methods are included in the package to help simulation of the HDL such as
quantization, complex data reading and writing, and methods to verify the data
using quantized values.

Index Terms—complex, ambiguity, function, overlay, verilog, jinja, jupyter, xilinx,
fpga, zynq, pynq, linux

Introduction

In this investigation, the pre-processing steps of downsampling
and filtering are simulated and considered outside of the scope
of this project. In the case of geolocation systems, the use of
collectors and reference emitters are used to create geometries
that will allow for the detection of Doppler and movement in the
signal. The Doppler is used to calculate a frequency difference of
arrival (FDOA). Then, cross correlations can be used to determine
the time delay by denoting the peak location of the resulting output
as a time delay of arrival (TDOA). The goal of this project is to
be able to provide a real time solution for FDOA and TDOA. The
basic algorithm for calculating the complex ambiguity function
for time difference of arrival and frequency offset (CAF) has
been well known since the early 1980’s [Ste81]. In many radio
frequency applications, there is a need to find a time lag of the
signal or the frequency offset of a signal. The reader would be
familiar with a form of frequency offset known as Doppler as a
common example. The CAF is the joint time offset and frequency
offset generalization. The CAF was mainly used first for radar and
sonar type processing for locating objects using a method known
as active echo location [KPK81]. In this scenario, a matched filter
design would be used to ensure that the signals match [Wei9%4].
More commonly with newer radio frequency systems such as
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GPS, similar but orthogonal signals are transmitted in the same
frequency range. Because of the property of orthogonal signals
not cross correlating they do not collide with one another, and
they are an optimal signal type for testing this application [ZT08].

Motivation

The CAF has many practical applications, the more traditional
being the aforementioned radar and sonar type systems, with a
similar use case in image processing. The use of cross-correlations
in the form of the dot product to find similarities is the same
theoretical basis for our use in geolocation. In the particular case
of geolocation systems, the use of collectors and reference emitters
are used to create geometries that will allow for the detection of
Doppler and movement in the signal. This method of calculation
has yet to be simplified. Currently GPU’s have been employed as
the main workhorse due to the availability as a co-prorcessor. But
the use of the FPGA has always been an attractive alternative due
to the high configurability of the hardware options, but comes with
much higher up front design cost [HP17]. For design cost, we are
primarily concerned with the development time for code that can
be written in C syntax in the form of OpenCL or CUDA for a GPU,
as compared to using an HDL which will require background in
digital logic and testing that must occur on hardware directly.

To geolocate a signal emitter’s location the Doppler is used
to calculate a frequency difference of arrival (FDOA) which
represents a satellite’s drift. Then, cross correlations can be used
to determine the time delay by denoting the peak of the resulting
output as a time delay of arrival (TDOA). The refernce signal
will be different for every use case, which motivates the need to
ensure that the resulting Verilog hardware description language
(HDL) module output can also be produced to match necessary
configurations [verO1]. This became a project goal motivated off
work done by other projects to be able to produce code in other
languages [Sym]. Thus, the solution provided must be able to be
reconfigured based off of different needs. The processing for this
system will be targeted to a PYNQ board manufactured by Xilinx,
but has been designed such that it can be synthesized to any target
device. All Verilog HDL modules that are produced by the Python
classes conform to the AXI bus standards of interfacing [Arm17].
This allows for a streamlined plug and play connection between all
the modules and is the basis of the templating that is implemented
with the help of Jinja.

Starting Point

The main concepts necessary for the understanding of the CAF are
topics that are covered in Modern Digital Signal Processing, Com-
munication Systems, and a digital design course. These concepts
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Fig. 1: Satellite Block Diagram for Emitter and Receiver.

would be the Fast Fourier Transform (FFT), integration in both
infinite and discrete forms, frequency shifting, and digital design.
This project will show a working implementation of digital design
HDL modules implementing the logic accurately with this given
knowledge. Given the mathematical background of this project, it
is crucial to have a way to test implementations against theory.
This is the motivation for the discussion of using Python to help
generate code and test benches.

Project Overview

The goal of this project was to implement the CAF in an HDL such
that the end product can be targeted to any device. The execution
of this goal was taken as a bottom up design approach, and as such
the discussion starts from small elements to larger ones. The steps
taken were in the following order:

1) Obtain and generate a working CAF simulation

2) Break simulation into workable modules

3) Design modules

4)  Verify and generate with test benches

5) Assemble larger modules

6) Synthesize and Implement using Vivado for the PYNQ-
Z1 board

Complex Ambiguity Function

An example of the signal path in the satellite receiver scenario is
described by Fig. 1. In this case, an emitted signal is sent to a
satellite, and then received and captured by an RF receiver. Some
amount of offset is expected to have happened during the physical
relay of the signal back to a receiver within the broadcast area
of the satellite. The signal is then downconverted and filtered,
and then sent to the CAF via a capture buffer. While a signal is
sent through an upconverter and relayed to the satellite, a copy of
the same signal must be stored away as a reference to compute
the TDOA and FDOA. Both the reference and capture blocks are
abstractions, and have individual modules written in Verilog to
handle the storage of these signals.

Another very specific example of the satellite receiver scenario
is described by Fig. 2. In this scenario, we see that no emitter
exists, yet a reference signal is able to be sent to the CAF for
TDOA and FDOA calculations. This is because GPS signals use
a PRN sequence as ranging codes, and the taps for the signals
are provided to the user [ Nal8]. This provides a significant
processing gain as the expected sequence can be computed in
real time or stored locally. This project takes advantage of these
signals through the use of gps-helper [WSa].

As a basis for what the rest of this paper is describing, an
overview of the CAF and the various forms of computing are
provided.

The general form of the CAF is:
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Fig. 2: Satellite Block Diagram for CAF with GPS Signal.

The equation describes both a time offset T and a frequency offset
f that are used to create a surface. The frequency shift f is
bounded by half the sampling rate. The discrete form is a little
simpler, and lends itself to the direct implementation [Har0O5]:
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where N is the signal capture window length, f; is the sampling
rate in Hz making f have units of Hz and kD is a discrete time
offset in samples with sample period 1/ f;. In both the continuous
and discrete-time domains, ) is a function of both time offset and
frequency offset. The symbol s represents the signal in question,
generally considered to be the reference signal. The accompanying
s* is the complex conjugate and time shifted signal.

As an example, a signal that was not time shifted would simply
be the autocorrelation [ZTO08]. It is referred to as the received
signal in this context, and it is the signal that is used to determine
both the time and frequency offset. To determine this offset, we
are attempting to shift the signal as close as possible to the
original reference signal. The time offset is what allows for the
computation of a TDOA, and the frequency offset is what allows
for the computation of the FDOA.

In this implementation, the frequency offset is created by a
signal generator and a complex multiply module that are both
configurable. Once this offset has been applied, a cross-correlation
is applied directly in the form of the dot product. This eliminates
the costly implementation case where an FFT and an inverse FFT
are used to produce a result. The signal generator can supply a
specified frequency step and accuracy with configuration of the
signal generator class [Sida]. An example of the signal generator
is shown in Fig. 9. The resulting spectrum is shown in Fig. 8. This
satisfies the frequency (f) portion of the equation. The complex
multiply module is similarly configurable for different bit widths
through the complex multiply generator class [Sida]. An example
CAF surface is provided in Fig. 3 showing how the energy of the
signal is spread over both frequency and time. This type of visual-
ization is very useful for real-world signals with associated noise.
In this project, care was taken in truncation choices to ensure that
the correlation summation ensures signal energy retention. In this
project, the CAF module that has been implemented will return
a time offset index and frequency offset index back to the user
based off provided build parameters shown in the code listing for
the Python class CAF, described in a later section for the CAF
Module. When writing the module, all simulation and testing was
done at the sample by sample level to ensure validity so the CAF
surface was not used in testing. A method for computing the CAF
using the dot product and frequency shifts has been published to
the package. This implementation is specific to this project in that
it uses a sample size that is twice that of the reference signal
for the computation. A sample output slice will be shown in the
Experiments section for the CAF module in Fig. 16.



36

CAF: Ref Correlated with Ref Delayed

40

30

20

10

TOA/TDOA s
o

-10
=20
-30

-40

-10.0 -2.5 0.0 2.5 5.0 7.5 10.0

FOA/FDOA (Hz)

-75 5.0

Fig. 3: CAF Surface Example.
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Fig. 4: The PYNQ processing overlay diagram. [Xilb]

Hardware

The targeted hardware for this project is the Zynq processor on
the PYNQ-Z1 board. However, this project is fully synthesizable
and should be able to be targeted for any other Xilinx board.

Python and PYNQ

The PYNQ development board designed by Xilinx provides a
Zynq chip which has an ARM CPU running at 650 MHz and
an FPGA fabric that is programmable via an overlay [Xilb]. This
performance allows for a linux operating system to be run on the
CPU which in this case is Ubuntu, and hosts a Jupyter notebook
to program and interface with the FPGA fabric using an overlay.
This overlay contains mappings for ports and interfaces between
the fabric and the CPU. This functionality is very unique in that
both an ARM core and a fabric are on the same board. As shown
by Fig. 4 the overlay sits between the processing system (CPU)
and the programmable logic (FPGA). This overlay is loaded
and programmed to the fabric through a Jupyter notebook and
allows for native visualization and data interaction through any
Python tools that work inside the IPython kernel. The overlay is
represented by the yellow background with labels "Custom" and
"Accelerator" and shows how the overlay is a communication layer
between the processing system and the programmable logic.

It also contains a bitfile that will properly configure the FPGA
[Xilc]. This bitfile is generated through the Vivado Design Suite
that is provided by Xilinx by loading the output modules from the
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Fig. 5: The PYNQ processing overlay diagram. [Xilb]
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caf-verilog module. A different bitfile must be created for every
unique combination of configuration of the CAF and every device
that is targeted. Every instantiation of the CAF Python class that
has different parameters will require a new bitfile.

The Jupyter notebook itself is considered an interactive com-
puting pool providing an interface to do computation and proto-
typing through a web browser. In this implementation it is meant
to be an easier way for a non-hardware oriented person to be
able to access a computational accelerator designed by a hardware
engineer [Xilb].

A diagram of the processing and the programmable logic is
shown in Fig. 5. The processor system is the Cortex-A9 processor
that is running at 650MHz with 512MB of DDR3 RAM. The
FPGA is a Zynq XC7020 part which has 13,300 logic slices,
53,200 6-input LUTs, 160,400 flip-flops, 630KB of block RAM,
and 220 DSP slices. Later, a usage report is provided with a
description of how the logic was optimized to make use of
these primitives. It is possible to access the DRAM from the
programmable logic (FPGA) through an AXI IP Core.

Software
Xilinx Vivado WebPack 2018.2

The Vivado design tool provides a simulator along with the ability
to synthesize, elaborate, and implement the design [Xill4]. For
this project, this built-in simulator was used exclusively. Other
simulators were not chosen because the other target devices that
this project seeks to be implemented on are likely to also be
Xilinx products. The tool is free to download for anyone to use,
and allows the hardware engineer to develop and synthesize HDL
designs for Xilinx FPGA’s. There is also a Software Development
Kit that allows an engineer to write in C code. For this project,
all modules are written in Verilog. This was done because of the
need to instantiate multiple submodules that provide functionality
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together. When running the synthesis tool, the output was very
useful in helping make incremental design changes to fully opti-
mize the board. Although none were used in this project, Xilinx
does offer many free IP Cores that can be used in designs. They
are black boxes that can be used in both simulation and the final
implementation in HDL and block designs.

Python and Jupyter

This project made extensive use of the Python ecosystem through
the use of pip, Jupyter, and many other packages. The reader is
encouraged to view the caf-verilog source code [Sida] and
view the releases that have been made on PyPI [Sidb]. When
designing modules, a first test of what a signal should look like
when operated on was done using the interactive plotting ability
that is provided [Pro]. The generation of the modules was done
using Jinja which provides both template parsing and rendering
[Ron]. Whenever a simulated signal was changed, instead of
having to write out a file or test bench by hand, a template was
used to create the output and render it to the simulation directory.
The signals that are used to create the signal generator were first
quantized by using the NumPy library and then written to a file
that gets used a memory buffer in the signal generator [Num].
Most of the mathematical operations that are implemented were
first verified using this library. This project requires the use of
orthogonal signals to ensure that the spectral density that is being
tested is isolated from the others. This was possible using the
gps-helper module that implements the GPS gold codes that are
orthogonal PRN sequences [WSa].

Quantization

In order to use a signal in the digital domain, a signal must first be
quantized by an analog to digital converter (ADC). Most ADC’s
that are available are able to provide a 12-bit value, and some
newer devices are now able to provide 16-bits [Ana]. However,
for this project 12-bit signed signals were used during testing as
this is a very nice number to compute mentally and still provides
minimal energy loss when plotting on the spectrum.

Inspecting signals after quantization is important because
when signals are reduced in size there is information loss. This is
demonstrated by Fig. 6 where a 12 bit and 8 bit quantization of a
cosine signal is shown. Quantization helper functions are provided
in caf_verilog with the help of scikit-dsp-comm’s simpleQuant
function [WSb]. This means that the full bit value of the signal
cannot be used otherwise there is signal loss to DC gain. The
signals must be equal over 0. For a 12-bit quantization of a vector
for example the numbers must be in the range (-4095, 4095) in
comparison to the two’s complement full value of (-4096, 4095).
This is all necessary because the computation that is done on the
FPGA will be done using fixed point or an integer value. This also
reduces power and cost on the FPGA [FR]. Test files are written
out and read back as integer values via this module by all the other
classes for tests and verification.

Complex Multiply

As an example for why this module is necessary, an example
of frequency shifting a signal is presented. In Fig. 7 we have
two inputs: a positive frequency signal on top, and a negative
frequency signal in the middle. The output is shown in the bottom
plot. All of these signals are shown in a spectral density plot,
with both sampling frequencies normalized to a value of 1 for
presentation. What we see is that the resulting spectrum has a
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Fig. 7: Inputs (top and middle) and output (bottom) of the CPX
Multiply Verilog module.

signal at a frequency of the sum of the two negative and positive
frequency signals. This is what is expected. This method is what
is used to shift the captured signal for the CAF.

Signed multiplication in Verilog can be done by specifying the
signed data type. Any multiply of two numbers of the same size
requires twice the number of bits in the result [Tum]. However,
in this project the need for different size operands arises. This
module takes in two complex numbers and performs a pipelined
multiplication on the data. Before the result is provided to the
master, the result is truncated. It should be noted that no timing
constraint violations were encountered during the implementation.
The only timing constraint that was provided was the slew rate for
the fabric clock, and all other constraints were Vivado defaults.

The specific pipeline steps are presented in Table 1 which
shows which operations are completed in which pipeline stage.
Stages 1 and 2 are always conditionally assigned based on the
current state of the AXI interface so that resources are not
constantly being used. This helps for timing and for power usage.
The result is then truncated and returned to the master when
the master’s ready signal is asserted. Because this is a pipelined
implementation, an input and output can be processed every clock.

A code listing of the Verilog HDL output is provided as
reference. The two blocks that are shown are for the first step
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TABLE 1: CPX Multiply Stages

Stage  Operation

xi * yi
Xq * yq
Xi*yq
xq * yi
Xu - yv
XV + yu

W NN = = =

Truncate

through the third step. The first two steps can be seen to only be
calculated when the master signal conditions are correct.

always @ (posedge clk) begin
if (m_axis_tvalid & s_axis_tready)
xu <= xi * yi;
yv <= xXq * yq;
xv <= xi * yqg;
yu <= xgq * yi;
end else begin
Xu <= xXUu;
yv <= yv;
XV <= XV;
yu <= yu;
end // else:
end

begin

always @ (posedge clk)
if (m_axis_tready)

begin
begin

xXu_out
yv_out
xXv_out
yu_out

<= xu;
<= yvi
<= xXV;
<= yu;

i_sub <= xu_out - yv_out;
i_sub_out <= i_sub;
g_add <= xv_out + yu_out;
g_add_out <= g_add;
end // if (m_axis tvalid)
else begin
xu_out <= xu_out;
yv_out <= yv_out;
XV <= XV;
xv_out <= xv_out;
yu <= yu;
yu_out <= yu_out;
i_sub <= i_sub;
i_sub_out <= i_sub_out;
g_add <= g_add;
g_add_out <= g_add_out;
end // else: !if(m axis tvalid)
i <= i_sub_out[xi_bits+yi_bits-1:
xi_bits+yi_bits-i_bits];
g <= g_add_out[xg _bits+yg bits-1:
xg_bits+yg bits—g _bits];

end // always @ (posedge clk)

Signal Generator

The signal generator module is implemented using a half sine
lookup table and accumulator. This is commonly known as a
numerically controlled oscillator in direct digital synthesis [MS].
This module produces a sine wave at the specified frequency by us-
ing a modulo counter that increments a phase value at every clock
cycle. Note that the sampling frequency of the signal, 625kHz,
is different from the clock frequency of the board, at 250MHz.
The number of phase bits that are necessary are determined by the
sampling frequency and the frequency resolution specified by Eq.
1.

[logz (A)-‘ = phase_bits (1)

freq_res
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The output of one cycle is shown in Fig. 9. The values that are
supplied to the module for the lookup table are generated using
the NumPy sine function and are quantized using helper methods
included in the caf verilog module. To set the frequency of the
signal generator, a phase step or increment value must be provided
by Eq. 2.

fout . thasefbits

Selk

An example spectrum of the output of the signal generator that
is created from the Python class is shown in Fig. 8. While no
calculation of power has been provided, a parameter n_bits sets
the signal strength. For this project, a value of 8-bits was found
to be sufficient to provide a frequency shifted signal. The same
settings used to generate the module used as an example in this
section are used in Fig. 10 by using the SigGen class.

= phase_increment (@)

Frequency Shift

The frequency shift module takes in the same parameters as the
signal generator module and adds an input for a complex value
to shift. This module needs to make sure that different bit width
signals are multiplied together correctly and that the pipeline is
managed correctly to ensure that there are no phase shifts. Fig.
10 shows an input signal, and the resulting shifted signal. When
using the Python generated Verilog module, a negative value
for the frequency will be taken care of by setting a bit in the
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module parameters to perform the complex conjugate on the signal
generator output.

Required inputs for the FreqShift Python class are the input
vector ’X’, and the number of bits for the I and Q data that
it represents. The same parameters are passed to the FreqShift
class so that the SigGen module can be instantiated internally and
accessed for naming by the Jinja template for the module.

Cross Correlation

The cross correlation is useful in comparing the time offset
between two signals. As an example, a pseudorandom sequence
signal provided by gps-helper [WSa] is time shifted in Fig. 11
by ten samples. Both of these signals are a non-return to zero
representation of the binary bit sequence. The reference is shown
with zero padding on either end so the visual representation stays
centered between the two signals.
The general form of the cross correlation is [ZT08]:

(Fr9)(0) = [ Fiste+e)ds G

In Eq. 3 the signal f(¢) is shown with the complex conjugate, and
the signal g(¢) is shown with a time or sample shift of 7. When
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translated into the discrete form, the form looks like the following:

(fxg)ln] = Y, fmlglm+n] )
M=o
When looking at the cross product in discrete form (4), it is
possible to see that the form of the multiplication and addition
closely follows that of the dot product (Eq. 5).

n
a-b=Y ajxb; 6))
i=1

These series of equations provide a means of determining where
the signals are correlated in time, or if they are orthogonal meaning
they are not correlated at all [ZT08]. In order to capture the full
signal power with the dot product, it is necessary to store twice
the length of the reference signal for correlation as shown in Fig.
11. Furthermore, as compared to Fig. 12 which uses xcorr, the
dot product method that produced Fig. 13 has a much higher
magnitude. This is because the xcorr method uses an FFT, and the
result is normalized to one. We also note that the axis for samples
is denoted as an inverse offset. When the peak is generated with
dot products, the center is going to be the center of the sample
length. This is because the multiply and accumulate has the highest
magnitude in the center as compared to the xcorr method with
FFT’s which produces a normalized axis around zero. Since we
are always looking at what offset is necessary to cause the shift
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back to the reference, it is left as a sample offset. This also makes
verifying the Verilog test benches much more straight forward.
However, with the dot product, the magnitude that is achieved
when a full correlation is hit is the length of the correlation
sequence itself. This means that a longer integration time allows
for a higher fidelity difference between signal magnitudes of
surrounding shifted correlations. This method reduces the amount
of multiplies that are necessary and is much simpler to implement
on an FPGA. These results were verified using the xcorr function
from scikit-dsp-comm and the dot product function provided by
NumPy. The simulation for this function required the output of
the entire sequence to be written to and sequentially read from
disk. When running the simulations it was found that the very last
dot product in the sequence was missing. A full cross correlation
using the dot product actually has two times the length plus one
to account for both positive and negative offsets.

Dot Product

The final CAF solution uses a pipelined multiply and accumulate.
When the implementation was run, it was found that a pipelined
implementation was able to make use of the primitive DSP48
type. Further fine-tuning suggestions were taken to ensure that
the multiply and accumulate functionality of the primitive type
was taken advantage of correctly [FWS].

ArgMax

Because there is a need to compare the magnitudes of complex
numbers, the argmax function is required. The mathematical
absolute value of a complex number is described in Eq. 6.
However, finding the true absolute value of the number requires
the implementation of the square root. The first option that was
looked at was a binary square root algorithm [Min13] that only
uses base 2 division. However, this can take a variable amount of
clock cycles. An implementation is provided in the sqrt package
as reference. The other option is the CORDIC logic core provided
by Xilinx which also would apply backpressure [Xila], essentially
sequentially buffering the result by a fixed number of clocks.

r=yx2+y? (6)

After comparing results and performing the argmax using these
different methods a decision was made to just use the squares
of each of the real and imaginary components. This is possible
because we can use the proportion of the squared values and their
square roots to compute the argmax with the same result. Since
the largest magnitude squared value is made up of both a real
and imaginary component, it is enough to say that the largest
magnitude (x> 4 y?) will be sufficient. The result is provided back
by the next clock, with only a delay in the pipeline for the first
multiply. Then, comparisons are done within the module itself
to find the max. This also allows for taking advantage of the
larger integration time by allowing larger max values to propagate
through. The trade-off is that there is much larger utilization with
multiple instantiations all growing in size as the multiply operands
increase in size. Inspecting the utilization of the synthesized and
implemented designs did not seem to indicate that this was the
limiting factor in the design layout growth.

CAF Module

The CAF module uses a generate variable, which is part of the
Verilog standard [ver(1] to implement the frequency shifts and
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Fig. 14: Block diagram of a CAF implementation with three frequen-
cies.
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Fig. 15: Cross correlation of a frequency shifted signal.

corresponding cross correlations. A reference buffer and a capture
buffer are instantiated in this module that provide the input to the
pipeline as shown in Fig. 14. This module is a slave to a master as
it is being driven by the data lines.

The results of a frequency shifted correlation is shown in Fig.
15, and an autocorrelation is shown in Fig. 16. We see that in Fig.
15 there is no peak. This is because two orthogonal signals should
not have any correlation energy.

In the next code listing, the Python class definition for CAF
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Fig. 16: Autocorrelation output with length of implemented design.
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TABLE 2: 12 phase bits, 8-bit multiplication, 49 frequencies, and
1000 samples.

Resource Utilization  Available  Utilization %
LUT 32682 53200 61.43
LUTRAM 490 17400 2.82

FF 28695 106400 26.97

BRAM 25.50 140 18.21

DSP 196 220 89.09

10 53 125 42.40

is provided for reference. The class takes in both a reference and
received or captured signal, and the number of bits requested to
represent the signals. These two signals are required parameters.
The reference signal is used to produce a stored reference as a
capture buffer module, and the received signal is used in the
generated test bench. The same parameters for the SigGen and
FreqShift modules are required here as well, as they are passed
down to their instantiations for the CAF to instantiate.

class CAF (CafVerilogBase) :

def _ init_ (self, reference, received, foas,
ref_i bits=12, ref_g bits=0,
rec_i_bits=12, rec_qg bits=0,
fs=625e3, n_bits=8,
pipeline=True, output_dir='."):

Synthesis and Implementation

Both the synthesis and implementation were completed success-
fully, and all timing constraints were met by the tool. Several
different design sizes were elaborated and implemented, all ending
up with different utilization amounts. The final design iteration
that was able to maximize the iteration time is described by Table
2. Each of these tables describes a different usage that is still
below the specific size of the Pynq board. For different devices,
new CAF Python class instantiations should be used to explore
board usages by using the Verilog module outputs to follow the
Vivado design process.

The final implementation run shown by Table 2 was able to
use the most of the resources of the board evenly because of the
8-bit multiplication [FWS]. The first couple implementations were
using 12-bit numbers because that was what was nominally chosen
for the simulations. However, since regenerating the module is
very simple, a new CAF module was written out using the module
and tested with different shifts. The final implementation has 49
different frequency offsets and an integration sample length of
1000.

Future Work and Enhancements

When the original implementation of the sin and cosine generator
was created, a half-sine method was used. While functionally
sound, it is possible to decrease size by using a quarter-sine
implementation where only a fourth of the sine is stored [Tec].

While the body of work for caf-verilog supports the modeling
of the caf itself, this project can be used as a basis for incorporating
Verilog as an extension to the wider scientific computing field.
The SymPy Development Team has already made significant
contributions in this realm, and is being used in many projects
to support code generation for various languages such as c, c++,
and Julia [Sym]. Using a common API, it should be possible to
also provide an extension to incorporate the Verilog HDL.
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