
126 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Visualization of Bioinformatics Data with Dash Bio
Shammamah Hossain‡∗

F

Abstract—Plotly’s Dash is a library that empowers data scientists to create
interactive web applications declaratively in Python. Dash Bio is a bioinformatics-
oriented suite of components that are compatible with Dash. Visualizations of
data that are often found in the field of bioinformatics can now be integrated into
Dash applications. We present the Dash Bio suite of components and parts of an
auxiliary library that contains tools that parse files from common bioinformatics
databases.

Index Terms—visualization, bioinformatics, sequence analysis, Dash

Introduction

The emergent field of bioinformatics is an amalgamation of
computer science, statistics, and biology; it has proven itself
revolutionary in biomedical research. As scientific techniques in
areas such as genomics and proteomics improve, experimentalists
in bioinformatics may find themselves needing to interpret large
volumes of data. In order to use this data to efficiently provide
meaningful solutions to biological problems, it is important to
have robust data visualization tools.

Many bioinformaticians have already created analysis and
visualization tools with Dash and plotly.py, but only through sig-
nificant workarounds and modifications made to preexisting graph
types. We present an interface to create single-line declarations
of charts for complex datasets such as hierarchical clustering
and multiple sequence alignment. In addition, we introduce sev-
eral new chart types, three-dimensional and interactive molecule
visualization tools, and components that are specifically related
to genomic and proteomic sequences. In a separate library, we
present a set of simple parsing scripts that handle some of the most
common file types found in bioinformatics-related databases.

This paper outlines the contents of the Dash Bio package. With
this package, we hope to impart the powerful data-visualization
tools and flexibility of Dash to the flourishing bioinformatics
community.

Dash

Plotly’s dash library provides a declarative Python in-
terface for developing full-stack web applications ("Dash
apps"). [Dash] In addition to the main dash library, the
dash-html-components and dash-core-components
packages comprise the building blocks of a Dash app.
dash-html-components provides an interface for building

* Corresponding author: shammamah@plot.ly
‡ Plotly, Inc., 118 - 5555 Avenue de Gaspe, Montreal QC H2T 2A3

Copyright © 2019 Shammamah Hossain. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Fig. 1: A simple Dash application.

the layout of a Dash application that mimics the process of
building the layout of a website; dash-core-components is a
suite of common tools used for interactions with a Dash app (e.g.,
dropdowns, text inputs, and sliders) and includes a dcc.Graph
component for interactive graphs made with plotly.py.

A minimal Dash application that comprises a string on a
webpage can be produced with the following code.
import dash
import dash_html_components as html

app = dash.Dash()
app.layout = html.Div('Hello, world!')

app.run_server()

Upon running the above code, a localhost address is specified
in the console. Visiting this address in the browser yields a simple
webpage that contains the text "Hello, world!" (see Fig. 1).

Interactivity is implemented with callbacks. These allow for
reading the values of inputs in the Dash app (e.g., text inputs,
dropdowns, and sliders), which can subsequently be used to
compute the value of one or more "outputs", i.e., properties of
other components in the app. The function that computes the
outputs is wrapped in a decorator that specifies the aforementioned
inputs and outputs; together, they form a callback. The callback is
triggered whenever one of the specified inputs changes in value.

For instance, the dash_core_components.Input()
component controls the children property of a
dash_html_components.Div() component in the
following code.

mailto:shammamah@plot.ly

VISUALIZATION OF BIOINFORMATICS DATA WITH DASH BIO 127

Fig. 2: A simple Dash application that showcases interactivity. Text
that is entered into the input component is converted to uppercase and
displayed in the app.

import dash
import dash_html_components as html
import dash_core_components as dcc

app = dash.Dash()
app.layout = html.Div(children=[

html.Div(id='output-div'),
dcc.Input(id='text-input')

])

@app.callback(
dash.dependencies.Output('output-div', 'children'),
[dash.dependencies.Input('text-input', 'value')]

)
def capitalize_user_input(text):

return text.upper()

app.run_server()

The output of the code is shown in Fig. 2.

React.js and Python

Some of the components in the Dash Bio package are wrappers
around pre-existing JavaScript or React libraries. The development
process for JavaScript-based components is fairly straightforward;
the only thing that needs to be added in many cases is an interface
for Dash to access the state of the component and read or write
to its properties. This provides an avenue for interactions with the
components from within a Dash app.

The package also contains three Python-based compo-
nents: Clustergram, ManhattanPlot, and VolcanoPlot. Un-
like the JavaScript-based components, the Python-based com-
ponents are essentially functions that return JSON data
that is in the format of the figure argument for a
dash_core_components.Graph component.

Dash Bio Components

Dash Bio components fall into one of three categories.

• Custom chart types: Specialized chart types that allow
for intuitive visualizations of complex data. This category
includes Circos, Clustergram, Ideogram, ManhattanPlot,
NeedlePlot, and VolcanoPlot.

• Three-dimensional visualization tools: Structural diagrams
of biomolecules that support a wide variety of user
interactions and specifications. This category includes
Molecule3dViewer and Speck.

• Sequence analysis tools: Interactive and searchable ge-
nomic and proteomic sequences, with additional features
such as multiple sequence alignment. This category in-
clude AlignmentChart, OncoPrint, and SequenceViewer.

The documentation for all of the Dash Bio components, includ-
ing example code, can be found at https://dash.plot.ly/dash-bio.

Circos

Fig. 3: A simple Dash Bio Circos component with chords connecting
pairs of data points. Data taken from [Ghr] and converted to JSON
in the CircosJS repository [Circos].

Circos is a circular graph. It can be used to highlight relation-
ships between, for example, different genes by drawing chords
that connect the two (see Fig. 3).

The Dash Bio Circos component is a wrapper of the
CircosJS [Circos] library, which supports additional graph
types like heatmaps, scatter plots, histograms, and stacked charts.
Input data to Circos take the form of a dictionary, and are supplied
to the layout parameter of the component. Additional data,
such as a list of chords, are specified in the tracks parameter.
Multiple tracks can be plotted on the same Circos graph. Hover
data and click data on all Circos graph types are captured and are
available to Dash apps.

Clustergram

A clustergram is a combination heatmap-dendrogram that is com-
monly used in gene expression data. The hierarchical clustering
that is represented by the dendrograms can be used to identify
groups of genes with related expression levels.

The Dash Bio Clustergram component is a Python-based
component that uses plotly.py to generate a figure. It takes as
input a two-dimensional numpy array of floating-point values.
Imputation of missing data and computation of hierarchical clus-
tering both occur within the component itself. Clusters that meet
or exceed a user-defined threshold of similarity comprise single
traces in the corresponding dendrogram, and can be highlighted
with annotations (see Fig. 4).

The user can specify additional parameters to customize the
metrics and methods used to compute parts of the clustering, such
as the pairwise distance between observations and the linkage

https://dash.plot.ly/dash-bio

128 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 4: A Dash Bio clustergram component displaying hierarchical
clustering of gene expression data from two lung cancer subtypes. A
cluster from the row dendrogram (displayed to the left of the heatmap)
is annotated. Data taken from [KR09].

matrix. Hover data and click data are accessible from within the
Dash app for the heatmap and both dendrograms that are shown
in Fig. 4.

Ideogram

Fig. 5: A Dash Bio ideogram component demonstrating the ho-
mology feature with two human chromosomes. Data taken from the
ideogram.js repository [Ideo].

An ideogram is a schematic representation of genomic data.
Chromosomes are represented as strands, and the locations of
specific genes are denoted by bands on the chromosomes.

The Dash Bio Ideogram component is built on top of the
ideogram.js library [Ideo], and includes features like an-
notations, histograms, and homology (see Fig. 5). Annotations
can be made to different segments of each chromosome and
displayed in the form of bands, and relationships between different
chromosomes can be highlighted by using the homology feature to
connect a region on one chromosome to a region on another (see
Fig. 5). Upon hovering over an annotated part of the chromosome,
the annotation data is readable from within a Dash app. Addition-
ally, information from the the "brush" feature, which allows the

user to highlight a subset of the chromosome, is accessible from
within the Dash application. This information includes the starting
position and ending position of the brush, as well as the length (in
base pairs) of the selection made with the brush.

Manhattan Plot

Fig. 6: A Dash Bio ManhattanPlot component. The threshold level
is denoted by the red line; all points of interest are colored red. The
purple line is the suggestive line. Data taken from the manhattanly
repository [Man].

A Manhattan plot is a plot commonly used in genome-wide
association studies; it can highlight specific nucleotides that, when
changed to a different nucleotide, are associated with certain
genetic conditions.

The Dash Bio ManhattanPlot component is built with plotly.py.
Input data take the form of a pandas dataframe. The two lines on
the plot (see Fig. 6) represent, respectively, the threshold level and
the suggestive line.1 The y-values of these lines can be controlled
by the user. Hover data and click data are accessible from within
the Dash app.

Needle Plot

Fig. 7: A Dash Bio NeedlePlot component that shows the prop-
erties of mutations in a genomic strand. Data taken from the
muts-needle-plot repository [Muts].

A needle plot is a bar plot in which each bar has been
replaced with a marker at the top and a line from the x-axis to

1. Information about the meaning of these two lines can be found in [ER15].

VISUALIZATION OF BIOINFORMATICS DATA WITH DASH BIO 129

the aforementioned marker. Its primary use-case is visualization
of dense datasets that would appear too crowded to be interpreted
effectively when represented with a bar plot. In bioinformatics, a
needle plot may be used to annotate the positions on a genome at
which genetic mutations happen (see Fig. 7).

The Dash Bio NeedlePlot component was built using plotly.js.
It receives input data as a dictionary. Different colors and marker
styles can be used to distinguish different types of mutations, and
the domains of specific genes can be demarcated on the plot.

Volcano Plot

Fig. 8: A Dash Bio VolcanoPlot component. Points of interest are col-
ored in red, and the effect size and statistical significance thresholds
are represented by dashed lines. Data taken from the manhattanly
repository [Man].

A volcano plot is a plot used to concurrently display the
statistical significance and a defined "effect size" (e.g., the fold
change2) of a dataset. This type of plot is incredibly useful when
visualizing a large number of data points that represent replicate
data; it facilitates identification of data that simultaneously have
statistical significance and a large effect.

The Dash Bio VolcanoPlot component was built using
plotly.py. It takes a pandas dataframe as input data. Lines that
represent the threshold for effect size (both positive and negative)
and a threshold for statistical significance can be defined by the
user (see Fig. 8). Hover data and click data are accessible from
within the Dash app.

Molecule 3D Viewer

The Dash Bio Molecule3dViewer component was built on top of
the molecule-3d-for-react [Mol3D] library. Its purpose is
to display molecular structures. These types of visualizations can
show the shapes of proteins and provide insight into the way that
they bind to other molecules. This renders them invaluable when
communicating the mechanics of biomolecular processes.

Molecule3dViewer receives input data as a dictionary which
specifies the layout and style of each atom in the molecule. It can
render molecules in a variety of styles, such as ribbon diagrams,
and allows for mouse-click selection of specific atoms or residues
(see Fig. 9) that can be read from or written to within a Dash app.

Speck

The Dash Bio Speck component is a WebGL-based 3D renderer
that is built on top of Speck [Speck]. It uses techniques like

2. This refers to the ratio of a measurement to its preceding measurement.

Fig. 9: A Dash Bio Molecule3DViewer component displaying the
ribbon structure of a section of DNA. A selected residue is highlighted
in cyan. Structural data taken from the Protein Data Bank [1bna].

Fig. 10: A Dash Bio Speck component displaying the atomic structure
of a strand of DNA in a ball-and-stick representation. Ambient
occlusion is used to provide realistic shading on the atoms. Structural
data taken from the Speck repository [Speck].

ambient occlusion and outlines to provide a rich view of molecular
structures (see Fig.).

The Dash Bio Speck component receives input data as a
dictionary that contains, for each atom, the atomic symbol and
the position in space (given as x, y, and z coordinates). Param-
eters related to the rendering of the molecule, such as the atom
sizes, levels of ambient occlusion, and outlines, can optionally be
specified in another dictionary supplied as an argument.

Alignment Chart

An alignment chart is a tool for viewing multiple sequence
alignment. Multiple related sequences of nucleotides or amino
acids (e.g., the amino acid sequences of proteins from different

130 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

Fig. 11: A Dash Bio AlignmentChart component displaying the
P53 protein’s amino acid sequences from different organisms. A
conservation barplot is displayed on top, and the bottom row of the
heatmap contains the consensus sequence. Data taken from UniProt
[UniP].

organisms that appear to serve the same function) are displayed in
the chart to show their similarities.

The Dash Bio AlignmentChart component is built on top of
react-alignment-viewer [Align]. It takes a FASTA file
as input and computes the alignment. It can optionally display
a barplot that represents the level of conservation of a particular
amino acid or nucleotide across each sequence defined in the input
file (see Fig. 11). Hover data and click data are accessible from
within the Dash app.

Onco Print

Fig. 12: A Dash Bio OncoPrint component that shows mutation events
for the genomic sequences that encode different proteins. Data taken
from cBioPortal [cBio], [cBio2].

An OncoPrint graph is a type of heatmap that facilitates the
visualization of multiple genomic alteration events (see Fig. 12).

The Dash Bio OncoPrint component is built on top of
react-oncoprint [Onco]. Input data for the component takes

the form of a list of dictionaries that each define a sample,
gene, alteration, and mutation type. Hover data and click data are
accessible from within the Dash app.

Sequence Viewer

Fig. 13: A Dash Bio SequenceViewer component that is showing the
amino acid sequence for insulin. A coverage has been applied to the
sequence to emphasize subsequences of amino acids that form certain
structures, like alpha helices or beta sheets. Data taken from NeXtProt
[nXP].

The Dash Bio SequenceViewer component is a simple tool that
allows for annotating genomic or proteomic sequences. It is based
on the react-sequence-viewer library [SeqV].

It includes a search function that allows the user to search
the sequence using regular expressions. In addition, the sequence
can be annotated using a selection defined by a starting point, an
end point, and a color, or a coverage that can encode additional
information that is revealed once a subsequence is clicked. The
selection and coverage are available for reading from and writing
to in the Dash app, and the mouse selection and search results are
also accessible.

File Parsers

The dash-bio-utils package was developed in tandem with
the dash-bio package. It contains parsers for common filetypes
used in bioinformatics analyses. The parsers in the package trans-
late the data encoded in those files to inputs that are compatible
with Dash Bio components.

FASTA data

FASTA files are commonly used to represent one or more genomic
or proteomic sequences. Each sequence may be preceded by a line
starting with the > character which contains information about
the sequence, such as the name of the gene or organism; this is
the description of the sequence. Sections of the description are
separated with pipes (|).

The protein_reader file in the dash-bio-utils
package accepts a file path to, or a string representation of, a
FASTA file, and returns a dictionary that contains the sequence
and any metadata that are specified in the file. SeqIO from
the Biopython [BioP] package was used to extract all of the
sequences from the file into a list of dictionaries, each of which
contained the sequence description and the sequence itself, both
in string format.

Different databases (e.g., neXtProt, GenBank, and SWISS-
PROT) encode the sequence description metadata in different
ways. The database from which a FASTA file is retrieved is

VISUALIZATION OF BIOINFORMATICS DATA WITH DASH BIO 131

specified in the first line. In the protein_reader file, the code
for the database is translated into the information that is encoded
in the first line for that particular database. [NCBI]

From there, string splitting (or, if necessary, regex) is used
on the description line of the file to generate a dictionary of the
sequence metadata.

This parser enables quick access to all of the information
contained in a FASTA file, which in turn can make the information
more human-readable. This is a feature that supplements the ease-
of-use of the dash-bio package.

For instance, in the code snippet below, the parser is used on
a string with the contents of a FASTA file for the albumin protein
[nXP]:
>>> from dash_bio_utils import protein_reader as pr
>>> fasta_string = \
'''>nxp|NX_P02768-1|ALB|Serum albumin|Iso 1

MKWVTFISLLFLFSSAYSRGVFRRDAHKSEVAHRFKDLGEENFKALVLIAF
AQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENCDKSLHTLFGDKLCTVA
TLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPRLVRPEVDVMCTAFHD
NEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTECCQAADKAACLLP
KLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVARLSQRFPKAEFAEV
SKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSISSKLKECCEKP
LLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKDVFLGMFLYE
YARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDEFKPLVEEP
QNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRNLGKVGS
KCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESLVNRRP
CFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKHKP
KATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL'''
>>> albumin = pr.read_fasta(
... data_string=fasta_string
...)[0]
>>> albumin['description']
{'identifier': 'NX_P02768-1',
'gene name': 'ALB',
'protein name': 'Serum albumin',
'isoform name': 'Iso 1'}
>>> albumin['sequence'][:10]
'MKWVTFISLL'

Gene Expression Data

Gene expression data take the form of two-dimensional arrays
that measure expression levels for sets of genes under varying
conditions.

A common format that is used to represent gene expression
data is the SOFT format. These files can be found in large
databases such as the Gene Expression Omnibus (GEO), [GEO]
which contains gene expression data from thousands of experi-
ments. SOFT files contain the expression data, as well as descrip-
tive information pertaining to the specific genes and conditions
that are in the dataset.

The gene_expression_reader file in the
dash-bio-utils package accepts a path to, or a string
representation of, a SOFT file or TSV file containing gene
expression data. It can parse the contents of SOFT and TSV files,
and return the numerical data and metadata that they contain.
In addition, selection of a subset of the data (given by lists of
selected rows and selected columns supplied to the parser) can be
returned.

The GEOparse package [GEOP] was used to extract the
numeric gene expression data to a pandas dataframe, in addition
to the metadata, in SOFT files:
geo_file = gp.get_GEO(

filepath=filepath,
geotype='GDS'

)
df = geo_file.table

pandas was used to do the same with TSV files:
df = pd.read_csv(

filepath, sep='\t'
)

Both file parsers by default return a tuple comprising the file
metadata, all of the row names, and all of the column names.

If the parameter return_filtered_data is set to True,
the parameters rows and columns (lists that contain the names
of, respectively, the selected rows and selected columns) must be
specified. The dataframe df is then filtered according to these
selections, and a two-dimensional numpy array containing the
filtered data is returned.

In the case of SOFT files, there is additional information about
subsets of the dataset (e.g., the expression data that are recorded
with and without inducing a particular gene). This information
becomes another element in the tuple.

In the code snippet below, the parser is used to extract
information from a dataset related to the miR-221 RNA molecule
[miR]:
>>> from dash_bio_utils import gene_expression_reader
>>> data = gene_expression_reader.read_soft_file(
... filepath='GDS5373.soft'
...)
>>> data[0]
{'title': [
'''miR-221 expression effect on prostate cancer
cell line'''
],
'description': [
'''Analysis of PC-3 prostate cancer cells

expressing pre-miR-221. miR-221 is frequently
downregulated in primary prostate cancer.
Results provide insight into the role of
miR-221 in the pathogenesis of prostate
cancer.'''

],
'type': ['Expression profiling by array'],
'pubmed_id': ['24607843'],
'platform': ['GPL570'],
'platform_organism': ['Homo sapiens'],
'platform_technology_type': ['in situ oligonucleotide'],
'feature_count': ['54675'],
'sample_organism': ['Homo sapiens'],
'sample_type': ['RNA'],
'channel_count': ['1'],
'sample_count': ['4'],
'value_type': ['count'],
'reference_series': ['GSE45627'],
'order': ['none'],
'update_date': ['Nov 03 2014']}
>>> data[1]
{'GDS5373_1': {'dataset_id': ['GDS5373'],

'description': ['miR-122 expression'],
'sample_id': ['GSM1110879,GSM1110880'],
'type': ['protocol']},

'GDS5373_2': {'dataset_id': ['GDS5373'],
'description': ['control'],
'sample_id': ['GSM1110881,GSM1110882'],
'type': ['protocol']}}

>>> data[2][:10]
['1007_s_at', '1053_at', '117_at', '121_at',
'1255_g_at', '1294_at', '1316_at', '1320_at',
'1405_i_at', '1431_at']
>>> data[3]
['GSM1110879', 'GSM1110880', 'GSM1110881', 'GSM1110882']
>>> selected = gene_expression_reader.read_soft_file(
... filepath='GDS5373.soft',
... rows=['1255_g_at', '1316_at'],
... columns=['GSM1110879', 'GSM1110881'],
... return_filtered_data=True
...)
>>> selected

132 PROC. OF THE 18th PYTHON IN SCIENCE CONF. (SCIPY 2019)

array([[22.7604, 23.0321],
[21.416 , 21.0107]])

Molecule Structural Data

The Protein Data Bank (PDB) [PDB] is a database of files that
describe macromolecular structural data. All of the files on PDB
are in the PDB format.

In the dash_bio_utils package, the create_data
function in pdb_parser generates a JSON string from the
contents of a specified PDB file. This string contains information
about the atoms and the bonds in the molecular structure.

The PDB format is standardized; properties of each atom such
as its position in space and the chain and residue to which it
belongs are found within specific column indices for each row.
[PdbF] pdb_parser uses this information to parse each line, and
creates a list of dictionaries, each of which contains information
about the aforementioned properties for each atom in the PDB file.

The parmed library [Par] was used to read the bond informa-
tion from the PDB file. Using the bond information from parmed,
a list of dictionaries is created; each dictionary contains the indices
of the pair of atoms that form a bond.

In the code snippet below, this parser is used to extract data
from a PDB file that contains structural information for a small
section of DNA: [1bna]
>>> import json
>>> from dash_bio_utils import pdb_parser
>>> pdb_string = pdb_parser.create_data('1bna.pdb')
>>> pdb_1bna = json.loads(pdb_string)
>>> pdb_1bna['atoms'][:3]
[{'name': "O5'", 'chain': 'A',
'positions': [18.935, 34.195, 25.617],
'residue_index': 1, 'element': 'O',
'residue_name': 'DC1', 'serial': 0},
{'name': "C5'", 'chain': 'A',
'positions': [19.13, 33.921, 24.219],
'residue_index': 1, 'element': 'C',
'residue_name': 'DC1', 'serial': 1},
{'name': "C4'", 'chain': 'A',
'positions': [19.961, 32.668, 24.1],
'residue_index': 1, 'element': 'C',
'residue_name': 'DC1', 'serial': 2}]
>>> pdb_1bna['bonds'][:3]
[{'atom2_index': 0, 'atom1_index': 1},
{'atom2_index': 1, 'atom1_index': 2},
{'atom2_index': 2, 'atom1_index': 3}]

Comparisons with Existing Tools

GenomeDiagram

The GenomeDiagram package [Geno] provides a way to visualize
comparative genomics data in a circular format (see Fig. 14); sup-
ported chart types include line charts, bar graphs, and heatmaps.

GenomeDiagram can additionally export high-quality vector
diagrams of the charts that are generated, which can in turn be
used in research papers. It can be used in conjunction with the
BioPython module to interface with GenBank.

GenomeDiagram shares many similarities with the Circos
component; both are circular representations of genomic data, and
both support multiple "tracks", or traces, of multiple chart types.
The key difference between the two, and the advantage of Dash
Circos, is flexibility and interactivity; Dash Circos supports click
and hover interactions, and GenomeDiagram does not.

Furthermore, Dash Circos can be interactively modified with
respect to the data that are displayed, as well as the appearance of
the graph itself. This allows for the implementation of many useful

Fig. 14: An example of a circular diagram that can be generated with
GenomeDiagram. Source: [Geno]

Fig. 15: Part of a multiple sequence alignment displayed as a Plotly
heatmap. Source: [JCViz]

functions, such as cross-filtering. Instead of needing to re-create
the image every time a change is made, updates to the Circos
component are reflected immediately within a Dash app.

Plotly.py

Plotly’s Python plotting library has been used to create charts that
are visually similar to those that are used to display certain types
of bioinformatics data [JCViz]. For instance, a sequence alignment
viewer can be created with a Plotly heatmap (see Fig. 15).

The Dash Bio AlignmentViewer component applies a similar
approach; the React.js component uses a plotly.js heatmap to
display the alignment. However, the API of AlignmentViewer
differs from that of the Plotly.py heatmap. The latter requires the
user to define properties of the graph that don’t have anything to do
with the alignment itself. Annotations must be specified, as well
as a custom heatmap colorscale in which the values correspond
to bases and not percentiles of a dataset. It also requires pre-
processing of the FASTA data, and translation into a format that
can be fit into the parameters of a Plotly heatmap.

In contrast, AlignmentViewer includes support for information
that is specific to multiple sequence alignment. The gap and
conservation, for instance, can be optionally included as barplots;
the method of conservation can also be changed, and the consensus

VISUALIZATION OF BIOINFORMATICS DATA WITH DASH BIO 133

sequence can be displayed on the chart. Data in the form of
FASTA files can be used as input to the component without any
further processing required. This allows for the programmer to
more easily interact with the component, as it removes the need to
restructure data to fit a specific format for visualization.

Limitations and Future Directions

File Formats

Currently, the dash_bio_utils package only supports specific
data file formats (namely, PDB, FASTA, and SOFT). Additionally,
most of the components require JSON data as input; this file
format is not typically provided in datasets or studies. Future
developments to the package should therefore include processing
for other important file formats, such as SAM/BAM/BAI for
sequence alignment, or Genbank files (.gb).

Conclusion

The Dash Bio component suite facilitates visualization of common
types of datasets that are collected and analyzed in the field of
bioinformatics. It remains consistent with the declarative nature
of Plotly’s Dash, and permits users to create interactive and
responsive web applications that can be integrated with other
Dash components. The dash-bio-utils package additionally
converts files from some of the most prominent bioinformatics
databases into familiar Python data types such as dictionaries.
When used in conjunction with the dash-bio package, this
enables bioinformaticians to quickly and concisely communicate
information among one another, and to the rest of the scientific
community.

REFERENCES

[Mol3D] Autodesk. Molecule 3D for React. URL: https://github.com/plotly/
molecule-3d-for-react

[PDB] Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N.,
Weissig, H., Shindyalov, I.N., Bourne, P.E.. (2000) The Protein Data
Bank. Nucleic Acids Research, 28: 235-242. URL:https://www.rcsb.
org DOI: 10.1093/nar/28.1.235.

[Man] Bhatnagar, Samir. manhattanly. URL: https://github.com/
sahirbhatnagar/manhattanly

[cBio] Cerami, E., Gao, J., Dogrusoz, U., Gross, B. E., Sumer, S. O.,
Aksoy, B. A., Jacobsen, A., Byrne, C. J., Heuer, M. L., Larsson, E.,
Antipin, Y., Reva, B., Goldberg, A. P., Sander, C., Schultz, N..*The
cBio Cancer Genomics Portal: An Open Platform for Exploring
Multidimensional Cancer Genomics Data*. Cancer Discov May 1
2012 (2) (5) 401-404; DOI: 10.1158/2159-8290.CD-12-0095.

[BioP] Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C.
J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski,
B., de Hoon, M. J. L.. Biopython: freely available Python tools for
computational molecular biology and bioinformatics. Bioinformatics
25 (11), 1422–1423 (2009). DOI: 10.1093/bioinformatics/btp163.

[1bna] PDB ID: 1BNA. Drew, H.R., Wing, R.M., Takano, T.,
Broka, C., Tanaka, S., Itakura, K., Dickerson, R.E.. Struc-
ture of a B-DNA dodecamer: conformation and dynam-
ics.. (1981) Proc.Natl.Acad.Sci.USA 78: 2179-2183. DOI:
10.1073/pnas.78.4.2179.

[GEO] Edgar, R., Domrachev, M., Lash, A.E.. Gene Expression Om-
nibus: NCBI gene expression and hybridization array data
repository. Nucleic Acids Res. 2002 Jan 1;30(1):207-10. DOI:
10.1093/nar/30.1.207.

[SeqV] FlyBase. react-sequence-viewer. URL: https://github.com/FlyBase/
react-sequence-viewer

[Ghr] Genome Reference Consortium. Genome Reference Consortium Hu-
man Build 37 (GRCh37) (2009). URL: https://www.ncbi.nlm.nih.
gov/assembly/GCF_000001405.13/

[cBio2] Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer,
S. O., Sun, Y., Jacobsen, A., Sinha, R. Integrative Analysis of Com-
plex Cancer Genomics and Clinical Profiles Using the cBioPortal.
Science Signaling Apr 2 2013. DOI: 10.1126/scisignal.2004088.

[Circos] Girault, N.. circosJS: d3 library to build circular graphs. URL: https:
//github.com/nicgirault/circosJS

[GEOP] Gumienny, R.. GEOparse. URL: https://github.com/guma44/
GEOparse

[JCViz] johnchase. Visualizing bioinformatics data with plot.ly. URL:https:
//plot.ly/~johnchase/22/visualizing-bioinformatics-data-with-plo/

[miR] Kneitz, B., Krebs, M., Kalogirou, C., Schubert, M., et al. Sur-
vival in patients with high-risk prostate cancer is predicted by
miR-221, which regulates proliferation, apoptosis, and invasion of
prostate cancer cells by inhibiting IRF2 and SOCS3. Cancer Res
2014 May 1;74(9):2591-603. PMID: 24607843. DOI: 10.1158/0008-
5472.CAN-13-1606.

[KR09] Kuner, R., Muley, T., Meister, M., Ruschhaupt, M. et al. Global gene
expression analysis reveals specific patterns of cell junctions in non-
small cell lung cancer subtypes. Lung Cancer 2009 Jan;63(1):32-8.
PMID: 18486272. DOI: 10.1016/j.lungcan.2008.03.033.

[NCBI] The NCBI C++ Toolkit (https://ncbi.github.io/cxx-toolkit/) by the
National Center for Biotechnology Information, U.S. Fasta Sequence
ID Format. National Library of Medicine; Bethesda MD, 20894
USA.

[nXP] NeXtprot. ALB - Serum albumin - proteomics. URL: https://www.
nextprot.org/entry/NX_P02768/proteomics

[Dash] Plotly. Introducing Dash. (2017) URL: https://medium.com/
@plotlygraphs/introducing-dash-5ecf7191b503

[Align] Plotly. React Alignment Viewer. URL: https://github.com/plotly/
react-alignment-viewer

[Onco] Plotly. React OncoPrint. URL: https://github.com/plotly/react-
oncoprint

[Geno] Pritchard, L., White, J. A., Birch, P. R. J., Toth, I. K. GenomeDia-
gram: a python package for the visualization of large-scale genomic
data. Bioinformatics, Volume 22, Issue 5, 1 March 2006, Pages
616–617. DOI: 10.1093/bioinformatics/btk021

[ER15] Reed, E., Nunez, S., Kulp, D., Qian, J., Reilly, M. P., and Foulkes,
A. S. (2015) A guide to genome-wide association analysis and
post-analytic interrogation. Statist. Med., 34: 3769– 3792. DOI:
10.1002/sim.6605.

[Muts] Schroeder, M.. Mutations Needle Plot (muts-needle-plot). URL:
https://github.com/bbglab/muts-needle-plot

[Par] Swails, J.. ParmEd. URL: https://github.com/ParmEd/ParmEd
[Speck] Terrell, R.. Speck. URL: https://github.com/wwwtyro/speck
[UniP] The UniProt Consortium. UniProt: a worldwide hub of pro-

tein knowledge. Nucleic Acids Res. 47: D506-515 (2019). DOI:
10.1093/nar/gky1049.

[Ideo] Weitz, E.. ideogram: Chromosome visualization with JavaScript.
URL: https://github.com/eweitz/ideogram

[PdbF] wwwPDB. Protein Data Bank Contents Guide: Atomic Coordinate
Entry Format Description Version 3.30 (2008). 185-197.

https://github.com/plotly/molecule-3d-for-react
https://github.com/plotly/molecule-3d-for-react
https://www.rcsb.org
https://www.rcsb.org
https://github.com/sahirbhatnagar/manhattanly
https://github.com/sahirbhatnagar/manhattanly
https://github.com/FlyBase/react-sequence-viewer
https://github.com/FlyBase/react-sequence-viewer
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.13/
https://github.com/nicgirault/circosJS
https://github.com/nicgirault/circosJS
https://github.com/guma44/GEOparse
https://github.com/guma44/GEOparse
https://plot.ly/~johnchase/22/visualizing-bioinformatics-data-with-plo/
https://plot.ly/~johnchase/22/visualizing-bioinformatics-data-with-plo/
https://ncbi.github.io/cxx-toolkit/
https://www.nextprot.org/entry/NX_P02768/proteomics
https://www.nextprot.org/entry/NX_P02768/proteomics
https://medium.com/@plotlygraphs/introducing-dash-5ecf7191b503
https://medium.com/@plotlygraphs/introducing-dash-5ecf7191b503
https://github.com/plotly/react-alignment-viewer
https://github.com/plotly/react-alignment-viewer
https://github.com/plotly/react-oncoprint
https://github.com/plotly/react-oncoprint
https://github.com/bbglab/muts-needle-plot
https://github.com/ParmEd/ParmEd
https://github.com/wwwtyro/speck
https://github.com/eweitz/ideogram

	Introduction
	Dash
	React.js and Python

	Dash Bio Components
	Circos
	Clustergram
	Ideogram
	Manhattan Plot
	Needle Plot
	Volcano Plot
	Molecule 3D Viewer
	Speck
	Alignment Chart
	Onco Print
	Sequence Viewer

	File Parsers
	FASTA data
	Gene Expression Data
	Molecule Structural Data

	Comparisons with Existing Tools
	GenomeDiagram
	Plotly.py

	Limitations and Future Directions
	File Formats

	Conclusion
	References

