118

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Better and faster hyperparameter optimization with
Dask

Scott Sievert™*, Tom Augspurger**, Matthew Rocklinl

Abstract—Nearly every machine learning model requires hyperparameters,
parameters that the user must specify before training begins and influence
model performance. Finding the optimal set of hyperparameters is often a
time- and resource-consuming process. A recent breakthrough hyperparameter
optimization algorithm, Hyperband finds high performing hyperparameters with
minimal training via a principled early stopping scheme for random hyperpa-
rameter selection [LJD™18]. This paper will provide an intuitive introduction to
Hyperband and explain the implementation in Dask, a Python library that scales
Python to larger datasets and more computational resources. The implementa-
tion makes adjustments to the Hyperband algorithm to exploit Dask’s capabilities
and parallel processing. In experiments, the Dask implementation of Hyperband
rapidly finds high performing hyperparameters for deep learning models.

Index Terms—distributed computation, hyperparameter optimization, machine
learning

Introduction

Training any machine learning pipeline requires data, an untrained
model or estimator and "hyperparameters", parameters chosen be-
fore training begins that help with cohesion between the model and
data. The user needs to specify values for these hyperparameters
in order to use the model. A good example is adapting the ridge
regression or LASSO to the amount of noise in the data with
the regularization parameter [MS75] [Tib96]. Hyperparameter
choice verification can not be performed until model training is
completed.

Model performance strongly depends on the hyperparameters
provided, even for the simple examples above. This gets much
more complex when multiple hyperparameters are required. For
example, a particular visualization tool, t-SNE requires (at least)
three hyperparameters [MHOS8] and the first section in a study on
how to use this tool effectively is titled "Those hyperparameters
really matter" [WVIJ16].

These hyperparameters need to be specified by the user.
There are no good heuristics for determining what the values
should be. These values are typically found through a search over
possible values through a "cross validation" search where models

% Corresponding author: scott@stsievert.com

£ University of Wisconsin-Madison

§ Relevant work performed while interning for Anaconda, Inc.
w% Anaconda, Inc.

I NVIDIA

Il Relevant work performed while employed for Anaconda, Inc.

Copyright © 2019 Scott Sievert et al. This is an open-access article distributed
under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

are scored on unseen holdout data. Even in the simple ridge
regression case above, a brute force search is required [MS75].
This brute force search quickly grows infeasible as the number of
hyperparameters grow.

Hyperparameter optimization grows more complex as the
number of hyperparameters grow, especially because of the fre-
quent interactions between them. A good example of hyperpa-
rameter optimization is with deep learning, which has specialized
algorithms for handling many data but have difficulty provid-
ing basic hyperparameters. For example, the commonly used
stochastic gradient descent (SGD) has difficulty with the most
basic hyperparameter "learning rate" [Botl10], which is a quick
computation with few data but infeasible for many data [MH]15].

Contributions

A hyperparameter optimization is required if high performance
is desired. In practice, it’s expensive and time-consuming for
machine learning researchers and practitioners. Ideally, hyperpa-
rameter optimization algorithms return high performing models
quickly and are simple to use.

Quickly returning quality hyperparameters relies on making
decisions about which hyperparameters to devote training time
to. This might mean progressively choosing higher-performing
hyperparameter values or stopping low-performing models early
during training.

Returning this high performing model quickly would lower
the expense and/or time barrier to performing hyperparameter
optimization. This will allow the user (e.g., a data scientist) to
more easily use these algorithms.

This work

« provides an implementation of a particular hyperparameter
optimization algorithm, Hyperband [LJD'18] in Dask
[Das16], a Python library that provides advanced paral-
lelism. Hyperband returns models with a high validation
score with minimal training. A Dask implementation is
attractive because Hyperband is amenable to parallelism.

« makes a simple modifications to increase Hyperband’s
amenability to parallelism.

o provides an simple heuristic to determine the parameters
Hyperband requires, which only requires knowing how
many examples the model should observe and a rough
estimate on how many parameters to sample

« provides validating experiments that illustrate common use
cases and explore performance

mailto:scott@stsievert.com

BETTER AND FASTER HYPERPARAMETER OPTIMIZATION WITH DASK

Hyperband treats computation as a scarce resource' and has
parallel underpinnings. In the experiments performed with the
Dask implementation, Hyperband returns high performing models
fairly quickly with a simple heuristic for determining Hyperband’s
input parameters. The implementation can be found in Dask’s
machine learning package, Dask-ML”.

This paper will review other existing work for hyperparameter
optimization before detailing the Hyperband implementation in
Dask. A realistic set of experiments will be presented to highlight
the performance of the Dask implementation before mentioning
ideas for future work.

Related work

Hyperparameter optimization

Hyperparameter optimization finds the optimal set of hyperpa-
rameters for a given model. These hyperparameters are chosen

to maximize performance on unseen data. The hyperparameter
optimization process typically looks like

1) Split the dataset into the train dataset and test dataset. The
test dataset is reserved for the final model evaluation.

2) Choose hyperparameters

3) Train models with those hyperparameters

4) Score those models with unseen data (a subset of the train
dataset typically referred to as the "validation set")

5) Use the best performing hyperparameters to train a model
with those hyperparameters on the complete train dataset

6) Score the model on the test dataset. This is the score that
is reported.

The rest of this paper will focus on steps 2 and 3, which is
where most of the work happens in hyperparameter optimization.

A commonly used method for hyperparameter selection is a
random selection of hyperparameters, and is typically followed
by training each model to completion. This offers several advan-
tages, including a simple implementation that is very amenable
to parallelism. Other benefits include sampling "important param-
eters" more densely than unimportant parameters [BB12]. This
randomized search is implemented in many places, including in
Scikit-Learn [PVGT11].

These implementations are by definition passive because they
do not adapt to previous training. Adaptive algorithms can return
a higher quality solution with less training by adapting to previous
training and choosing which hyperparameter values to evaluate.
This is especially useful for difficult hyperparameter optimization
problems with many hyperparameters and many values for each
hyperparameter.

A popular class of adaptive hyperparameter optimization algo-
rithms are Bayesian algorithms. These algorithms treat the model
as a black box and the model scores as an evaluation of that
black box. These algorithms have an estimate of the optimal
set of hyperparameters and use some probabilistic methods to
improve the estimate. The choice of which hyperparameter value
to evaluate depends on previous evaluations.

Popular Bayesian searches include sequential model-based
algorithm configuration (SMAC) [hutl1], tree-structure Parzen
estimator (TPE) [STZB*11], and Spearmint [PBBW12]. Many
of these are available through the "robust Bayesian optimization"

1. If computation is not a scarce resource, there is little benefit from this
algorithm.

2. https://ml.dask.org.

119

package RoBo [KFMH]17] through AutoML?. This package also
includes Fabolas, a method that takes dataset size as input and
allows for some computational control [KFB ™ 16].

Hyperband

Hyperband is a principled early stopping scheme for random-
ized hyperparameter selection* and an adaptive hyperparameter
optimization algorithm [LJD"18]. At the most basic level, it
partially trains models before stopping models with low scores,
then repeats. By default, it stops training the lowest performing
33% of the available models at certain times. This means that the
number of models decay over time, and the surviving models have
high scores.

Naturally, model quality depends on two factors: the amount
of training performed and the values of various hyperparameters.
If training time only matters a little, it makes sense to aggressively
stop training models. On the flip side, if only training time
influences the score, it only makes sense to let all models train
for as long as possible and not perform any stopping.

Hyperband sweeps over the relative importance of hyperpa-
rameter choice and amount of training. This sweep over training
time importance enables a theorem that Hyperband will return
a much higher performing model than the randomized search
without early stopping returns. This is best characterized by an
informal presentation of the main theorem:

Corollary 1. (informal presentation of [LID" 18, Theorem 5] and
surrounding discussion) Assume the loss at iteration k decays like
(1/k)Y*, and the validation losses v approximately follow the
cumulative distribution function F(v) = (v —v,)P with optimal
validation loss v, with v —v, € [0,1] .

Higher values of o« mean slower convergence, and higher
values of B represent more difficult hyperparameter optimization
problems because it’s harder to obtain a validation loss close to
the optimal validation loss V.. Taking B > 1 means the validation
losses are not uniformly distributed and higher losses are more
common. The commonly used stochastic gradient descent has
convergence rates with o =2 [Bot12] [LID™ 18, Corollary 6],
and gradient descent has convergence rates with oo =1 [B" 15,
Theorem 3.3].

Then for any T € N, let ?T be the empirically best performing
model when models are stopped early according to the infinite
horizon Hyperband algorithm when T resources have been used
to train models. Then with probability 1 — 8, the empirically best
performing model Ii\T has loss

@(Tﬁ .a> 1/max(a, B)

V;TSV*—FC(T

for some constant ¢ and a = log(log(T)/8) where log(x) =
log(xlog(x)).

By comparison, finding the best model without the early stop-
ping Hyperband performs (i.e., randomized searches and training
until completion) after T resources have been used to train models
has loss
log(T)-a

T

For simplicity, only the infinite horizon case is presented
though much of the analysis carries over to the practical finite

1/(a+p)
Vi, SVite ()

3. https://github.com/automl/

4. In general, Hyperband is a resource-allocation scheme for model selec-
tion.

https://ml.dask.org
https://github.com/automl/

120

horizon Hyperband.> Because of this, it only makes sense to
compare the loss when the number of resources used 7T is large.
When this happens, the validation loss of the Hyperband produces
Vi decays much faster than the uniform allocation scheme.®
This shows a definite advantage to performing early stopping on
randomized searches.

Li et. al. show that the model Hyperband identifies as the
best is identified with a (near) minimal amount of training in
Theorem 7 [LID ™ 18], within log factors of the known lower bound
[KCG16].

More relevant work involves combining Bayesian searches
and Hyperband, which can be combined by using the Hyper-
band bracket framework sequentially and progressively tuning a
Bayesian prior to select parameters for each bracket [FKHI18].
This work is also available through AutoML.

There is little to no gain from adaptive searches if the pas-
sive search requires little computational effort. Adaptive searches
spends choosing which models to evaluate to minimize the com-
putational effort required; if that’s not a concern there’s not much
value the value in any adaptive search is limited.

Dask

Dask provides advanced parallelism for analytics, especially for
NumPy, Pandas and Scikit-learn [Das16]. It is familiar to Python
users and does not require rewriting code or retraining models to
scale to larger datasets or to more machines. It can scale up to
clusters or to a massive dataset but also works on laptops and
presents the same interface. Dask provides two components:

o Dynamic task scheduling optimized for computation. This
low level scheduler provides parallel computation and is
optimized for interactive computational workloads.

« "Big Data" collections like parallel arrays, or dataframes,
and lists that extend common interfaces like NumPy,
Pandas, or Python iterators to larger-than-memory or dis-
tributed environments. These parallel collections run on
top of dynamic task schedulers.

Dask aims to be familiar and flexible: it aims to parallelize and
distribute computation or datasets easily while retaining a task
scheduling interface for custom workloads and integration into
other projects. It is fast and the scheduler has low overhead. It’s
implemented in pure Python and can scale from massive datasets
to a cluster with thousands of cores to a laptop running single
process. In addition, it’s designed with interactive computing and
provides rapid feedback and diagnostics to aid humans.

Dask’s implementation of Hyperband

Combining Dask and Hyperband is a natural fit. Hyperparameter
optimization searches often require significant amounts of com-
putation and can involve large datasets. Hyperband is amenable
to parallelism, and Dask can scale up to clusters or to massive
datasets.

This work focuses on the case when significant computation
is required. In these cases, the existing passive hyperparameter

5. To prove results about the finite horizon algorithm Li et. al. only need the
result in Corollary 9 [LID™ 18]. In the discussion afterwards they remark that
with Corollary 9 they can show a similar result but leave it as an exercise for
the reader.

6. This is clear by examining log(Vi — v,) for Hyperband and uniform allo-
cation. For Hyperband, the slope approximately decays like —1/max (o, f8),
much faster than the uniform allocation’s approximate slope of —1/(a+).

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

optimization algorithms in Dask-ML have limited use because
they don’t adapt to previous training to reduce the amount of
training required.’

This section will explain the parallel underpinnings of Hy-
perband, show the heuristic for Hyperband’s inputs and mention
a modification to increase amenability to parallelism. Complete
documentation of the Dask implementation of Hyperband can be
found at https://ml.dask.org/modules/generated/dask_ml.model_
selection.HyperbandSearchCV.

Hyperband architecture

There are two levels of parallelism in Hyperband, which result in
two for-loops:

e an "embarrassingly parallel]" sweep over the different
brackets of the training time importance

o each bracket has an early stopping scheme for random
search. This means the models are trained independently in
parallel. At certain times, training stops on certain models.

The amount of parallelism makes a Dask implementation very
attractive. Dask Distributed is required because the computational
graph is dynamic and depends on other nodes in the graph.

Of course, the number of models in each bracket decreases
over time because Hyperband is an early stopping strategy. This is
best illustrated by the algorithm’s pseudo-code:

from sklearn.base import BaseEstimator

def sha(n_models: int,
calls: int,
max_iter: int) -> BaseEstimator:

""n"Successive halving algorithm"""
(model and pa s are specified by the user)
models = [get_model (random_params())
for _ in range (n_models)]
while True:
models = [train (m,
models = top_k (models,
calls »= 3
if len(models) < 3:
return top_k (models,

calls)
k=1len (models)

for m in models]
// 3)

k=1)

def hyperband(max_iter: int) -> BaseEstimator:

Different brackets have different values of

"t ining" "hype ameter"” importance.

=> more models means more aggressive pruning

brackets = [(get_num models (b, max_iter),
get_initial_calls (b, max_iter))
for b in range (formula (max_iter))]

if max_iter == 243: # for example. .

and

assert brackets == [(81, 3), (34, 9),
(15, 27), (8, 81),

(5, 243)1]
Each tuple is (num_models, n_init_calls)

r, max_iter)
r in brackets]
k=1)

final_models = [sha(n,

for n,
return top_k (final _models,

In this pseudo-code, the train set and validation data are hidden.
top_k returns the k best performing models on the validation
data and train trains a model for a certain number of calls to
partial_fit.

Each bracket indicates a value in the trade-off between training
time and hyperparameter importance, and is specified by the list of
tuples in the example above. Each bracket is specified so that the

7. The existing implementation can reduce the computation required when
pipelines are used. This is particularly useful when tuning data preprocessing
(e.g., with natural language processing). More detail is at https://ml.dask.org/
hyper-parameter-search.html.

https://ml.dask.org/modules/generated/dask_ml.model_selection.HyperbandSearchCV
https://ml.dask.org/modules/generated/dask_ml.model_selection.HyperbandSearchCV
https://ml.dask.org/hyper-parameter-search.html
https://ml.dask.org/hyper-parameter-search.html

BETTER AND FASTER HYPERPARAMETER OPTIMIZATION WITH DASK

total number of partial_fit calls is approximately the same
among different brackets. Then, having many models requires
pruning models very aggressively and vice versa with few models.
As an example, with max_iter=243 the least adaptive bracket
has 5 models and no pruning. The most adaptive bracket has 81
models and fairly aggressive early stopping schedule.

The exact aggressiveness of the early stopping schedule
depends on one optional input to HyperbandSearchCV,
The default value is 3, which has
some mathematical motivation [LJD"18, Section 2.6].
aggressiveness=4 is likely more suitable for initial
exploration when not much is known about the model, data or
hyperparameters.

aggressiveness.

Input parameters

Hyperband is also fairly easy to use. It requires two input param-
eters:

1) the number of partial_fit calls for the best model
(viamax_iter)

2) the number of examples that each partial_fit call
sees (which is implicit and referred to as chunks, which
can be the "chunk size" of the Dask array).

These two parameters rely on knowing how long to train the
model® and having a rough idea on the number of parameters
to evaluate. Trying twice as many parameters with the same
amount of computation requires halving chunks and doubling
max_iter.

The primary advantage to Hyperband’s inputs is that they do
not require balancing training time importance and hyperparame-
ter importance.

In comparison, random searches require three inputs:

1) the number of partial_fit calls for every model (via
max_1iter)

2) how many parameters to try (via num_params).

3) the number of examples that each partial_fit call
sees (which is implicit and referred to as chunks, which
can be the "chunk size" of the Dask array).

Trying twice as many parameters with the same amount of
computation requires doubling num_params and halving either
max_iter or chunks, which means every model will see half
as many data. Implicitly, a balance between training time and
hyperparameter importance is being decided upon. Hyperband has
one fewer input because it sweeps over this balance’s importance
in different brackets.

Dwindling number of models

At first, Hyperband evaluates many models. As time progresses,
the number of models decay because Hyperband is an early
stopping scheme. This means towards the end of the computation,
a few (possibly high-performing) models can be training while
most of the computational hardware is free. This is especially a
problem when computational resources are not free (e.g., with
cloud platforms like Amazon AWS or Google Cloud Platform).

Hyperband is a principled early stopping scheme, but it doesn’t
protect against at least two common cases:

8. e.g., something in the form "the most trained model should see 100 times
the number of examples (aka 100 epochs)"

9. Tolerance (typically via tol) is a proxy for max_1iter because smaller
tolerance typically means more iterations are run.

121

-1 0 1

Fig. 1: The synthetic dataset used as input for the serial simulations.
The colors correspond to different class labels. In addition to these
two informative dimensions, there are 4 uninformative dimensions
with uniformly distributed random noise. There are 60,000 examples
in this dataset and 50,000 are used for training.

1) when models have converged before training completes
(i.e., the score stays constant)

2) when models have not converged and poor hyperparame-
ters are chosen (i.e, the scores are not increasing).

Providing a "stop on plateau” scheme will protect against these
cases because training will be stopped if a model’s score stops
increasing [Pre98]. This will require two additional parameters:
patience to determine how long to wait before stopping a
model, and tol which determines how much the score should
increase.

Hyperband’s early stopping is designed to identify the highest
performing model with minimal training. Setting patience to
be high avoids interference with this scheme, protects against
both cases above, and errs on the side of giving models more
training time. In particular, it also provides a basic early stopping
mechanism for the least adaptive bracket of Hyperband.

Serial Simulations

This section is focused on the initial exploration of a model and it’s
hyperparameters on a personal laptop. This section shows a per-
formance comparison to illustrate the HyperbandSearchCV’s
utility. This comparison will use a rule-of-thumb to determine the
inputs to HyperbandSearchCV.

A synthetic dataset is used for a 4 class classification problem
on a personal laptop with 4 cores. This makes the hyperparameter
selection very serial and the number of partial_ fit calls or
passes through the dataset a good proxy for time. Some detail is
mentioned in the appendix with complete details at https://github.
com/stsievert/dask-hyperband-comparison.
from dask_ml.model_selection import train_test_split
X, y = make_4_circles (num=60e3)

X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=int (10e3))

A visualization of this dataset is in Figure 1.

Model architecture & Hyperparameters

Scikit-learn’s fully-connected neural network is used, their
MLPClassifier which has several hyperparameters.
Only one affects the architecture of the best model:
hidden_layer_sizes, which controls the number of
layers and number of neurons in each layer.

There are 5 values for the hyperparameter. It is varied so the
neural network has 24 neurons but varies the network depth and
the width of each layer. Two choices are 12 neurons in 2 layers

https://github.com/stsievert/dask-hyperband-comparison
https://github.com/stsievert/dask-hyperband-comparison

122

5« 60 | passive
c B hyperband
g 40 1 yp
T
® 204
'S
0 L L L L

0.4 0.5 0.6 0.7 0.8 0.9
Final validation accuracy

(a) The final validation accuracy over the different runs. Out of
the 200 runs, the worst of the hyperband runs performs better
than 99 of the passive runs, and 21 passive runs have final
validation accuracy less than 70%.

> 0.90 1
%)
[
5
2 0.85 4
v
©
€ 0.80 A
o
.ﬁ
5 0.75 1
s assive
> 0.701 p
—— hyperband
0 200 400 600 800

Passes through dataset

(b) The average best score from Hyperband’s early stopping
scheme (via hyperband) and randomized search without any
early stopping (via passive). The shaded regions correspond
to the 25% and 75% percentiles over the different runs. The
green dotted line indicates the time required to train 4 models
with 4 Dask workers.

Fig. 2: In this simulation, each call to partial_fit sees about
1/6th of examples in the complete train dataset. Each model completes
no more than 50 passes through the data. This experiment includes
200 runs of hyperband and passive and passive.

or 6 neurons in four layers. One choice has 12 neurons in the first
layer, 6 in the second, and 3 in third and fourth layers.

The other six hyperparameters control finding the best model
and do not influence model architecture. 3 of these hyperparame-
ters are continuous and 3 are discrete (of which there are 10 unique
combinations). Details are in the appendix. These hyperparameters
include the batch size, learning rate (and decay schedule) and a
regularization parameter:

from sklearn.neural network import MLPClassifier
model = MLPClassifier(...)
params = {'batch_size': [32,
print (params.keys ())
dict_keys ([

"batch_size",

64, ..., 5121, ...}

5 choices

Bt

"learning rate", # 2 choices

"hidden_layer_sizes", # 5 choices
"alpha", # cnts

"power_t", # cnts

"momentum", # cnts

"learning rate_init" # cnts

#

—
~

Usage: rule of thumb on HyperbandSearchCV'’s inputs

HyperbandSearchCV only requires two parameters besides the
model and data as discussed above: the number of partial_fit
calls for each model (max_iter) and the number of examples
each call to partial_fit sees (which is implicit via the
Dask array chunk size chunks). These inputs control how many

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

o
0
)

1 Prioritization
—— high-scores
-=-= fifo

Validation accuracy
=] =]
£~)]

f 1
I
1
1
1
1
1
]

0 200 400 600 800
Passes through dataset

1000

Fig. 3: A visualization of how the Dask prioritization scheme influ-
ences the Hyperband’s time to solution. Dask assigns prioritizes train-
ing models with higher scores (via high-scores). When Dask uses
the default priority scheme it fits models in the order they are received
by Dask Distributed’s scheduler (via £ifo). Only the prioritization
in the figure changes because both high-scores and fifo have
the same hyperparameters, train/validation data, and assign the same
internal random state to models. The hyperparameters are chosen
from a run in Figure 2b.

hyperparameter values are considered and how long to train the
models.

The values for max_iter and chunks can be specified by
a rule-of-thumb once the number of parameter to be sampled and
the number of examples required to be seen by at least one model,
n_examples. This rule of thumb is:
The rule-of-thumb to determine inputs
max_iter = n_params
chunks = n_examples // n_params

50 * len(X_train) and
n_params = 299 . n_params is approximately the number
of hyperparameter sampled. The value of 299 is chosen to make
the Dask array evenly chunked and to sample approximately 4
hyperparameter combinations for unique combination of discrete
hyperparameters.

Creation of a HyperbandSearchCV object and the Dask
array is simple with this:

In this example, n_examples =

from dask_ml.model_ selection import HyperbandSearchCV
search = HyperbandSearchCV (
model, params,
max_iter=max_iter, aggressiveness=4)
X_train = da.from_array(X_train,
y_train = da.from_array(y_train,
search.fit (X_train, y_train)

chunks=chunks)
chunks=chunks)

aggressiveness=4 is chosen because this is my first time
optimizing these hyperparameters — I only made one small edit
to the hyperparameter search space'’. With max_iter, no
model sees more than n_examples examples as desired and
Hyperband evaluates (approximately) n_params hyperparameter

combinations'".

Performance

Two hyperparameter optimizations are compared, Hyperband and
random search and is shown in Figure 2b. Recall from above
that Hyperband is a principled early stopping scheme for ran-
dom search. The comparison mirrors that by sampling the same

10. For personal curiosity, I changed total number of neurons to 24 from 20
to allow the [12, 6, 3, 3] configuration.

11. Exact specification is available through the metadata attribute

BETTER AND FASTER HYPERPARAMETER OPTIMIZATION WITH DASK
input) "-.': f;l : 5

Fig. 4: The input and ground truth for the image denoising problem.
There are 70,000 images in the output, the original MNIST dataset.
For the input, random noise is added to images, and amount of data
grows to 350,000 input/output images. Each partial_fit calls
sees (about) 20,780 examples and each call to score uses 66,500
examples for validation.

ground
truth

hyperparameters'> and using the same validation set for each run.
The results of these simulations are in Figure 2.

Dask provides features that the Hyperband implementation
can easily exploit. Dask Distributed supports prioritizing different
jobs, so it’s simple to prioritize the training of different models
based on their most recent score. This will emphasize the more
adaptive brackets of Hyperband because they are scored more
frequently. Empirically, these are the highest performing brackets
of Hyperband [LJD " 18, Section 2.3]. This highlights how Dask is
useful to Hyperband and is shown in Figure 3.

Dask’s priority of training high scoring models works best
in very serial environments: priority makes no difference in very
parallel environment when every job can be run. In moderately
parallel environments the different priorities may lead to longer
time to solution because of suboptimal scheduling. To get around
this, the worst performing P models all have the same priority for
each bracket when there are P Dask workers.

Parallel Experiments

This section will highlight a using a model implemented with
a popular deep learning library, and will will leverage Dask’s
parallelism and investigate how well HyperbandSearchCVv
scales as the number of workers grows from 8 to 32.

The inputs and desired outputs are given in Figure 4. This is
an especially difficult problem because the noise variance varies
slightly between images. To protect against this, a shallow neural
network is used that’s slightly more complex than a linear model.
This means hyperparameter optimization is not simple.

Specifically, this section will find the best hyperparameters
for a model created in PyTorch!'3 [PGC*17] (with the wrapper
Skorch'%) for an image denoising task. Again, some detail is
mentioned in the appendix and complete details can be found at
https://github.com/stsievert/dask-hyperband-comparison.

Model architecture & Hyperparameters

Autoencoders are a type of neural network useful for image
denoising. They reduce the dimensionality of the input before
expanding to the original dimension, which is similar to a lossy
compression. Let’s create that model and the images it will
denoise:

12. As much as possible — Hyperband evaluates more hyperparameter val-
ues. The random search without early stopping evaluates every hyperparameter
value Hyperband evaluates.

13. https://pytorch.org

14. https://github.com/skorch-dev/skorch

123

custom model
from autoencoder import Autoencoder

from dask_ml.model_selection import train_test_split
import skorch learn API wrapper for PyTorch

definition with PyTorch

scikit

model = skorch.NeuralNetRegressor (Autoencoder, ...)

X, y = noisy_mnist (augment=5)
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.05)

Of course, this is a neural network so there are many hyper-
parameters to tune. Only one hyperparameter affects the model
architecture: estimator__activation, which specifies the
activation the neural network should use. This hyperparameter
is varied between 4 different choices, all different types of the
rectified linear unit (ReLU) [NH10], including the leaky ReLLU
[MHNI13], parametric ReLU [HZRS15a] and exponential linear
units (ELU) [CUHI15].

The other hyperparameters all control finding the optimal
model after the architecture is fixed. These hyperparameters in-
clude 3 discrete hyperparameters (with 160 unique combinations)
and 3 continuous hyperparameters. Some of these hyperparam-
eters include choices on the optimizer to use (SGD [Botl0]
or Adam [KB14]), initialization, regularization and optimizer
hyperparameters like learning rate or momentum. Here’s a brief
summary:

params = {'optimizer': ['SGD', 'Adam']l, ...}
print (params.keys ())

dict_keys ([

pti # 2 choices

5 ices

"module _init", # 4 choices

"module__activation”, # 4 choices
"optimizer _1r", # cnts

"op zer. _momentum", # cnts

"optimizer. _weight_decay" # cnts
1)

Details are in the appendix.

Usage: plateau specification for non-improving models

HyperbandSearchCV supports specifying patience=True
to make a decision on how long to wait to see if
scores stop increasing, as mentioned above. Let’s create a
HyperbandSearchCV object that stops training non-improving
models.

from dask_ml.model_ selection import HyperbandSearchCV
search = HyperbandSearchCV (

model, params, max_iter=max_iter,
search.fit (X_train, y_train)

patience=True)

The current implementation uses patience=True to choose a
high value of patience=max_iter // 3. Thisis mostuseful
for the least adaptive bracket of Hyperband (which trains a couple
models to completion) and mirrors the patience of the second least
adaptive bracket in Hyperband.

In these experiments, patience=max_iter // 3 hasno
effect on performance. If patience=max_iter // 6 for
these experiments, there is a moderate effect on performance
(patience=max_iter // 6 obtains a model with validation
loss 0.0637 instead of 0.0630 like patience=max_iter //
3 and patience=False).

Performance

This section will focus on how HyperbandSearchCV scales as
the number of workers grow.

https://github.com/stsievert/dask-hyperband-comparison
https://pytorch.org
https://github.com/skorch-dev/skorch

124
g 32 patience
X 24 N E True
6 16 — False
E B
0 200 400 600 800

Time (s)

(a) The time required to complete the HyperbandSearchCV search
with a different number of workers for different values of patience.
The vertical white line indicates the time required to train one model
to completion without any scoring.

g

o —0.065

v

]

g —0.070 workers

-g — 8
— 16

T

= —-0.0754 J—

= 0.075 24

> 32

—-0.080 T T T
0 200 400 600 800

Time (s)

(b) The time required to obtain a particular validation score
(or negative loss) with a different number of Dask workers for
HyperbandSearchCV with patience=False in the solid line
and patience=True with the dotted line.

patience, workers

()]
g £ 20 - —— False, 8
B — he —— False, 24
o —— oA _
<z o L 1 ' ‘7' S\ T Irue, 5254
0 200 400 600 800 rue
Time (s)
(¢) The effect that specifying patience=True has on

HyperbandSearchCV for different number of Dask workers.

Fig. 5: In these experiments, the models are trained to completion and
their history is saved. Simulations are performed with this history that
consume 1 second for a partial fit call and 1.5 seconds for a
score call. In this simulations, only the number of workers change:
the models are static so Hyperband is deterministic. The model trained
the longest requires 243 seconds to be fully trained, and additional
time for scoring.

The speedups HyperbandSearchCV can achieve begin to
saturate between 16 and 24 workers, at least in this experi-
ment as shown in Figure 5b. Figures 5b and 5c show that
HyperbandSearchCV spends significant amount of time with
a low number of workers without improving the score. Luckily,
HyperbandSearchCV will soon support keyboard interruptions
and can exit early if the user desires.

Specifying patience=True for HyperbandSearchCV
has a larger effect on time-to-solution when fewer workers are
used as shown in Figure 5a. A stop-on-plateau scheme will have
most effect in very serial environments, similar to the priority
scheme used by Dask.

Future work

The biggest area for improvement is using another application
of the Hyperband algorithm: controlling the dataset size as the
scarce resource. This would treat every model as a black box and
vary the amount of data provided. This would not require the
model to implement partial_fit and would only require a
fit method.

PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Future work might also include providing an option to further
reduce time to solution. This might involve choosing which
brackets of HyperbandSearchCV to run. Empirically, the best
performing brackets are not passive [LJD " 18, Section 2.3].

Future work specifically does not include implementing the
asynchronous version of successive halving [LJR" 18] in Dask.
This variant of successive halving is designed to reduce the waiting
time in very parallel environments. It does this by stopping a
model’s training only if it’s in the worst performing fraction of
models received so far and does not wait for all models to be
collected. Dask’s advanced task scheduling helps resolves this
issue for HyperbandSearchCV.

Regardless of these potential improvements, the implemen-
tation of Hyperband in Dask-ML allows efficient computa-
tion of hyperparameter optimization. The implementation of
HyperbandSearchCV specifically leverages the abilities of
Dask Distributed and can handle distributed datasets.

Appendix

This section expands upon the example given above. Complete de-
tails can be found at https://github.com/stsievert/dask-hyperband-
comparison.

Serial Simulation

Here are some of the other hyperparameters tuned, alongside
descriptions of their default values and the values chosen for
tuning.

e alpha, a regularization term that can affect generaliza-
tion. This value defaults to 10~* and is tuned logarithmi-
cally between 1076 and 1073

e Dbatch_size, the number of examples used to approxi-
mate the gradient at each optimization iteration. This value
defaults to 200 and is chosen to be one of [32,64,...,512].

¢ learning_rate controls the learning rate decay
scheme, either constant or via the "invscaling"
scheme, which has the learning rate decay like Y/t where
p and }p are also tuned. } defaults to 10~3 and is tuned
logarithmically between 10~ and 102, p defaults to 0.5
and is tuned between 0.1 and 0.9.

« momentum, the amount of momentum to include in Nes-
terov’s momentum [Nes13]. This value is chosen between
O and 1.

The learning rate scheduler used is not Adam [KB14] because
it claims to be most useful without tuning and has reportedly has
marginal gain [WRS™17].

Parallel Experiments

Here are some of the other hyperparameters tuned:

e optimizer: which optimization method should be used
for training? Choices are stochastic gradient descent
(SGD) [Bot10] and Adam [KB14]. SGD is chosen with
5/7th probability.

e estimator__init: how should the estimator be ini-
tialized before training? Choices are Xavier [GB10] and
Kaiming [HZRS15b] initialization.

¢ Dbatch_size: how many examples should the opti-
mizer use to approximate the gradient? Choices are
[32,64,...,512].

https://github.com/stsievert/dask-hyperband-comparison
https://github.com/stsievert/dask-hyperband-comparison

BETTER AND FASTER HYPERPARAMETER OPTIMIZATION WITH DASK

¢ weight_decay: how much of a particular type of regu-
larization should the neural net have? Regularization helps
control how well the model performs on unseen data. This
value is chosen to be zero 1/6th of the time, and if not
zero chosen uniformly at random between 107> and 103
logarithmically.

e optimizer_ 1lr: what learning rate should the opti-
mizer use? This is the most basic hyperparameter for the
optimizer. This value is tuned between 10~ and 10! after
some initial tuning.

e optimizer__momentum, which is a hyper-parameter
for the SGD optimizer to incorporate Nesterov momentum
[Nes13]. This value is tuned between 0 and 1.

REFERENCES

[B15]

[BB12]

[Bot10]

[Bot12]

[CUHI15]

[Das16]

[FKH18]

[GB10]

[hut11]

[HZRS15a]

[HZRS15b]

[KB14]

[KCG16]

[KFB'16]

[KFMH17]

Sébastien Bubeck et al. Convex optimization: Algorithms and
complexity. Foundations and Trends® in Machine Learning, 8(3-
4):231-231, 2015.

James Bergstra and Yoshua Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Research,
13(Feb):281-281, 2012. URL: http://jmlr.csail.mit.edu/papers/
v13/bergstral2a.html.

Léon Bottou. Large-scale machine learning with stochastic
gradient descent. In Yves Lechevallier and Gilbert Saporta,
editors, Proceedings of the 19th International Conference on
Computational Statistics (COMPSTAT’2010), pages 177-187.
Springer, Paris, France, August 2010. URL: http://leon.bottou.
org/papers/bottou-2010.

Léon Bottou. Stochastic gradient tricks. In Grégoire Montavon,
Genevieve B. Orr, and Klaus-Robert Miiller, editors, Neural Net-
works, Tricks of the Trade, Reloaded, Lecture Notes in Computer
Science (LNCS 7700), pages 430-445. Springer, 2012. URL:
http://leon.bottou.org/papers/bottou-tricks-2012.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter.
Fast and accurate deep network learning by exponential linear
units (elus). arXiv preprint arXiv:1511.07289, 2015.

Dask Development Team. Dask: Library for dynamic task
scheduling, 2016. URL: https://dask.org.

Stefan Falkner, Aaron Klein, and Frank Hutter. BOHB: Robust
and efficient hyperparameter optimization at scale. 80:1437-
1446, 10-15 Jul 2018. URL: http://proceedings.mlr.press/v80/
falkner18a.html.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty

of training deep feedforward neural networks. In Proceedings of

the thirteenth international conference on artificial intelligence
and statistics, pages 249-256, 2010.

Sequential model-based optimization for general algorithm con-
figuration, volume International Conference on Learning and
Intelligent Optimization. Springer, 2011. doi1:10.1007/978~-
3-642-25566-3_40.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 10261034, 2015.
Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun. Delv-
ing deep into rectifiers: Surpassing human-level performance on
imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pages 1026—-1034, 2015.
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On
the complexity of best-arm identification in multi-armed bandit
models. Journal of Machine Learning Research, 17(1):1-42,
2016. URL: http://jmlr.org/papers/v17/kaufmanl6a.html.

Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig,
and Frank Hutter. Fast bayesian optimization of machine
learning hyperparameters on large datasets. arXiv preprint
arXiv:1605.07079, 2016. URL: https://arxiv.org/abs/1605.07079.
A. Klein, S. Falkner, N. Mansur, and F. Hutter. Robo: A flexible
and robust bayesian optimization framework in python. In NIPS
2017 Bayesian Optimization Workshop, December 2017. URL:
https://github.com/automl/RoBO.

[LID"18]

[LIRT18]

[MHO8]

[MH15]

[MHN13]

[MS75]

[Nes13]

[NH10]

[PBBW12]

[PGC*17]

[Pre98]

[PVG*t11]

[STZB'11]

[Tib96]

[WRS*17]

[WVI]I16]

125

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh,
and Ameet Talwalkar. Hyperband: A novel bandit-based ap-
proach to hyperparameter optimization. Journal of Machine
Learning Research, 18(185):1-52, 2018. URL: http://jmlr.org/
papers/v18/16-558.html.

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Go-
nina, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar.
Massively parallel hyperparameter tuning. arXiv preprint
arXiv:1810.05934, 2018.

Laurens van der Maaten and Geoffrey Hinton. Visualiz-
ing data using t-sne. Journal of machine learning research,
9(Nov):2579-2605, 2008. URL: http://jmlr.csail.mit.edu/papers/
v9/vandermaaten08a.html.

Maren Mahsereci and Philipp Hennig. Probabilistic line searches
for stochastic optimization. In C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 28, pages 181-189. Curran
Associates, Inc., 2015. URL: http://papers.nips.cc/paper/5753-
probabilistic-line-searches- for-stochastic-optimization.pdf.
Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier
nonlinearities improve neural network acoustic models. In Proc.
icml, volume 30, page 3, 2013.

Donald W. Marquardt and Ronald D. Snee. Ridge regression in
practice. The American Statistician, 29(1):3-20, 1975. doi:
10.1080/00031305.1975.10479105.

Yurii Nesterov. Introductory lectures on convex optimization: A
basic course, volume 87. Springer Science & Business Media,
2013. doi:10.1007/978-1-4419-8853-9.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
international conference on machine learning (ICML-10), pages
807-814, 2010.

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors. Practical Bayesian Optimization of
Machine Learning Algorithms. Curran Associates, Inc.,
2012. URL: http://papers.nips.cc/paper/4522-practical-bayesian-
optimization-of-machine-learning-algorithms.pdf.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan,
Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison,
Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017. URL: https://openreview.net/pdf?
id=BJJsrmfCZ.

Lutz Prechelt. Automatic early stopping using cross validation:
quantifying the criteria. Neural Networks, 11(4):761-767, 1998.
doi:10.1016/50893-6080(98)00010-0.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter
Prettenhofer, Ron Weiss, and Vincent Dubourg. Scikit-learn: Ma-
chine learning in python. Journal of machine learning research,
12(Oct):2825-2830, 2011. URL: http://jmlr.csail.mit.edu/papers/
v12/pedregosal 1a.html.

J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors. Algorithms for Hyper-Parameter Optimiza-
tion. Curran Associates, Inc., 2011. URL: http://papers.nips.cc/
paper/4443-algorithms- for-hyper-parameter-optimization.pdf.
Robert Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society: Series B (Method-
ological), 58(1):267-288, 1996. doi:10.1111/7.2517-
6161.1996.tb02080.x.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro,
and Benjamin Recht. The marginal value of adaptive gradient
methods in machine learning. arXiv preprint arXiv:1705.08292,
2017.

Martin Wattenberg, Fernanda Viégas, and Ian Johnson. How to
use t-sne effectively. Distill, 2016. URL: http://distill.pub/2016/
misread-tsne, doi:10.23915/distil1.00002.

http://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
http://jmlr.csail.mit.edu/papers/v13/bergstra12a.html
http://leon.bottou.org/papers/bottou-2010
http://leon.bottou.org/papers/bottou-2010
http://leon.bottou.org/papers/bottou-tricks-2012
https://dask.org
http://proceedings.mlr.press/v80/falkner18a.html
http://proceedings.mlr.press/v80/falkner18a.html
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://dx.doi.org/10.1007/978-3-642-25566-3_40
http://jmlr.org/papers/v17/kaufman16a.html
https://arxiv.org/abs/1605.07079
https://github.com/automl/RoBO
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
http://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.html
http://jmlr.csail.mit.edu/papers/v9/vandermaaten08a.html
http://papers.nips.cc/paper/5753-probabilistic-line-searches-for-stochastic-optimization.pdf
http://papers.nips.cc/paper/5753-probabilistic-line-searches-for-stochastic-optimization.pdf
http://dx.doi.org/10.1080/00031305.1975.10479105
http://dx.doi.org/10.1080/00031305.1975.10479105
http://dx.doi.org/10.1007/978-1-4419-8853-9
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://openreview.net/pdf?id=BJJsrmfCZ
https://openreview.net/pdf?id=BJJsrmfCZ
http://dx.doi.org/10.1016/S0893-6080(98)00010-0
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://papers.nips.cc/paper/4443-algorithms-for-hyper-parameter-optimization.pdf
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://distill.pub/2016/misread-tsne
http://distill.pub/2016/misread-tsne
http://dx.doi.org/10.23915/distill.00002

	Introduction
	Contributions
	Related work
	Hyperparameter optimization
	Hyperband
	Dask

	Dask's implementation of Hyperband
	Hyperband architecture
	Input parameters
	Dwindling number of models

	Serial Simulations
	Model architecture & Hyperparameters
	Usage: rule of thumb on HyperbandSearchCV's inputs
	Performance

	Parallel Experiments
	Model architecture & Hyperparameters
	Usage: plateau specification for non-improving models
	Performance

	Future work
	Appendix
	Serial Simulation
	Parallel Experiments

	References

