
62 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Solving Polynomial Systems with phcpy

Jasmine Otto‡∗, Angus Forbes‡, Jan Verschelde§

F

Abstract—The solutions of a system of polynomials in several variables are
often needed, e.g.: in the design of mechanical systems, and in phase-space
analyses of nonlinear biological dynamics. Reliable, accurate, and comprehen-
sive numerical solutions are available through PHCpack, a FOSS package for
solving polynomial systems with homotopy continuation.

This paper explores new developments in phcpy, a scripting interface for
PHCpack, over the past five years. For instance, phcpy is now available on-
line through a JupyterHub server featuring Python2, Python3, and SageMath
kernels. As small systems are solved in real-time by phcpy, they are suitable
for interactive exploration through the notebook interface. Meanwhile, phcpy
supports GPU parallelization, improving the speed and quality of solutions
to much larger polynomial systems. From various model design and analysis
problems in STEM, certain classes of polynomial system frequently arise, to
which phcpy is well-suited.

Introduction

The Python package phcpy [Ver14] provides an alternative to
the command line executable phc of PHCpack [Ver99] to solve
polynomial systems by homotopy continuation methods. In the
phcpy interface, Python scripts replace command line options and
text menus, and data persists in a session without temporary files.
This also makes PHCpack accessible from Jupyter notebooks,
including a JupyterHub server available online [Pascal].

phcpy takes as input a list of polynomials in several vari-
ables, with complex-valued floating-point coefficients. Homotopy
methods connect this given system to a ’start system’ with known
solutions. A homotopy is a family of polynomial systems where
one of the variables is considered as a parameter. Polynomial
homotopy continuation combines the application of homotopy and
continuation methods, which extend the convergence of Newton’s
method from local to global, to solve polynomial systems.

Numerical continuation methods track the solution paths, de-
pending on the parameter, originating at the known solutions to
the solutions of the given system. phcpy is also able to represent
the numerical irreducible decomposition of the system’s solution
set, which yields the positive dimensional solution sets containing
infinitely many points, in addition to the isolated solutions.

The focus of this paper is on the application of new technol-
ogy to solve polynomial systems, in particular, cloud computing
[BSVY15] and multicore shared memory parallelism accelerated
with graphics processing units [VY15]. Our web interface offers

* Corresponding author: jtotto@ucsc.edu
‡ University of California, Santa Cruz
§ University of Illinois at Chicago

Copyright © 2019 Jasmine Otto et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

phcpy in a SageMath [Sage], [SJ05] kernel or in a Python kernel
of a Jupyter notebook [Klu16].

Although phcpy has been released for only five years, three
instances in the research literature of symbolic computation,
geometry and topology, and chemical engineering (respectively)
mention its application to their computations.

• The number of embeddings of minimally rigid graphs
[BELT18].

• Roots of Alexander polynomials [CD18].
• Critical points of equilibrium problems [SWM16].

The package phcpy is in ongoing development. At the time of
writing, this paper is based on version 0.9.5 of phcpy, whereas
version 0.1.5 was current at the time of [Ver14]. An example
of these changes is that the software described in [SVW03] was
recently parallelized for phcpy [Ver18].

A Scripting Interface for PHCpack

The mission of phcpy is to bring polynomial homotopy continua-
tion into Python’s computational ecosystem.

The package phcpy wraps the shared object files of a compiled
PHCpack, which makes the methods more accessible without
sacrificing their efficiency. First, the wrapping transfers the im-
plementation of the many available homotopy algorithms in a
direct way into Python modules. Second, we do not sacrifice the
efficiency of the compiled code. Scripts replace the input/output
movements and interactions with the user, but not the computa-
tionally intensive algorithms.

Numerical algebraic geometry [SVW05] was introduced in
1995 as a pun on numerical linear algebra. PHCpack prototyped
the first algorithms to compute a numerical irreducible decomposi-
tion of the solution set of a polynomial system. The package phcpy
aims to bring the algorithms of numerical algebraic geometry into
the computational ecosystem of Python.

Related Software

PHCpack is one of three FOSS packages for polynomial homotopy
computation currently under development. Of these, only Bertini
2 [Bertini2.0] also offers Python bindings, although it is not
GPU-accelerated and does not export the numerical irreducible
decomposition, among other differences. Version 1.4 of Bertini is
described in [BHSW13].

HomotopyContinuation.jl [HCJL] is a standalone package for
Julia, presented at ICMS 2018 [BT18].

NAG4M2 [NAG4M2] is a package for Macaulay2 (a standard
computational algebra system [M2]), which can also act an inter-
face to PHCpack or Bertini. As described in [Ley11], it provided
the starting point for PHCpack’s Macaulay2 bindings [GPV13].

mailto:jtotto@ucsc.edu

SOLVING POLYNOMIAL SYSTEMS WITH PHCPY 63

User Interaction

Online Access

The first area of improvement that phcpy brings is in the interac-
tion with the user.

With JupyterHub [JUPH], we provide online access [Pascal]
to environments with Python and SageMath kernels pre-installed,
both featuring phcpy and tutorials on its use (per next section).
Since Jupyter is language-agnostic, execution environments in
several dozen languages are possible. Our users can also run code
in a Python Terminal session. As of the middle of May 2019,
our web server has 146 user accounts, each having access to our
JupyterHub instance. Our server is available for public use, after
creating a free account.

In our first design of a web interface to phc, we developed
a collection of Python scripts (mediated through HTML forms),
following common programming patterns [Chu06]. This design is
described in Chapter 6 of [Yu15]. For the user administration of
our JupyterHub, we refreshed this first web interface, retaining the
following architecture.

MySQLdb [MSDB] does the management of user data, in-
cluding a) names and encrypted passwords, b) generic, random
folder names to store data files, and c) file names with polynomial
systems they have solved. With the module smtplib, we defined
email exchanges for an automatic 2-step registration process and
password recovery protocol.

A custom JupyterHub Authenticator connects to the existing
MySQL database and triggers a SystemdSpawner that isolates the
actions of users to separate processes and logins in generic home
folders. The email account management prompts were hooked to
new Tornado RequestHandler instances, which perform account
registration and activation in the database, as well as password re-
covery and reset. Each such route serves HTML forms seamlessly
with the JupyterHub interface, by extending its Jinja templates.

Code Snippets

Learning a new API is daunting enough without also being a
crash course in algebraic geometry. Therefore, the user’s manual
of phcpy [PHCPY] begins with a tutorial section using only the
blackbox solver phcpy.solver.solve(system, ...). In
this API, system is a list of strings representing polynomials,
terminated by semicolons, and containing as many variables as
equations.

The code snippets from these tutorials are available in our
JupyterHub deployment, via the snippets menu provided by nbex-
tensions [JUP15]. This menu suggests typical applications to guide
the novice user. The screen shot in Fig. 1 shows the code snippet
reproduced below.
PHCpy > blackbox solver > solving trinomials
> solving a specific case
from phcpy.solver import solve

f = ['x^2*y^2 + 2*x - 1;', 'x^2*y^2 - 3*y + 1;']
sols = solve(f)
for sol in sols: print(sol)

The first solution of the given trinomial can be read as
(0.48613. . . + 0.0i, 0.34258. . . - 0.0i), where the imaginary
part of x_0 is exactly zero, and that of y_0 negligibly small.
Programmatically, these can be accessed using either solve(f,
dictionary_output=True), or equivalently by parsing
strings through [phcpy.solutions.strsol2dict(sol)
for sol in solve(f)].

Fig. 1: The code snippet for the blackbox solver.

Direct Manipulation

One consequence of the Jupyter notebook’s rich output is the
possibility of rich input, as explored through ipywidgets [IPYW]
and interactive plotting libraries. The combination of rich input
with fast numerical methods makes surprising interactions possi-
ble, such as interactive solution of Apollonius’ Problem, which is
to construct all circles tangent to three given circles in a plane.

The tutorial given in the phcpy documentation was
adapted for a demo accompanying a SciPy poster in 2017,
whose code [APP] will run on our JupyterHub (by copying
apollonius_d3.ipynb and apollonius_d3.js to one’s
own user directory).

This system of 3 nonlinear constraints in 5 parameters for
each of 8 possible tangent circles can be solved interactively by
our system in real-time (Fig. 2). Although any of the 8 tangent
circles could have nonzero imaginary part in their x/y position or
radius, depending on input coefficients (input circles), such circles
are not rendered. Thanks to its rich output capabilities, Jupyter is
a suitable environment for mapping algebraic inputs to the planar
geometric objects they represent (a data binding) through D3.js
[D3].

Fig. 2: Tangent circles calculated by phcpy in response to user
reparameterization of the system.

This approach makes use of the real-time solution of small
polynomial systems, demonstrating the low latency of phcpy. It
complements static input conditions by investigating their con-
tinous deformation, especially across singular solutions (which
PHCpack handles more robustly than naive homotopy methods).
Singular solutions of polynomial systems are handled by defla-
tion [LVZ06], which restores quadratic convergence of Newton’s
method by the addition of sufficiently many higher order deriva-
tives to the original system.

Solving Polynomial Systems

Our input is a list of polynomials in several variables. This input
list represents a polynomial system. By default, the coefficients of

64 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

the polynomials are considered as complex floating point numbers.
The system is then solved over the field of complex numbers.

For general polynomial systems, the complexity of the solution
set can be expected to grow exponentially in the dimensions (num-
ber of polynomials and variables) of the system. The complexity
of computing all solutions of a polynomial system is #P-hard. The
complexity class #P is the class of counting problems. Formulating
instances of polynomial systems that will occupy fast computers
for a long time is not hard.

Polynomial Homotopy Continuation

By computing over the field of complex numbers, we exploit the
continuity of the solution set as a function of the coefficients
of the polynomials in the system. These numerical algorithms,
called continuation methods, track solution paths defined by a one
parameter family of polynomial systems (the homotopy). Homo-
topy methods take a polynomial system as input, and construct
a suitable embedding of the input system into a family which
contains a start system with known solutions.

We say that a homotopy is optimal if for generic instances
of the coefficients of the input system no solution paths diverge.
Even as the complexity of the solution set is very hard, the problem
of computing the next solution, or just one random solution, has
a much lower complexity. phcpy offers optimal homotopies for
three classes of polynomial systems:

1) dense polynomial systems
A polynomial of degree d can be deformed into a product
of d linear polynomials. If we do this for all polynomials
in the system (as in [VC93]), then the solutions of the
deformed system are solutions of linear systems. Contin-
uation methods track the paths originating at the solutions
of the deformed system to the given problem.

2) sparse polynomial systems
A system is sparse if relatively few monomials appear
with nonzero coefficient. The convex hulls of the ex-
ponent vectors of the monomials that appear are called
Newton polytopes. The mixed volume of the tuple of
Newton polytopes associated with the system is a sharp
upper bound for the number of isolated solutions. Polyhe-
dral homotopies ([HS95], [VVC94]) start at solutions of
systems that are sparser than the given system and extend
those solutions to the solutions of the given problem.

3) Schubert problems in enumerative geometry
The classical example is to compute all lines in 3-space
that meet four given lines nontrivially. Homotopies to
solve geometric problems move the input data to special
position, solve the special configuration, and then deform
the solutions of the special problem into those of the
original problem. Such homotopies were introduced in
[HSS98].

All classes of homotopies share the introduction of random
constants.

For its fast mixed volume computation, the software incorpo-
rates MixedVol [GLW05] and DEMiCs [MT08]. High-precision
double double and quad double arithmetic is performed by the
algorithms in QDlib [HLB01].

Speedup and Quality Up

The solution paths defined by polynomial homotopies can be
tracked independently, providing obvious opportunities for parallel

execution. This section reports on computations on our server, a
44-core computer.

An obvious benefit of running on many cores is the speedup.
The quality up question asks the following: if we can afford to
spend the same time, by how much can we improve the solution
using p processors?

We illustrate the quality up question on the cyclic 7-roots
benchmark problem [BF91]. The online SymPy documentation
[SymPyDocs] uses the cyclic 4-roots problem to illustrate its
nonlinsolve method.

The function defined below returns the elapsed performance of
the blackbox solver on the cyclic 7-roots benchmark problem, for
a number of tasks and a precision equal to double, double double,
or quad double arithmetic.
def qualityup(nbtasks=0, precflag='d'):

"""
Runs the blackbox solver on a system.
The default uses no tasks and no multiprecision.
The elapsed performance is returned.
"""
from phcpy.families import cyclic
from phcpy.solver import solve
from time import perf_counter
c7 = cyclic(7)
tstart = perf_counter()
s = solve(c7, verbose=False, tasks=nbtasks, \

precision=precflag, checkin=False)
return perf_counter() - tstart

The function above is applied in an interactive Python script,
prompting the user for the number of tasks and precision, This
scripts runs in a Terminal window and prints the elapsed perfor-
mance returned by the function. If the quality of the solutions
is defined as the working precision, then to answer the quality
up question, one considers how many processors are needed to
compensate for the overhead of the multiprecision arithmetic.

Although cyclic 7-roots is a small system for modern com-
puters, the cost of tracking all solution paths in double double
and quad double arithmetic causes significant overhead. The script
above was executed on a 2.2 GHz Intel Xeon E5-2699 processor in
a CentOS Linux workstation with 256 GB RAM and the elapsed
performance is in Table 1.

precision d dd qd

elapsed perform. 5.45 42.41 604.91
overhead factor 1.00 7.41 110.99

TABLE 1: Elapsed performance of the blackbox solver in double,
double double, and quad double precision.

Table 2 demonstrates the reduction of the overhead caused by
the multiprecision arithmetic by multitasking.

tasks 8 16 32

dd 7.56 5.07 3.88
qd 96.08 65.82 44.35

TABLE 2: Elapsed performance of the blackbox solver with 8, 16, and
32 path tracking tasks, in double double and quad double precision.

Notice that the 5.07 in Table 2 is less than the 5.45 of
Table 1: with 16 tasks we doubled the precision and finished

SOLVING POLYNOMIAL SYSTEMS WITH PHCPY 65

the computations in about the same time. The 42.41 and 44.35
in Table 2 are similar enough to state that with 32 instead of 1
task we doubled the precision from double double to quad double
precision in about the same time.

The data in Table 2 is visualized in Fig. 3. The interpolation
allows us to estimate running times for a number of tasks different
from the measured run times. To answer the original quality up
question, one could interpolate between the sizes of working
precision to answer the following quality up question. If we can
afford to spend the same time as on one path tracking task, then
how many extra decimal places can we gain with p path tracking
tasks?

Fig. 3: Interpolated elapsed performances.

Precision is a crude measure of quality. Another motivation for
quality up by parallelism is to compensate for the cost overhead
caused by arithmetic with power series. Power series are hybrid
symbolic-numeric representations for algebraic curves.

Positive Dimensional Solution Sets

Solving a system has evolved in meaning, from computing ap-
proximations of all its isolated solutions, to finding the numerical
irreducible decomposition of the solution set. The numerical irre-
ducible decomposition includes not only the isolated solutions, but
also the representations for all positive dimensional solution sets.
Such representations consist of sets of generic points, partitioned
along the irreducible factors.

To illustrate this expanded sense of a ’solution’, we consider
the twisted cubic, known in algebraic geometry as the first non-
trivial space curve. We use this example to illustrate two different
representations of this space curve:

1) In a witness set construction, the given polynomial equa-
tions are augmented with as many generic hyperplanes as
the dimension of the solution set. The solutions which sat-
isfy the system and the augmented equations are generic
points. As the degree of the twisted cubic is three, we find
three points on a random plane intersecting the cubic.
pols = ['x*y - z;', 'x^2 - y;']
from phcpy.sets import embed
from phcpy.solver import solve
embp = embed(3, 1, pols)
sols = solve(embp, verbose=False)
print('#generic points :', len(sols))

The above snippet constructs the embedding for the
equations that define the twisted cubic. The solutions of
this embedding represent the curve. Moving the added
plane and tracking the solution paths starting at the three
generic points will provide many more samples of the
curve.

2) A series expansion for the solution starts its development
at some point(s) in a coordinate hyperplane. In this
hyperplane, the curve intersects the solution set at some
point(s). For a simple example as the twisted cubic, the
series development defines an exact solution after the
initial term. Consider the snippet:
pols = ['x*y - z;', 'x^2 - y;']
from phcpy.maps import solve_binomials
maps = solve_binomials(3, pols, \

puretopdim=True)
for sol in maps:

print(sol)

The output of the above snippet is
['x - (1+0j)*t1**1', 'y - (1+0j)*t1**2', \
'z - (1+0j)*t1**3', 'dimension = 1', \
'degree = 3']

which corresponds to the parametric respresentation
(t, t2, t3) of the twisted cubic.

Many interesting polynomial systems have isolated solutions
and positive dimensional solution sets. We consider again the
family of cyclic n-roots problems, now for n = 8, [BF94]. While
for n = 7 all roots are isolated points, there is a one dimensional
solution curve of cyclic 8-roots of degree 144. This curve decom-
poses in 16 irreducible factors, eight factors of degree 16 and eight
quadratic factors, adding up to 8×16+8×2 = 144.

Consider the following code snippet.
from phcpy.phcpy2c3 import py2c_set_seed
from phcpy.factor import solve
from phcpy.families import cyclic
py2c_set_seed(201905091) # for a reproducible run
c8 = cyclic(8)
sols = solve(8, 1, c8, verbose=False)
witpols, witsols, factors = sols[1]
deg = len(witsols)
print('degree of solution set at dimension 1 :', deg)
print('number of factors : ', len(factors))
_, isosols = sols[0]
print('number of isolated solutions :', len(isosols))

The output of the script is

degree of solution set at dimension 1 : 144
number of factors : 16
number of isolated solutions : 1152

This numerical output is the essence of the blackbox solver for
positive dimensional solution sets [Ver18].

Survey of Applications

We consider some examples from various literatures which apply
polynomial constraint solving. The first two examples use phcpy
in particular as a research tool. The remaining three are broader
examples representing current uses of numerical algebraic geom-
etry in other STEM fields.

Rigid Graph Theory

The conformations of proteins [LML14], molecules [EM99], and
robotic mechanisms (discussed further below) can be studied by
counting and classifying unique mechanisms, i.e. real embeddings

66 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

of graphs with fixed edge lengths, modulo rigid motions, per
Bartzos et al. [BELT18].

Consider a graph G whose edges e ∈ EG each have a given
length de. A graph embedding is a function that maps the vertices
of G into D-dimensional Euclidean space (especially D = 2 or 3).
Embeddings which are ’compatible’ are those which preserve G’s
edge lengths. The number of unique mechanisms is thus a function
of G and d. An upper bound over all d and G with k vertices
(yielding lower bounds for graphs with n ≥ k vertices, unless
the upper bound is infinite) can be computed. In particular, the
Cayley-Menger matrix of d [LLMM14] (i.e., the squared distance
matrix with a row and column of 1s prepended, except that its
main diagonal is 0s) is an algebraic system, proportional to the
mixed volume. Certain of its square subsystems characterize the
mechanism in terms of these bounds on unique mechanisms.

Bartzos et al. implemented, using phcpy, a constructive
method yielding all 7-vertex minimally rigid graphs in 3D space
(the smallest open case) and certain 8-vertex cases previously
uncounted. A graph G is generically rigid if, for any given edge
lengths d, none of its compatible embeddings (into a generic
configuration such that vertices are algebraically independent) are
continuously deformable. G is minimally rigid if removing any
one of its edges yields a non-rigid mechanism.

phcpy was used to find edge lengths with maximally many
real embeddings, exploiting the flexibility of being able to specify
their starting system. This sped up their algorithm by perturbing
the solutions of previous systems to find new ones.

Many iterations of sampling have to be performed if the
wrong number of real embeddings is found; in each case, a
different subgraph is selected based on a heuristic implemented
by the DBSCAN class of scikit-learn (illustrating the value
of a scientific Python ecosystem). The actual number of real
embeddings is known from an enumeration of unique graphs
constructed by Henneberg steps in, for instance, SageMath.

Model Selection & Parameter Inference

It is often useful to know all the steady states of a biological
network, as represented by a nonlinear system of ordinary dif-
ferential equations, with some conserved quantities. These two
lists of polynomials (from rates of change of form ẋ = p(x), by
letting ẋ = 0; and from conservation laws of form c = ∑xi by
subtracting c from both sides) have a zero set which is a steady-
state variety, that can be explored numerically via polynomial
homotopy continuation.

Parameter homotopies were used by Gross et al. [GHR16]
to perform model selection on a mammalian phosphorylation
pathway, determining whether the kinase acts processively (i.e.
adding more than one phosphate at once, which it does not
in vitro). Their analysis validated experimental work showing
processivity in vivo. In doing so, they obtained >50x speedup
over non-parameter homotopies (for running times in minutes, not
hours) on systems tracking 20 paths.

Critical Point Computation

Polynomial homotopy continuation has also been adapted to the
field of chemical engineering to locate critical points of mul-
ticomponent mixtures [SWM16], i.e., temperature and pressure
satisfying a multi-phase equilibrium.

A remarkable variety of systems of constraint also take on
polynomial form, or can be approximated thereby, in various
sciences. Diverse problems in the analysis of belief propagation

(in graphical models) [KMC18], hyperbolic conservation laws (in
PDEs) [HHS13], and vacuum moduli spaces (in supersymmetric
field theory) [HHM13] have been addressed using polynomial
homotopy continuation.

Algebraic Kinematics

We have discussed an application of numerical methods to count-
ing unique instances of rigid-body mechanisms. In fact, kine-
matics and numerical algebraic geometry have a close historical
relationship. Following Wampler and Sommese [WS11], other
geometric problems arising from robotics include analysis of
specific mechanisms e.g.,:

• Motion decomposition - into assembly modes (of indi-
vidual mechanisms) or subfamilies of mechanisms (with
varying mobility);

• Mobility analysis - degrees of freedom of a mechanism
(sometimes exceptional), sometimes specific to certain
configurations (e.g., gimbal lock);

• Kinematics - effector position given parameters (forward
kinematics), and vice versa (inverse kinematics, e.g. used
in computer animation);

• Singularity analysis - detection of situations where the
mechanism can move without change to its parameters
(input singularity), or the parameters can change without
movement of the mechanism (output singularity);

• Workspace analysis - determining all possible outputs of
the mechanism, i.e.: reachable poses;

...as well as the synthesis of mechanisms that can reach certain
sets of outputs, or that can be controlled by a certain input/output
relationship.

Fig. 4 illustrates a reproduction of one synthesis result in
the mechanism design literature [MW90]. Given five points, the
problem is to determine the length of two bars so their coupler
curve passes through the five given points.

Fig. 4: The design of a 4-bar mechanism.

This example is part of the tutorial of phcpy and the scripts
to reproduce the results are in its source code distribution. The
equations are generated with sympy [SymPy] and the plots are
made with matplotlib [Hun07].

Continuation homotopies were developed as a substitute for
algebraic elimination that was more robust to special cases, yet

SOLVING POLYNOMIAL SYSTEMS WITH PHCPY 67

still tractable to numerical techniques. Research in kinematics
increasingly relies on such algorithms [WS11].

Systems Biology

Whether a model biological system is multistationary or oscil-
latory, and whether this depends on its rate constants, are all
properties of its steady-state locus. Following the survey of Gross
et al. [GBH16] regarding uses of numerical algebraic geometry in
this domain, one might seek to:

• determine which values of the rate and conserved-quantity
parameters allow the model to have multiple steady states;

• evaluate models with partial data (subsets of the xi) and
reject those which don’t agree with the data at steady state;

• describe all the states accessible from a given state of the
model, i.e. that state’s stoichiometric compatibility class
(or basin of attraction);

• determine whether rate parameters of the given model are
identifiable from concentration measurements, or at least
constrained.

For large real-world models in systems biology, these ques-
tions of algebraic geometry are only tractable to numerical meth-
ods scaling to many dozens of simultaneous equations.

Conclusion

From these examples, we see that polynomial homotopy continua-
tion has wide applicability to STEM fields. Moreover, phcpy is an
accessible interface to the technique, capable of high performance
whilst producing certifiable and reproducible results.

Acknowledgments

This material is based upon work supported by the National
Science Foundation under Grant No. 1440534.

REFERENCES

[BHSW13] D. J. Bates, J. D. Hauenstein, A. J. Sommese, and C. W. Wampler.
Numerically solving polynomial systems with Bertini, volume 25
of Software, Environments, and Tools, SIAM, 2013.

[BELT18] E. Bartzos, I. Z. Emiris, J. Legersky, and E. Tsigaridas. On the
maximal number of real embeddings of spatial minimally rigid
graphs. In the Proceedings of the 2018 International Symposium
on Symbolic and Algebraic Computation (ISSAC 2018), pages
55-62, ACM 2018. DOI 10.1145/3208976.3208994.

[Bertini2.0] Bertini 2.0: The redevelopment of Bertini in C++. https://github.
com/bertiniteam/b2

[BF91] J. Backelin and R. Fröberg. How we proved that there
are exactly 924 cyclic 7-roots. In the Proceedings of the
1991 International Symposium on Symbolic and Algebraic
Computation (ISSAC’91), pages 103-111, ACM, 1991. DOI
10.1145/120694.120708.

[BF94] G. Björck and R. Fröberg. Methods to “divide out” certain
solutions from systems of algebraic equations, applied to find all
cyclic 8-roots. In Analysis, Algebra and Computers in Mathemat-
ical Research, Proceedings of the twenty-first Nordic congress
of mathematicians, edited by M. Gyllenberg and L. E. Persson,
volume 564 of Lecture Notes in Pure and Applied Mathematics,
pages 57-70. Dekker, 1994.

[BSVY15] N. Bliss, J. Sommars, J. Verschelde, X. Yu. Solving polynomial
systems in the cloud with polynomial homotopy continuation. In
the Proceedings of the 17th International Workshop on Computer
Algebra in Scientific Computing (CASC 2015), edited by V. P.
Gerdt, W. Koepf, W. M. Seiler, and E. V. Vorozhtsov, volume
9301 of Lecture Notes in Computer Science, pages 87-100,
Springer-Verlag, 2015. DOI 10.1007/978-3-319-24021-3_7.

[D3] M. Bostock, V. Ogievetsky, and J. Heer D3 Data-Driven Docu-
ments. IEEE Transactions on Visualization and Computer Graph-
ics, 17, pages 2301–2309, 2011. DOI 10.1109/TVCG.2011.185.

[BT18] P. Breiding and S. Timme. HomotopyContinuation.jl: A package
for homotopy continuation in Julia. In the proceedings of ICMS
2018, the 6th International Conference on Mathematical Soft-
ware, South Bend, IN, USA, July 24-27, 2018, edited by J. H.
Davenport, M. Kauers, G. Labahn, and J. Urban, volume 10931
of Lecture Notes in Computer Science, pages 458-465. Springer-
Verlag, 2018. DOI 10.1007/978-3-319-96418-8.

[Chu06] W. J. Chun. Core Python Programming. Prentice Hall, 2nd
Edition, 2006.

[CD18] M. Culler and N. M. Dunfield. Orderability and Dehn fill-
ing. Geometry and Topology, 22: 1405-1457, 2018. DOI
10.2140/gt.2018.22.1405.

[EM99] I.Z. Emiris and B. Mourrain. Computer algebra methods for
studying and computing molecular conformations. Algorithmica
25, pages 372–402, 1999. DOI: 10.1007/PL00008283.

[APP] explorable circle tangency https://github.com/JazzTap/mcs563/
tree/master/Apollonius]

[HHM13] J. Hauenstein, Y.-H. He, and D. Mehta. Numerical elimination
and moduli space of vacua. Journal of High Energy Physics, 83.
2013. DOI: 10.1007/JHEP09(2013)083.

[HHS13] W. Hao, J. D. Hauenstein, C.-W. Shu, A. J. Sommese, Z. Xu, and
Y.-T. Zhang. A homotopy method based on WENO schemes for
solving steady state problems of hyperbolic conservation laws.
Journal of Computational Physics, 250, pages 332–346. 2013.
DOI: 10.1016/j.jcp.2013.05.008.

[HLB01] Y. Hida, X. S. Li, and D. H. Bailey. Algorithms for quad-
double precision floating point arithmetic. In the Proceedings
of the 15th IEEE Symposium on Computer Arithmetic (Arith-
15 2001), pages 155--162. IEEE Computer Society, 2001. DOI
10.1109/ARITH.2001.930115.

[HCJL] A Julia package for solving systems of polynomials via homotopy
continuation. https://github.com/JuliaHomotopyContinuation

[Hun07] J. D. Hunter. Matplotlib: A 2D Graphics Environment. Com-
puting in Science and Engineering 9(3): 90-95, 2007. DOI
10.1109/MCSE.2007.55.

[GLW05] T. Gao, T.Y. Li, and M. Wu. Algorithm 846: MixedVol: a soft-
ware package for mixed-volume computation. ACM Trans. Math.
Softw., 31(4):555-560, 2005. DOI 10.1145/1114268.1114274.

[GBH16] E. Gross, D. Brent, K. L. Ho, D. J. Bates, and H. A. Harrington.
Numerical algebraic geometry for model selection and its appli-
cation to the life sciences. Journal of The Royal Society Interface,
13: 20160256. 2016. DOI: 10.1098/rsif.2016.0256.

[GHR16] E. Gross, H. A. Harrington, Z. Rosen, and B. Sturmfels. Al-
gebraic Systems Biology: A Case Study for the Wnt Pathway.
Bulletin of Mathematical Biology 78, pages 21–51, 2016. DOI:
10.1007/s11538-015-0125-1.

[GPV13] E. Gross, S. Petrović, and J. Verschelde. Interfacing with PHC-
pack. The Journal of Software for Algebra and Geometry:
Macaulay2, 5:20-25, 2013. DOI 10.2140/jsag.2013.5.20.

[HS95] B. Huber and B. Sturmfels. A polyhedral method for solv-
ing sparse polynomial systems. Mathematics of Computa-
tion, 64(212):1541-1555, 1995. DOI 10.1090/S0025-5718-1995-
1297471-4.

[HSS98] B. Huber, F. Sottile, and B. Sturmfels. Numerical Schubert
calculus. Journal of Symbolic Computation, 26(6):767-788, 1998.
DOI 10.1006/jsco.1998.0239.

[IPYW] ipywidgets: Interactive HTML Widgets https://github.com/
jupyter-widgets/ipywidgets

[SymPy] D. Joyner, O. Čertík, A. Meurer, and B. E. Granger. Open
source computer algebra systems: SymPy. ACM Communi-
cations in Computer Algebra 45(4): 225-234 , 2011. DOI
10.1145/2110170.2110185.

[Pascal] JupyterHub deployment of phcpy. Website, accessed May 2019.
2017. https://phcpack.org

[JUPH] JupyterHub 0.7.2 documentation https://jupyterhub.readthedocs.
io/en/0.7.2/index.html

[JUP15] Jupyter notebook snippets menu - jupyter-contrib-nbextensions
0.5.0 https://jupyter-contrib-nbextensions.readthedocs.io/en/
latest/nbextensions/snippets_menu/readme.html.

[Klu16] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, C. Willing, and Jupyter Development
Team. Jupyter Notebooks -- a publishing format for reproducible
computational workflows. In Positioning and Power in Academic
Publishing: Players, Agents, and Agendas, edited by F. Loizides
and B. Schmidt, pages 87-90. IOS Press, 2016. DOI 10.3233/978-
1-61499-649-1-87.

https://github.com/bertiniteam/b2
https://github.com/bertiniteam/b2
https://github.com/JazzTap/mcs563/tree/master/Apollonius
https://github.com/JazzTap/mcs563/tree/master/Apollonius
https://github.com/JuliaHomotopyContinuation
https://github.com/jupyter-widgets/ipywidgets
https://github.com/jupyter-widgets/ipywidgets
https://phcpack.org
https://jupyterhub.readthedocs.io/en/0.7.2/index.html
https://jupyterhub.readthedocs.io/en/0.7.2/index.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/snippets_menu/readme.html
https://jupyter-contrib-nbextensions.readthedocs.io/en/latest/nbextensions/snippets_menu/readme.html

68 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

[KMC18] C. Knoll, D. Mehta, T. Chen, and F. Pernkopf. Fixed Points
of Belief Propagation—An Analysis via Polynomial Homo-
topy Continuation. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 40, pages 2124–2136, 2018. DOI
10.1109/TPAMI.2017.2749575.

[Ley11] A. Leykin. Numerical algebraic geometry. The Journal of Soft-
ware for Algebra and Geometry: Macaulay2, 3:5-10, 2011. DOI
10.2140/jsag.2011.3.5.

[LVZ06] A. Leykin, J. Verschelde, and A. Zhao. Newton’s method
with deflation for isolated singularities of polynomial systems.
Theoretical Computer Science, 359(1-3):111-122, 2006. DOI
10.1016/j.tcs.2006.02.018.

[LLMM14] L. Liberti, C. Lavor, N. Maculan, and A. Mucherino. Euclidean
Distance Geometry and Applications. SIAM Review 56, no. 1
(January 2014): 3–69. DOI 10.1137/120875909

[LML14] L. Liberti, B. Masson, J. Lee, C. Lavor, and A. Mucherino. On
the number of realizations of certain henneberg graphs arising in
protein conformation. Discrete Applied Mathematics, 165, page
213–232, 2014. DOI: 10.1016/j.dam.2013.01.020.

[M2] D. R. Grayson and M. E. Stillman. Macaulay2, a software system
for research in algebraic geometry. http://www.math.uiuc.edu/
Macaulay2

[MT08] T. Mizutani and A. Takeda. DEMiCs: A software package for
computing the mixed volume via dynamic enumeration of all
mixed cells. In Software for Algebraic Geometry, edited by M.
E. Stillman, N. Takayama, and J. Verschelde, volume 148 of The
IMA Volumes in Mathematics and its Applications, pages 59-79.
Springer-Verlag, 2008. DOI 10.1007/978-0-387-78133-4.

[MW90] A. P. Morgan and C. W. Wampler. Solving a Planar Four-
Bar Design Using Continuation. Journal of Mechanical Design,
112(4): 544-550, 1990. DOI 10.1115/1.2912644.

[NAG4M2] Branch NAG of M2 repository. https://github.com/antonleykin/
M2/tree/NAG

[MSDB] MySQLdb 1.2.4b4 documentation https://mysqlclient.
readthedocs.io/

[PHCPY] phcpy 0.9.5 documentation http://homepages.math.uic.edu/~jan/
phcpy_doc_html/

[Sage] The Sage Developers. SageMath, the Sage Mathematics Soft-
ware System, Version 7.6. https://www.sagemath.org, 2016. DOI
10.5281/zenodo.820864.

[SJ05] W. Stein and D. Joyner. Sage: System for algebra and geometry
experimentation. ACM SIGSAM Bulletin 39(2): 61-64, 2005.
DOI 10.1145/1101884.1101889.

[SWM16] H. Sidky, J. K. Whitmer, and D. Mehta. Reliable mixture criti-
cal point computation using polynomial homotopy continuation.
AIChE Journal. Thermodynamics and Molecular-Scale Phenom-
ena, 62(12): 4497-4507, 2016. DOI 10.1002/aic.15319.

[SVW03] A. J. Sommese, J. Verschelde, and C. W. Wampler. Numerical
irreducible decomposition using PHCpack. In Algebra, Geometry
and Software Systems, edited by M. Joswig and N. Takayama,
pages 109-130, Springer-Verlag 2003. DOI 10.1007/978-3-662-
05148-1_6.

[SVW05] A. J. Sommese, J. Verschelde, and C. W. Wampler. Introduction to
numerical algebraic geometry. In Solving Polynomial Equations,
Foundations, Algorithms, and Applications, edited by A. Dicken-
stein and I. Z. Emiris, pages 301-337, Springer-Verlag 2005. DOI
10.1007/3-540-27357-3_8.

[SymPyDocs] SymPy 1.3 documentation. https://docs.sympy.org/latest/index.
html

[Ver99] J. Verschelde. Algorithm 795: PHCpack: A general-purpose
solver for polynomial systems by homotopy continuation,
ACM Trans. Math. Softw., 25(2):251-276, 1999. DOI
10.1145/317275.317286.

[Ver14] J. Verschelde. Modernizing PHCpack through phcpy. Proceedings
of the 6th European Conference on Python in Science (EuroSciPy
2013), edited by P. de Buyl and N. Varoquaux, pages 71-76, 2014.

[Ver18] J. Verschelde. A Blackbox Polynomial System Solver for Shared
Memory Parallel Computers. In Computer Algebra in Scientific
Computing, 20th International Workshop, CASC 2018, Lille,
France, edited by V. P. Gerdt, W. Koepf, W. M. Seiler, and E.
V. Vorozhtsov, volume 11077 of Lecture Notes in Computer Sci-
ence, pages 361-375. Springer-Verlag, 2018. DOI 10.1007/978-
3-319-99639-4_25.

[VC93] J. Verschelde and R. Cools. Symbolic homotopy construction. Ap-
plicable Algebra in Engineering, Communication and Computing,
4(3):169-183, 1993. DOI 10.1007/BF01202036.

[VVC94] J. Verschelde, P. Verlinden, and R. Cools. Homotopies exploit-
ing Newton polytopes for solving sparse polynomial systems.
SIAM Journal on Numerical Analysis 31(3):915-930, 1994. DOI
10.1137/0731049.

[VY15] J. Verschelde and X. Yu. Polynomial Homotopy Continuation on
GPUs. ACM Communications in Computer Algebra, volume 49,
issue 4, pages 130-133, 2015. DOI 10.1145/2893803.2893810.

[WS11] C. W. Wampler & A. J. Sommese Numerical algebraic geometry
and algebraic kinematics. Acta Numerica, 20, pages 469–567.
2011. DOI: 10.1017/S0962492911000067.

[Yu15] X. Yu. Accelerating Polynomial Homotopy Continuation on
Graphics Processing Units. PhD thesis, University of Illinois at
Chicago, 2015.

http://www.math.uiuc.edu/Macaulay2
http://www.math.uiuc.edu/Macaulay2
https://github.com/antonleykin/M2/tree/NAG
https://github.com/antonleykin/M2/tree/NAG
https://mysqlclient.readthedocs.io/
https://mysqlclient.readthedocs.io/
http://homepages.math.uic.edu/~jan/phcpy_doc_html/
http://homepages.math.uic.edu/~jan/phcpy_doc_html/
https://www.sagemath.org
https://docs.sympy.org/latest/index.html
https://docs.sympy.org/latest/index.html

	Introduction
	A Scripting Interface for PHCpack
	Related Software

	User Interaction
	Online Access
	Code Snippets
	Direct Manipulation

	Solving Polynomial Systems
	Polynomial Homotopy Continuation
	Speedup and Quality Up
	Positive Dimensional Solution Sets

	Survey of Applications
	Rigid Graph Theory
	Model Selection & Parameter Inference
	Critical Point Computation
	Algebraic Kinematics
	Systems Biology

	Conclusion
	Acknowledgments

	References

