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Abstract—We present a case study of optimizing a Python-based cosmology
data processing pipeline designed to run in parallel on thousands of cores using
supercomputers at the National Energy Research Scientific Computing Center
(NERSC).

The goal of the Dark Energy Spectroscopic Instrument (DESI) experiment
is to better understand dark energy by making the most detailed 3D map of the
universe to date. Over a five-year period starting this year (2019), around 1000
CCD frames per night (30 per exposure) will be read out from the instrument and
transferred to NERSC for processing and analysis on the Cori and Perlmutter
supercomputers in near-real time. This fast turnaround helps DESI monitor
survey progress and update the next night’s observing schedule.

The DESI spectroscopic pipeline for processing these data is written almost
exclusively in Python. Using Python allows DESI scientists to write very readable
and maintainable scientific code in a relatively short amount of time, which is
important due to limited DESI developer resources. However, the drawback is
that Python can be substantially slower than more traditional high performance
computing languages like C, C++, and Fortran.

The goal of this work is to improve the performance of DESI’s spectro-
scopic data processing pipeline at NERSC while satisfying their productivity
requirement that the software remain in Python. Within this space we have
obtained specific (per node-hour) throughput improvements of over 5x and 6x on
the Cori Haswell and Knights Landing partitions, respectively. Several profiling
techniques were used to determine potential areas for improvement including
Python’s cProfile and line_profiler packages, and other tools like Intel VTune and
Tau. Once we identified expensive kernels, we used the following techniques: 1)
JIT-compiling hotspots using Numba and 2) restructuring the code to lessen
the impact of calling expensive functions. Additionally, we seriously considered
substituting MPI parallelism for Dask, a more flexible and robust alternative,
but have found that once a code has been designed with MPI in mind, it is
non-trivial to transition it to another kind of parallelism. We will also show initial
considerations for transitioning DESI spectroscopic extraction to GPUs (coming
in the next NERSC system, Perlmutter, in 2020).

Index Terms—NumPy, SciPy, Numba, JIT compile, spectroscopy, HPC, MPI,
Dask

Introduction

DESI is the Dark Energy Spectroscopic Instrument [noae]. Though
dark energy is estimated to comprise over 70 percent of our
universe, it is not currently well-understood [PR03], [MWW13].
Many experiments, including DESI, are seeking to uncover more
information about the nature of dark energy. The goal of the DESI
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Fig. 1: A photograph of the Mayall telescope (large dome in the center
of the image), where the DESI instrument has been installed, on Kitt
Peak, Arizona.

experiment is, over 5 years, to map 30 million galaxies and use
spectroscopically obtained redshift data to measure their distances.
The statistical properties of this 3D galaxy map will help shed
light on the physical nature of dark energy and its role in the
evolution of the universe. An image of the Mayall telescope, on
Kitt Peak, Arizona, where the DESI instrument is installed, is
shown in Figure 1.

In fall 2019 DESI will begin sending batches of CCD images
nightly to the National Energy Research Scientific Computing
Center (NERSC) for data processing. Each exposure contains the
data from 5000 galaxies, quasars, stars, and reference calibrators,
routed by fiber optic cables from the telescope to 10 spectrographs
with 3 CCDs (red, blue, and infrared) and 500 spectra each. This
means that each exposure contains 30 individual images (with
each exposure totaling about 6 GB). DESI expects to collect over
30 exposures in a typical night, resulting in over 1000 images.

A small subset of example data are shown in Figure 2 with 21
spectra distributed horizontally and different wavelengths of light
dispersed vertically. This image represents less than one millionth
of the DESI data obtained per night. Most spectra look the same
since all fibers see the same night sky. The slight excess in the
middle of the leftmost fiber is the signal from a distant galaxy.
Even though this is faint compared to the sky background, this
example is in the brightest 15% of galaxies that DESI will observe.

Compared to prior galaxy redshift surveys, DESI will observe
fainter, more distant objects at lower signal-to-noise, necessitating
more sophisticated algorithms to optimally extract the signal
from the data. This requires a full 2D modeling of the data,
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Fig. 2: Example DESI data showing spectra from 21 of the 5000 fibers
distributed horizontally, with wavelengths dispersed vertically. Most
spectra look the same since they all see the same sky background light.
The slight excess of light in the middle of the leftmost spectrum is the
signal from a distant galaxy.

fitting multiple spectra and wavelengths simultaneously using the
"spectroperfectionism" algorithm [BS10], which is only computa-
tionally feasible due to a divide-and-conquer technique. This case
study focuses on this spectral extraction part of the data processing
pipeline since it is the algorithmically most expensive step; it
includes eigenvalue decomposition, special function evaluation,
and all the necessary bookkeeping required to manage the spectral
data in each exposure.

The overarching goal of this work is to speed up the DESI
experiment’s Python spectroscopic data processing pipeline on the
Cori supercomputer’s KNL partition at NERSC. NERSC [noag]
is the largest Department of Energy computing facility in terms
of number of users (7000) and scientific output [noal]. Cori is
NERSC’s current flagship supercomputer, a Cray XC40 with a the-
oretical peak performance of 28 PF, comprised of approximately
20 percent Intel Haswell nodes and 80 percent manycore Intel
Knights Landing (KNL) nodes.

Achieving good performance with the manycore KNL nodes
has proven difficult for many science teams. Because the Haswell
nodes are "easier" to use (i.e. applications often run faster on them
out of the box), they are increasingly crowded. For this reason
NERSC established a program called NESAP (NERSC Exascale
Science Applications Program, [noah]) to help science teams tran-
sition successfully to the KNL nodes. NESAP provides technical
expertise from NERSC staff and vendors like Intel and Cray to
science teams to improve the performance of their application
on the Cori KNL partition and prepare for the manycore future
of high-performance computing (HPC). NESAP’s goal is to help
move a large fraction of the NERSC workload from the Haswell
to the KNL partition; this will ease queue wait times and help
increase job throughput for all users.

Achieving optimal Python performance on KNL is especially
challenging due its slower clock speed and difficulty taking ad-
vantage of the KNL AVX-512 vector units (which is not possible
in native Python). A more detailed discussion of the difficulties
of extracting Python performance on KNL can be found in
[RTD+17]. This case study is borne out of DESI’s participation
in the NERSC NESAP program.

Despite these difficulties, DESI requested that their code

should not be re-written in another language like C due to their
own limited developer resources. They did consider both Cython
[noad] and Numba [noai] as options for improving performance,
but after some initial testing they found that both delivered
approximately equivalent speedups for their specific test cases.
Citing Numba’s ease of use, automatic compilation, and ability to
gracefully fall back to non-compiled code, they requested that NE-
SAP proceed with Numba-based optimizations where necessary.

In what follows we will present a case study that describes how
a Python image processing pipeline was optimized without rewrit-
ing the code in another language like C for increased throughput
of 5-7x on a high-performance system. We will describe our
workflow of using profiling tools to find candidate kernels for
optimization and we will describe how we used just in time
compiling to speed up these kernels. We will also describe our
efforts to restructure the code to minimize the impact of calling
expensive kernels. We will compare parallelization strategies using
MPI and Dask, and finally, we will discuss a preliminary study for
moving the DESI code to GPUs.

Profiling the Code

Our first step in this study was to use profiling tools to determine
places in the DESI code where it was worthwhile to target
our optimization efforts. We made heavy use of tools designed
especially for Python. In general our process was to start with the
simplest tools and then, when we knew what we were looking for,
use the more complex tools.

We should note that we profiled the DESI code on both Cori
Haswell and KNL nodes. There were some minor differences in
the relative time spent in each kernel between the two architec-
tures, but overall the same patterns were present on both Haswell
and KNL.

cProfile

Python’s built-in cProfile package [noaa] was the first tool we used
for collecting profiling data. We found cProfile simple and quick
to use because it didn’t require any additions or changes to the
DESI code. cProfile can write data to a human-readable file, but
we found that using either Snakeviz [noaq] or gprof2dot [Fon19]
to visualize the profiling data was substantially more clear and
useful.

An example of data collected using cProfile and visualized
with gprof2dot is shown in Figure 3. We prefer gprof2dot to
Snakeviz visualizations because they are static images instead of
browser-based. This makes them easier to store, share, quickly
view, and embed in papers and talks. If you prefer accessing the
cProfile data interactively, and clicking on a function to see all of
its children, for example, Snakeviz can provide this functionality.
However, we found the several extra steps required to use Snake-
viz, and the difficulty storing and sharing the visualizations, made
it less appealing than gprof2dot.

Examining the visualized cProfile data allowed us to identify
expensive kernels in the DESI calculation. In Figure 3, the func-
tions are color-coded according to how much total time is spent in
each of them. In this example, the function traceset accounts
for approximately 37 percent of the total runtime and was a good
candidate for optimization efforts.

Information like that shown in Figure 3 is nevertheless incom-
plete in that it can only provide detail at the function level. From
these data alone it was difficult to know what specifically in the
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Fig. 3: This is an example image created from data collected using cProfile and visualized using gprof2dot [Fon19]. This profile was obtained
from an early stage in the NESAP optimization effort.

function "traceset" was so time-consuming. Once we had a list of
expensive kernels from our cProfile/gprof2dot analysis, we started
using the line_profiler tool.

line_profiler

line_profiler [Ker19] is an extremely useful tool which provides
line-by-line profiling information for a Python function. However,
this more detailed information comes at a cost: the user must
manually decorate functions that he or she wishes to profile. For
a small code this exercise might be trivial, but for the many
thousand line DESI code 1) hand-decorating every function would
have been extremely time-consuming and 2) searching through
the line_profiler output data to find expensive functions would
have also been cumbersome and potentially error-prone. For this
reason we recommend starting with cProfile and then moving to
line_profiler once the user has identified a few key functions of
interest.

Once decorated, line_profiler provides a great deal of infor-
mation for each line of the function, including how many times
each line was invoked and the total amount of time spent on each
line. An example of line_profiler output for the function xypix is
shown in Figure 4. This information was vital to our optimization
efforts because it could point to functions that were particularly
expensive, such as numpy’s legval or scipy’s erf. Once we had
this information, we could make decisions about how to reduce the
time spent in these functions, either by speeding up the functions
themselves through JIT compiling, or by restructuring the code
to make the functions either less expensive or avoid calling them
as often. We will describe these approaches in the sections that
follow.

Together, cProfile and line_profiler were sufficient for almost
all of the performance optimization work in this case study.
However, because the DESI extraction code is an MPI code, these
profiling tools do have some limitations. Both of these tools can be
used to collect data for each MPI rank, but visualizing and using

Fig. 4: Here is a sample output window from line_profiler [Ker19] for
the function "xypix". The clear, human-readable output files produced
by line_profiler are a very nice feature.

the information in a meaningful way is challenging, especially
when there are 68 outputs from a KNL chip, for example.

VTune and Tau

Once we reached the point where we wanted to investigate 1) each
individual MPI rank and 2) whether all ranks were appropriately
load-balanced, we needed more powerful profiling tools like Intel
VTune [adm] and Tau [noar]. While VTune is a very powerful
general tool for studying code, we found that it was difficult to get
the information we wanted in a clear, understandable format. For
example, VTune would often display extremely low-level informa-
tion that obfuscated the higher-level Python calls we were trying
to investigate. We found gprof2dot and Snakeviz visualizations
easier to navigate than the VTune GUI. We ultimately found
the Tau profiler more useful and well-suited for our application,
although we should note that we required the help of the Tau
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Fig. 5: A sample Tau [noar] output for the DESI spectral extraction
code on a Haswell processor (which has 32 ranks). It is clear from
this output that only 20 of the ranks are being utilized. This motivated
the restructure to allow parallelization of subbundles, rather than
bundles, which could more flexibly utilize the whole processor’s
resources.

developers to build it. (Tau works best when it is built for the type
of application you will profile. In our case it was a Python MPI
code running on a Cray system, all of which are configurations that
Tau supports.) Though building a profiling tool from scratch was
non-trivial, it was also very possible with the help of the Tau team.
Once built, Tau provided clear information about how each MPI
rank was occupied and how each rank compared to the others. A
sample Tau output window is shown in Figure 5. These profiling
data were obtained while the DESI frame was parallelized over
bundles which left 12 of the 32 Haswell ranks unoccupied. It is
clear from this Tau visualization that we were not making good
use of processor resources.

Just-in-time (JIT) Compilation with Numba

The first major approach to achieve speedups in this work has
been to focus on making expensive functions run more quickly.
To achieve this, we have used Numba [LPS15], a just-in-time
compiler for Python.

We used Numba for three functions that, through
profiling, we identified as expensive. These functions
were 1) numpy.polynomial.legendre.legval
[noaj], 2) scipy.special.erf [noao], and 3)
scipy.special.hermitenorm [noap], which henceforth
we will refer to as legval, erf, and hermitenorm.

legval was perhaps the most straightforward of these three
to JIT compile. Unlike Python, Numba requires that all variables
and arrays cannot change type, nor can they change size (e.g.
this information must be known prior at compile time). This
necessitated several small changes to the legval algorithm to
put it in the form required by Numba. Several other lines of the
function that performed type checking were removed. This placed
the onus on the developer to make sure the correct types are
supplied, which was acceptable for us. The original and modified
legval functions are shown in Figure 6.

The two scipy functions were also somewhat challenging to
implement in Numba. At the time of this writing, Numba does not

yet support directly compiling scipy functions. This meant that
we needed to extract the core part of these scipy functions and
mold them into a form that Numba would accept. For scipy erf,
this meant translating the Fortran source code into Python. For
scipy hermitenorm, which was fortunately already in Python,
algorithmic changes similar to those we made in legval were
necessary to ensure all variables were a constant type and size.

We should note that we tried to cache the compiled Numba
functions with the cache=True option to save time, but with
larger numbers of MPI ranks, we found that this sometimes caused
a data race between the Numba caches written by each rank. To
avoid this problem we considered using ahead of time (AOT)
instead of JIT compiling but since implementing this change was
somewhat awkward, for now we have removed the cache=True
setting and will consider using AOT in the future.

Restructuring the Code

Restructuring the code was the second major optimization strategy
we used. In the three subsections that follow, we will describe
three types of restructuring efforts that we have completed or will
soon complete. In the first restructure, we have altered the code to
process smaller matrices at a time to reduce the performance hit
we take in the scipy.linalg.eigh function. In the second
restructure, we have changed the code to avoid calling an ex-
pensive function, numpy.polynomial.legendre.legval.
In the third restructure, which is currently in progress, we are
changing the structure of parallelism to divide the problem by
subbundle rather than by bundle. This restructure doesn’t itself
provide a performance boost, but it does provide substantially
increased flexibility for the DESI code.

Implement Subbundles

Profiling data indicated that when matrix sizes were large,
scipy.linalg.eigh, a key part of the spectroperfectionism
extraction, was extremely slow. This is not surprising because
Jacobi eigenvalue algorithms scale as O(n3) [PTV+92]. One
recommendation from an Intel Dungeon session (a collaborative
hack session between NESAP teams and Intel engineers) was
to reduce the number of fibers processed at a time. This meant
dividing a single bundle of 25 fibers into 6 smaller groups known
as subbundles. By computing the eigenvalues of more, but smaller,
covariance matrices, DESI was able to reduce their computation
time. It is important to mention that DESI can only use this
type of approach because they have been careful to design their
experiment so as to minimize crosstalk between individual fibers,
which results in a sparse covariance matrix. We will also note that
there was nothing magical about the number 6; anywhere from 2
to 10 subbundles provided a similar performance increase on both
KNL and Haswell. While this strategy was successful on CPUs,
we will revisit this strategy in the section "Does it Make Sense to
Run DESI Code on GPUs".

Add Cached legval Values

Another outcome from the Intel Dungeon session was the rec-
ommendation to restructure the code to avoid calling legval.
The problem with legval wasn’t just that it was an expensive
function; rather, it was also contributing to a large fraction of the
total runtime because it was called millions of times for each CCD
image in the DESI spectral extraction calculation. Worse, legval
was called with scalar values even though it was able to handle
vector inputs.
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Fig. 6: (A) The official numpy.polynomial.legendre.legval function. Profiling data indicated that this was an expensive function. To
conserve space the docstring has been removed. (B) Our modified legval function that was much faster than its original numpy counterpart.
Note the removal of the type checking and the addition of the np.ones array to instruct Numba about the sizes of each array (and prevent
them from changing during every iteration.)

This restructuring required us to modify several major func-
tions and redefine some of the bookkeeping that keeps track of
which data corresponds to which part of the image on the CCD.
Prior to the restructure, profiling data indicated that legval was
called approximately 7 million times per frame with scalar values.

The code was restructured so that legval was now called
800,000 times per frame. Of course this is still a large number, but
it is almost an order of magnitude fewer times than the original
implementation. The calculated values were stored as key-value
pairs in a dictionary. We then modified the part of the code that
previously calculated legval to instead look up the required
values stored in the dictionary.

Parallelize over Subbundles Instead of Bundles

Desipte these optimizations, the DESI code still has several known
issues: poor load-balancing and rigid requirements for job sizes (9
nodes for KNL and 19 Nodes for Haswell, for example). We are in
the process of addressing these issues and thought that our efforts
were worth mentioning.

The goal of parallelizing over subbundles, rather than bundles,
is to restructure the code to divide the spectral extraction into
smaller, more flexible pieces. This will relax the previous require-
ment that each frame be divided into 20 bundles, which is an
awkward number for NERSC hardware (and a restrictive condition
in general). When completed, the 500 spectra will be more evenly
doled out to 32 processors (about 16 spectra each) or 68 processors
(about 7 spectra each). This means that all processors can be used
for any given job size, not just for a carefully chosen job size.
However, like the other restructuring efforts, we have found that
implementing this change is nontrivial.

Additionally, this refactor will help improve load balancing.
Since the processing time differs for the three types of DESI
frames (blue, red, and infrared), prior to the refactor, the pro-
cessors assigned to the blue frames finished before the infrared
frames, wasting both valuable processor resources and time. In

this new design, frame types will be grouped together so processor
time is not wasted.

Optimization Results

How effective were all these different optimization efforts we just
described? The most straightforward benchmark is one in which
raw runtime (and hopefully speedup) is measured. In this case, we
measured the time to complete the processing of a single DESI
frame on a single Edison, Cori Haswell, and Cori KNL node. In
Figure 7 we show how each optimization affected the single frame
runtime. The optimizations are plotted chronologically against the
overall runtime of the frame on each architecture.

Figure 7 shows that the first few changes we made had the
largest overall impact: the later optimizations exhibited some
diminishing returns. Over the course of this work the runtime
for a single frame was decreased from 4000 to 525 seconds for
KNL, from 862 to 130 seconds for Haswell, and from 1146
to 116 seconds for Ivy Bridge (the processor architecture on
NERSC’s now retired Edison system). The overall increases in
raw speed varied between 7-10x for each architecture. One major
goal of the NESAP program was to reduce the DESI runtime on
KNL to below the original Edison Ivy Bridge benchmark, which
is indicated by the red dotted line. Once we implemented our
legval cache fix, we achieved this goal.

A more informative benchmark for DESI is specific processing
throughput, stated in frames processed per node-hour. Measuring
this quantity makes it clear how much of DESI’s computing allo-
cation is needed to complete a given amount of processing. Higher
specific throughput indicates more effective use of computing
resources. We measure this benchmark using a full exposure (30
frames), instead of a single frame. We also measure on either
19 or 9 nodes for Haswell and KNL, respectively, due to the
limitations we described earlier (in the Parallelize over Subbundles
Instead of Bundles subsection). Though a single exposure is still
a relatively small test because DESI expects to collect 30 or more
exposures per night (approximately 1000 frames), it much more
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Fig. 7: The single-node speedup achieved on Intel Ivy Bridge,
Haswell, and KNL architectures throughout the course of this study.

Fig. 8: This figure shows the improvement over the course of this
study in the DESI spectral extraction specific throughput.

closely approaches the real DESI workload than the single frame
benchmark. One feature encoded in this benchmark which is not
captured in the speed benchmark is the increasingly important
role that MPI overhead begins to play in multi-node jobs, which
is a real factor with which DESI will have to contend during
its large processing runs. The frames per node-hour results are
plotted in Figure 8. While the increases in specific throughput we
have obtained are more modest than the raw speedup, these values
are a more accurate representation of the actual improvements in
DESI’s processing capability. For this reason we emphasize that
we were able to achieve a 5-7x specific throughput increase instead
of the (more exciting but less meaningful) 7-10x in raw processing
speed.

It is worth mentioning that using Numba allowed us to make
notable improvements specifically on KNL, which was of course
the main goal of this study. For legval in particular, shown in
Figure 6, we found that JIT compiling this function provided 15x
speedup on KNL vs only 5x speedup on Haswell. This additional
speedup on KNL was because Numba was able to target the
KNL AVX-512 vector units. We therefore strongly recommend

Fig. 9: Types of optimization efforts performed in this study and their
resulting incremental specific throughput improvements on Intel Ivy
Bridge, Haswell, and Knights Landing architectures. These optimiza-
tions are listed in chronological order.

investigating Numba to any developer trying to optimize Python
code to run on a system with vectorization capabilities.

Finally, in Figure 9 we summarize the incremental specific
throughput improvements we obtained throughout this study on
Edison Ivy Bridge, Cori Haswell, and Cori KNL. The code
optimizations are plotted in chronological order. Perhaps these
results are the most generally instructive. First, they demonstrate
that the restructuring-based optimizations were more valuable than
the JIT-based optimizations. For example, the overall speedup
of adding the legval cached values was approximately 1.7x,
although this was also the most difficult of all the optimizations
implemented in this study. In contrast, our relatively painless
JIT compiled optimizations were not as effective in terms of
speedup, averaging between a factor of 1.1-1.5x improvement.
The takeaway from these results might be that if a developer has
enough time, the larger, more complex restructuring optimizations
may be extremely worthwhile. The flip side is that if the developer
has limited time, small fixes like JIT compiling can still provide
reasonable gains without a major time investment.

Alternatives to MPI?

A few problems with the current MPI implementation of the DESI
spectral extraction code prompted us to take a step back and
consider if newer frameworks like Dask [noaf] would be a better
solution for parallelization within DESI. The reason we considered
Dask, and not Apache Spark or similar frameworks, was 1)
because converting to Dask would require a less extreme refactor
and 2) the Dask adpatations would not preclude smaller-scale users
from running DESI processing routines on their laptops, which
would have been the case with Spark.

The first problem we hoped to address was the relative inflex-
ibility of the division of work between bundles1 . The second was
the issue of resiliency: if a node goes down, it will take the entire
MPI job with it2 . An additional feature we liked about Dask is
the ability to monitor Dask jobs in real time with their Bokeh
status page. We thought Dask seemed promising enough that it
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was worth taking a careful look at what it would mean to replace
the DESI MPI with Dask.

Dask is a task-based parallelization system for Python. It is
comprised of a scheduler and some number of workers which
communicate with each other via a client. Dask is more flexible
than traditional MPI because it can start workers and collect their
results via a concurrent futures API. It should be noted that this
is also possible in MPI with dynamic process management, but
since Cray does not yet support dynamic process management
under the Slurm workload manager, we haven’t been able to try it
at NERSC.

During this process, we discovered that it is non-trivial to
convert a code already written in MPI to Dask, and it would likely
be difficult to convert from Dask to MPI as well. (It would likely
be easier to convert from dynamic process management MPI to
Dask, but the DESI spectral extraction code is not written with
this API.)

One major difference between MPI and Dask is the point
at which the decision of how to divide the problem occurs. In
MPI since all ranks are generally passing over the code, dividing
the data and performing some operation on it in parallel can be
done on the fly. In Dask, however, the scheduler needs to know
in advance which work to assign to workers. This means that
the work must already be divided in sensible way. Collecting the
information required for Dask-style parallelism in advance would
have required a substantial restructuring on the order of what was
performed for legval, if not more ambitious. At this point we
decided that if the DESI code had been written from the start
with Dask-type parallelism in mind using Dask would have been
a good choice, but converting existing MPI code into Dask was
unfortunately not a reasonable solution for us.

Does it Make Sense to Run DESI Code on GPUs?

Because HPC systems are becoming increasingly heterogeneous,
it is important to consider how the DESI code will run on future
architectures. The next NERSC system Perlmutter [noak] will
include a CPU and GPU partition that will provide a large fraction
of the system’s overall FLOPS, so it is pertinent to examine if
and how the DESI code could take advantage of these accelerated
nodes.

Since GPUs are fundamentally different from CPUs, it may
be necessary to rethink much of the way in which the DESI
spectral extraction is performed. At the moment, each CCD frame
is divided into 7200 overlapping subregions such that each matrix
to solve is typically 400x400 elements. Though this division
of a larger frame into smaller pieces makes sense for CPU
architectures, it may not be optimal for GPU architectures. In
fact for GPUs often the opposite is true: the programmer should
give the GPU as much work as possible to keep it occupied; thus
it may be beneficial to operate on a smaller number of larger
matrices. Additionally, it may be necessary to change the code
so that the matrices are both constructed and solved on the GPU
to bypass inefficient subregion bookkeeping, which is currently
interleaved between constructing and solving the matrices, and
avoid expensive data transfer. This means that helping the DESI
extraction code run efficiently on GPUs could require a major

1. Although this is currently being addressed in the subbundle division
restructure.

2. This is not an issue in Dask, in which dead workers can be seamlessly
revived while the calculation continues.

Fig. 10: Data from performing an eigh matrix decomposition of
various sizes on Edison Ivy Bridge, Cori Haswell, Cori KNL, and
Cori Volta. We used CuPy to perform eigh on the Volta GPU.

restructuring to better adapt the problem for the capabilities of the
hardware.

Preliminary testing is underway to give some indication of
what we might expect from a major overhaul. From profiling
information we expect that the scipy.linalg.eigh function
will constitute a larger part of the workload as matrix sizes in-
crease. We have measured the runtime of scipy.lialg.eigh
and cupy.linalg.eigh [noac] as an initial test case on Cori
Haswell, KNL, and the new Cori Volta GPUs. (We could not make
these measurements on Edison Ivy Bridge because it has now been
decommissioned.) Figure 10 shows the eigh runtime for various
sizes of positive definite input matrices. These data show that for
larger matrix sizes (above approximately 1000) the Volta begins
to outperform the CPUs. However, these data do not include any
possible gains from a divide-and-conquer approach (which has
proven very successful for DESI). Investigating this strategy is
near-term future work.

This eigh study is just the first of many planned GPU
experiments. DESI has additional matrix preparation steps, book-
keeping, and special function evaluations (like legval) which
also constitute a large part of their total workload. At this time it is
unclear which of these might perform well on the GPU and make
the relatively expensive host to device data transfer worthwhile.
We will perform many experiments to evaluate how well each of
these are suited to the GPU (or perhaps not suited to the GPU) as
future work.

We should note that one of the major conclusions of this
case study has been that large restructuring efforts have been
worthwhile for DESI. If indeed we choose to embark upon another
major restructure for GPUs, what is the best approach? As we
have detailed above, we have had reasonably good success with
Numba, which also supports GPU offloading. Other options are
CuPy [noab], which aims to be a drop-in replacement for NumPy,
pyCUDA [noam], and pyOpenCL [noan]. How best to support
GPU offloading without having to fill the DESI code with distinct
CPU and GPU blocks, and additionally to avoid being tied to a
particular vendor, is still an open question for us.

Conclusions and Future Work

Over the course of this work, we have achieved our goal of
speeding up the throughput of the DESI spectral extraction code
on NERSC Cori Haswell and KNL processors by a factor of
5-7x without rewriting their Python code in another language.
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DESI will process its data at NERSC both in semi-realtime and
additionally, it will reprocess all of its data each year (at least)
with the latest pipeline version. At the start of this work, the
final data processing would have taken 33 million CPU hours.
The work presented in this study has reduced that to 6.5 million
hours, making much more efficient use of the resources available
at NERSC, thus benefitting both the DESI project and also the
many other users who share the NERSC systems. Additionally,
this algorithm speedup lets DESI process a night’s data in a matter
of hours instead of days, enabling the ability to use one night
of data as feedback to the survey operations the following night.
This results in more efficient survey operations, reducing the time
to completion.

Our strategy was as follows: we employed profiling tools,
starting with the most simple tools (cProfile + gprof2dot) and
progressing as necessary to more complex tools (line_profiler
and Tau), to get an idea of which kernels are most expensive
and what types of structural changes could help improve runtime
and flexibility. We used Numba to JIT compile several expensive
functions. This was a relatively quick way to obtain some speedup
without changing many lines of code. We also made larger
structural changes to avoid calling expensive functions and also to
increase the flexibility and efficiency of the parallelism. In general
these larger structural changes were more complex to implement,
as well as more time consuming, but also resulted in the biggest
payoff in terms of speedup.

We considered changing the parallelism strategy from MPI to
Dask, but ultimately found that changing an existing code is non-
trivial due to the fundamentally different strategies of dividing
the workload, and decided to continue using MPI. Work is in
progress to address two remaining issues: load-balancing and
inflexible job size. Finally, we are now investigating how the
DESI code could run effectively on GPUs by since the next
NERSC system Perlmutter will include a large CPU and GPU
partition. Exploratory studies for how the DESI code can be
optimized are being performed using scipy.linalg.eigh
and cupy.linlg.eigh as a test case now and will continue
as future work.
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