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PMDA - Parallel Molecular Dynamics Analysis
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Abstract—MDAnalysis is an object-oriented Python library to analyze trajecto-
ries from molecular dynamics (MD) simulations in many popular formats. With
the development of highly optimized MD software packages on high perfor-
mance computing (HPC) resources, the size of simulation trajectories is growing
up to many terabytes in size. However efficient usage of multicore architecture
is a challenge for MDAnalysis, which does not yet provide a standard interface
for parallel analysis. To address the challenge, we developed PMDA, a Python li-
brary that builds upon MDAnalysis to provide parallel analysis algorithms. PMDA
parallelizes common analysis algorithms in MDAnalysis through a task-based
approach with the Dask library. We implement a simple split-apply-combine
scheme for parallel trajectory analysis. The trajectory is split into blocks, analysis
is performed separately and in parallel on each block ("apply"), then results from
each block are gathered and combined. PMDA allows one to perform parallel
trajectory analysis with pre-defined analysis tasks. In addition, it provides a
common interface that makes it easy to create user-defined parallel analysis
modules. PMDA supports all schedulers in Dask, and one can run analysis in
a distributed fashion on HPC machines, ad-hoc clusters, a single multi-core
workstation or a laptop. We tested the performance of PMDA on single node
and multiple nodes on a national supercomputer. The results show that paral-
lelization improves the performance of trajectory analysis and, depending on the
analysis task, can cut down time to solution from hours to minutes. Although
still in alpha stage, it is already used on resources ranging from multi-core
laptops to XSEDE supercomputers to speed up analysis of molecular dynamics
trajectories. PMDA is available as open source under the GNU General Public
License, version 2 and can be easily installed via the pip and conda package
managers.

Index Terms—Molecular Dynamics Simulations, High Performance Computing,
Python, Dask, MDAnalysis

Introduction

Classical molecular dynamics (MD) simulations have become
an invaluable tool to understand the function of biomolecules
[KM02], [DDG+12], [SB14], [Oro14], [BLL18], [HBD+19] (of-
ten with a view towards drug discovery [BS12]) and diverse
problems in materials science [Rot09], [LS15], [VMMC+15],
[LJYH18], [KAHC18], [FPM18]. Systems are modeled as par-
ticles (for example, atoms) whose interactions are approximated
with a classical potential energy function [FS02], [BGM+18].
Forces on the particles are derived from the potential and Newton’s
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equations of motion for the particles are solved with an integrator
algorithm, typically using highly optimized MD codes that run
on high performance computing (HPC) resources or workstations
(often equipped with GPU accelerators). The resulting trajectories,
the time series of particle positions r(t) (and possibly veloci-
ties), are analyzed with statistical mechanics approaches [Tuc10],
[BGM+18] to obtain predictions or to compare to experimentally
measured quantities. Currently simulated systems may contain
millions of atoms and the trajectories can consist of hundreds of
thousands to millions of individual time frames, thus resulting in
file sizes ranging from tens of gigabytes to tens of terabytes. Pro-
cessing and analyzing these trajectories is increasingly becoming
a rate limiting step in computational workflows [CR15], [BFJ18].
Modern MD packages are highly optimized to perform well on
current HPC clusters with hundreds of cores such as the XSEDE
supercomputers [TCD+14] but current general purpose trajectory
analysis packages [Gio19] were not designed with HPC in mind.

In order to scale up trajectory analysis from workstations to
HPC clusters with the MDAnalysis Python library [MADWB11],
[GLB+16] we leveraged Dask [Roc15], [Das16], a task-graph par-
allel framework, together with Dask’s various schedulers (in par-
ticular distributed), and created the Parallel MDAnalysis (PMDA)
library. By default, PMDA follows a simple split-apply-combine
[Wic11] approach for trajectory analysis, whereby each task ana-
lyzes a single trajectory segment and reports back the individual
results that are then combined into the final result [KPJB17]. Our
previous work established that Dask worked well with MDAnal-
ysis [KPJB17] and that this approach was competitive with other
task-parallel approaches [PLK+18]. However, we did not provide
a general purpose framework to write parallel analysis tools
with MDAnalysis. Here we show how the split-apply-combine
approach lends itself to a generalizable Python implementation
that makes it straightforward for users to implement their own
parallel analysis tools. At the heart of PMDA is the idea that
the user only needs to provide a function that analyzes a single
trajectory frame. PMDA provides the remaining framework via the
ParallelAnalysisBase class to split the trajectory, apply
the user’s function to trajectory frames, run the analysis in parallel
via Dask/distributed, and combines the data. It also contains a
growing library of ready-to-use analysis classes, thus enabling
users to immediately accelerate analysis that they previously
performed in serial with the standard MDAnalysis analysis classes
[GLB+16].

Methods

At the core of PMDA is the idea that a common interface makes
it easy to create code that can be easily parallelized, especially
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if the analysis can be split into independent work over multiple
trajectory slices and a final step, in which all data from the
trajectory slices are combined. We first describe typical steps in
analyzing MD trajectories and then outline the approach taken in
PMDA.

Trajectory analysis

A trajectory with T saved time steps consists of a sequence
of coordinates

{(
r1(t),r2(t), . . .rN(t)

)}
1≤t≤T where ri(t) are the

Cartesian coordinates of particle i at time step t with N particles
in the simulated system, i.e., T ×N×3 floating point numbers in
total. To simplify notation, we consider t as an integer that indexes
the trajectory frames; each frame index corresponds to a physical
time in the trajectory that we could obtain if needed. In general,
the coordinates are passed to a function A ({ri(t)}) to compute a
time-dependent quantity

A(t) = A ({ri(t)}). (1)

This quantity does not have to be a simple scalar; it may be a
vector or a function of another parameter. In many cases, the time
series A(t) is the desired result. It is, however, also common to
perform some form of reduction on the data, which can be as
simple as a time average to compute a thermodynamic average
〈A〉 ≡ Ā = T−1

∑
T
t=1 A(t). Such an average can be easily calculated

in a post-analysis step after the time series has been obtained. An
example of a more complicated reduction is the calculation of a
histogram such as a radial distribution function (RDF) [FS02],
[Tuc10] between two types of particles with numbers Na and Nb,

g(r) =

〈
1

NaNb

Na

∑
i=1

Nb

∑
j=1

δ (|ra,i− rb, j|− r)

〉
(2)

where the Dirac delta function counts the occurrences of particles
i and j at distance r. To compute a RDF, we could generate a time
series of histograms along the spatial coordinate r, i.e., A(t;r) for
each frame, and then perform the average in post-analysis. How-
ever, storage of such histograms becomes problematic, especially
if instead of 1-dimensional RDFs, densities on 3-dimensional
grids are being calculated. It is therefore better to reformulate
the algorithm to perform a partial average (or reduction) during
the analysis on a per-frame basis. For histograms, this could mean
building a partial histogram and updating counts in the bins after
every frame. PMDA supports the simple time series data collection
and the per-frame reduction.

Split-apply-combine

The split-apply-combine strategy can be thought of as a simplified
map-reduce [Wic11] that provides a conceptually simple approach
to operate on data in parallel. It is based on the fundamental
assumption that the data can be partitioned into blocks that can
be analyzed independently. The trajectory is split along the time
axis into M blocks of approximately equal size, τ = T/M. One
trajectory block can be viewed as a slice of a trajectory, e.g., for
block k,

{(
r1(t),r2(t), . . .rN(t)

)}
tk≤t<tk+τk

with τk frames in the
block. Each block k is analyzed in parallel by applying the function
A to the frames in each block. Finally, the results from all blocks
are gathered and combined.

The advantage of this approach is its simplicity. Many typical
analysis tasks are based on calculations of time series from single
trajectory frames as in Eq. 1 and it is this calculation that varies
from task to task while the book-keeping and trajectory slicing
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Fig. 1: High-level view of the split-apply-combine algo-
rithm in PMDA. Steps are labeled with the methods in
pmda.parallel.ParallelAnalysisBase that perform the
corresponding function. Methods in red (_single_frame() and
_conclude()) must be implemented for every analysis function
because they are not general. The blue method _reduce() must
be implemented unless a simple time series is being calculated. The
_prepare() method is optional and provides a hook to initialize
custom data structures.

is the same. Given a function A that performs the single frame
calculation, PMDA provides code to perform the other necessary
steps (Fig. 1).

As explained in more detail later, a class derived
from pmda.parallel.ParallelAnalysisBase encapsu-
lates one trajectory analysis calculation. Individual methods cor-
respond to different steps and in the following (and in Fig. 1) we
will mention the names of the relevant methods to make clear how
PMDA abstracts parallel analysis. The calculation with M parallel
workers is prepared by setting up data structures to hold the final
result (method _prepare()). The indices for the M trajectory
slices are created in such a way that the number of frames τk are
balanced and do not differ by more than 1. For each slice or block
k, the single frame analysis function A (_single_frame())
is sequentially applied to all frames in the slice. The result, A(t),
is reduced, i.e., added to the results for this block. For time series,
A(t) is simply appended to a list to form a partial time series for
the block. More complicated reductions (method _reduce())
can be implemented, for example, the data may be histogrammed
and added to a partial histogram for the block (as necessary for
the implementation of the parallel RDF Eq. 2).

Implementation

PMDA is written in Python and, through MDAnalysis [GLB+16],
reads trajectory data from the file system into NumPy arrays
[Oli07], [VDWCV11]. Dask’s delayed() function is used to
build a task graph that is then executed using any of the schedulers
available to Dask [Das16].

MDAnalysis combines a trajectory file (frames of coordinates
that change with time) and a topology file (list of particles, their
names, charges, bonds — all information that does not change with
time) into a Universe(topology, trajectory) object.
Arbitrary selections of particles (often atoms) are made available
as an AtomGroup and the common approach in MDAnalysis is
to work with these objects [GLB+16]; for instance, all coordinates
of an AtomGroup with N atoms named protein are accessed
as the N×3 NumPy array protein.positions.
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pmda.parallel.ParallelAnalysisBase is the base
class for defining a split-apply-combine parallel multi frame
analysis in PMDA. It requires a Universe to operate on and
any AtomGroup instances that will be used. A parallel analysis
class must be derived from ParallelAnalysisBase and
at a minimum, must implement the _single_frame(ts,
agroups) and _conclude() methods. The arguments
of _single_frame(ts, agroups) are a MDAnalysis
Timestep instance and a tuple of AtomGroup instances so that
the following code could be run (the code is a simplified version
of the current implementation):
1 @delayed
2 def analyze_block(blockslice):
3 result = []
4 for ts in u.trajectory[blockslice]:
5 A = self._single_frame(ts, agroups)
6 result.append(A)
7 return result

The task graph is constructed by wrapping the above code into
delayed() and appending a delayed instance for each trajectory
slice to a (delayed) list:
7 blocks = delayed([analyze_block(blockslice)
8 for blockslice in slices])
9 results = blocks.compute(**scheduler_kwargs)

Calling the compute() method of the delayed list object hands
the task graph over to the scheduler, which then executes the graph
on the available Dask workers. For example, the multiprocessing
scheduler can be used to parallelize task graph execution on a
single multiprocessor machine while the distributed scheduler is
used to run on multiple nodes of a HPC cluster. After all workers
have finished, the variable results contains a list of results
from the individual blocks. PMDA actually stores these raw results
as ParallelAnalysisBase._results and leaves it to the
_conclude() method to process the results; this can be as
simple as numpy.hstack(self._results) to generate a
time series by concatenating the individual time series from each
block.

The default _reduce() method appends the results and is
equivalent to line 6. In general, line 6 reads
6 result = self._reduce(result, A)

where variable result should have been properly initialized in
_prepare(). In order to be parallelizable, the _reduce()
method must be a static method that does not access any class
variables but returns its modified first argument. For example, the
default "append" reduction is
@staticmethod
def _reduce(res, result_single_frame):

res.append(result_single_frame)
return res

In general, the ParallelAnalysisBase controls
access to instance attributes via a context manager
ParallelAnalysisBase.readonly_attributes().
It sets them to "read-only" for all parallel parts to prevent the
common mistake to set an instance attribute in a parallel task,
which breaks under parallelization as the value of an attribute in
an instance in a parallel process is never communicated back to
the calling process.

Using PMDA

PMDA allows one to perform parallel trajectory analysis with pre-
defined analysis tasks. In addition, it provides a common interface

that makes it easy to create user-defined parallel analysis modules.
Here, we will introduce some basic usages of PMDA.

Pre-defined Analysis

PMDA contains a growing number of pre-defined
analysis classes that are modeled after functionality in
MDAnalysis.analysis and that can be used right
away. Current examples are pmda.rms for RMSD analysis,
pmda.contacts for native contacts analysis, pmda.rdf
for radial distribution functions, and pmda.leaflet for the
LeafletFinder analysis tool [MADWB11], [PLK+18] for the topo-
logical analysis of lipid membranes. While the first three modules
are based on pmda.parallel.ParallelAnalysisBase
as described above and follow the strict split-apply-combine
approach, pmda.leaflet is an example of a more complicated
task-based algorithm that can also easily be implemented with
MDAnalysis and Dask [PLK+18]. All PMDA classes can be used
in a similar manner to classes in MDAnalysis.analysis,
which makes it easy for users of MDAnalysis to switch to
parallelized versions of the algorithms. One example is the
calculation of the root mean square distance (RMSD) of Cα

atoms of the protein with pmda.rms.RMSD. An analysis class
object is instantiated with the necessary input data such as the
AtomGroup containing the Cα atoms and a reference structure.
To perform the analysis, the run() method is called.
import MDAnalysis as mda
from pmda import rms
# Create a Universe based on simulation topology
# and trajectory
u = mda.Universe(top, trj)

# Select all the C alpha atoms
ca = u.select_atoms('name CA')

# Take the initial frame as the reference
u.trajectory[0]
ref = u.select_atoms('name CA')

# Build the parallel rms object, and run
# the analysis with 4 workers and 4 blocks.
rmsd = rms.RMSD(ca, ref)
rmsd.run(n_jobs=4, n_blocks=4)

# The results can be accessed in rmsd.rmsd.
print(rmsd.rmsd)

Here the only difference between using the serial version and
the parallel version is that the run() method takes additional
arguments n_jobs and n_blocks, which determine the level
of parallelization. When using the multiprocessing scheduler (the
default), n_jobs is the number of processes to start and typically
the number of blocks n_blocks is set to the number of available
CPU cores. When the distributed scheduler is used, Dask will
automatically learn the number of available Dask worker processes
and n_jobs is meaningless; instead it makes more sense to set
the number of trajectory blocks that are then spread across all
available workers.

User-defined Analysis

PMDA makes it easy to create analysis classes such as the
ones discussed above. If the per-frame analysis can be expressed
as a simple function, then an analysis class can be created
with a factory function. Otherwise, a class has to be derived
from pmda.parallel.ParallelAnalysisBase. Both ap-
proaches are described below.
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pmda.custom.AnalysisFromFunction():
PMDA provides helper functions in pmda.custom to rapidly
build a parallel class for users who already have a single frame
function that 1. takes one or more AtomGroup instances as
input, 2. analyzes one frame in a trajectory and returns the result
for this frame. For example, if we already have a function to
calculate the radius of gyration [MM14] of a protein given in
AtomGroup ag, namely ag.radius_of_gyration() (as
available in MDAnalysis), then we can write a simple function
rgyr() that returns for each trajectory frame a tuple containing
the time at the current time step and the value of the radius of
gyration:
import MDAnalysis as mda
u = mda.Universe(top, traj)
protein = u.select_atoms('protein')

def rgyr(ag):
return (ag.universe.trajectory.time,

ag.radius_of_gyration())

We can wrap rgyr() in the
pmda.custom.AnalysisFromFunction() class instance
factory function to build a parallel version of rgyr():
import pmda.custom
parallel_rgyr = pmda.custom.AnalysisFromFunction(

rgyr, u, protein)

This new parallel analysis class can be run just as the existing
ones:
parallel_rgyr.run(n_jobs=4, n_blocks=4)
print(parallel_rgyr.results)

The time series of the results is stored in the attribute
parallel_rgyr.results; for our example where each per-
frame result is a tuple (time, Rgyr), the time series is stored
as a T ×2 array that can be plotted with
import matplotlib.pyplot as plt
data = parallel_rgyr.results
plt.plot(data[:, 0] , data[:, 1])

pmda.parallel.ParallelAnalysisBase: For
more general cases, one can write the parallel class with the help of
pmda.parallel.ParallelAnalysisBase, following the
schema in Fig. 1. To build a new analysis class, one should derive
a class from pmda.parallel.ParallelAnalysisBase
that implements

1) the single frame analysis method _single_frame()
(required),

2) the final results conclusion method _conclude() (re-
quired),

3) the additional preparation method _prepare() (op-
tional),

4) the reduce method for frames within the same block
_reduce() (optional for time series, required for any-
thing else).

As an example, we show how one can build a class to
calculate the radius of gyration of a protein given in AtomGroup
protein; of course, in this case the simple approach with
pmda.custom.AnalysisFromFunction() would be eas-
ier.
import numpy as np
from pmda.parallel import ParallelAnalysisBase

class RGYR(ParallelAnalysisBase):
def __init__(self, protein):

universe = protein.universe
super(RGYR, self).__init__(universe,

(protein,))
def _prepare(self):

self.rgyr = None
def _conclude(self):

self.rgyr = np.vstack(self._results)

The _conclude() method reshapes the attribute
self._results, which always holds the results from all
blocks, into a time series. The call signature for method
_single_frame() is fixed and ts must contain the current
MDAnalysis Timestep and agroups must be a tuple of
AtomGroup instances. The current frame number, time and
radius of gyration are returned as the single frame results:
def _single_frame(self, ts, atomgroups):

protein = atomgroups[0]
return (ts.frame, ts.time,

protein.radius_of_gyration())

Because we want to return a time series, it is not nec-
essary to define a _reduce() method. This class can be
used in the same way as the class that we defined with
pmda.custom.AnalysisFromFunction:
parallel_rgyr = RGYR(protein)
parallel_rgyr.run(n_jobs=4, n_blocks=4)
print(parallel_rgyr.results)

Performance Evaluation

In order to characterize the performance of PMDA on a typical
HPC machine we performed computational experiments for two
different analysis tasks, the RMSD calculation after optimum
superposition (RMSD) and the water oxygen radial distribution
function (RDF).

For the RMSD task we computed the time series of root mean
square distance after optimum superposition (RMSD) of all 564
Cα atoms of a protein with the initial coordinates at the first frame
as reference, as implemented in class pmda.rms.RMSD. The
RMSD calculation with optimum superposition was performed
with the fast QCPROT algorithm [The05] as implemented in
MDAnalysis [MADWB11].

As a second test case we computed the water oxygen-oxygen
radial distribution function (RDF, Eq. 2) in 75 bins up to a cut-off
of 5 Å for all 24,239 oxygen atoms in the water molecules in our
test system, using the class pmda.rdf.InterRDF. The RDF
calculation is compute-intensive due to the necessity to calculate
and histogram a large number (O(N) because of the use of a cut-
off) of distances for each time step; it additionally exemplifies a
non-trivial reduction.

These two common computational tasks differ in their com-
putational cost and represent two different requirements for data
reduction and thus allow us to investigate two distinct use cases.
We investigated a long (9000 frames) and a short trajectory (900
frames) to assess to which degree parallelization remained practi-
cal. The computational experiments were performed in different
scenarios to assess the influence of different Dask schedulers
(multiprocessing and distributed) and the role of the file storage
system (shared Lustre parallel file system and local SSD), as
described below and summarized in Table 1.

Test system, benchmarking environment, and data files

We tested PMDA 0.2.1, MDAnalysis 0.20.0 (development ver-
sion), Dask 1.2.0, and NumPy 1.15.4 under Python 3.6. All
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configuration label file
storage

scheduler max
nodes

max
pro-
cesses

Lustre-distributed-
3nodes

Lustre distributed 3 72

Lustre-distributed-
6nodes

Lustre distributed 6 72

Lustre-multiprocessing Lustre multiprocessing 1 24
SSD-distributed SSD distributed 1 24
SSD-multiprocessing SSD multiprocessing 1 24

TABLE 1: Testing configurations on SDSC Comet. max nodes is
the maximum number of nodes that were tested; the multiprocessing
scheduler is limited to a single node. max processes is the maximum
number of processes or Dask workers that were employed.

packages except PMDA and MDAnalysis were installed with the
conda package manager from the conda-forge channel. PMDA and
MDAnalysis development versions were installed from source in
a conda environment with pip install.

Benchmarks were run on the CPU nodes of XSEDE’s
[TCD+14] SDSC Comet supercomputer, a 2 PFlop/s cluster with
1,944 Intel Haswell Standard Compute Nodes in total. Each
node contains two Intel Xeon CPUs (E5-2680v3, 12 cores, 2.5
GHz) with 24 CPU cores per node, 128 GB DDR4 DRAM
main memory, and a non-blocking fat-tree InfiniBand FDR 56
Gbps node interconnect. All nodes share a Lustre parallel file
system and have access to node-local 320 GB SSD scratch
space. Jobs are run through the SLURM batch queuing system.
Our SLURM submission shell scripts and Python benchmark
scripts for SDSC Comet are available in the repository https:
//github.com/Becksteinlab/scipy2019-pmda-data and are archived
under DOI 10.5281/zenodo.3228422.

The test data files consist of a topology file
YiiP_system.pdb (with N = 111,815 atoms) and
two trajectory files YiiP_system_9ns_center.xtc
(Gromacs XTC format, T = 900 frames) and
YiiP_system_90ns_center.xtc (Gromacs XTC format,
T = 9000 frames) of the membrane protein YiiP in a lipid bilayer
together with water and ions. The test trajectories are made
available on figshare at DOI 10.6084/m9.figshare.8202149.

We tested different combinations of Dask schedulers (dis-
tributed, multiprocessing) with different means to read the trajec-
tory data (either from the shared Lustre parallel file system or from
local SSD) as shown in Table 1. Using either the multiprocessing
scheduler or the SSD restrict runs to a single node (maximum 24
CPU cores). With distributed (and Lustre) we tested fully utilizing
all cores on a node and also only occupying half the available
cores, while doubling the total number of nodes. In all cases the
trajectory were split in as many blocks as there were available
processes or Dask workers. We performed five independent repeat
runs for all scenarios in Table 1 and plotted the mean of the
reported timing quantity together with the standard deviation from
the mean to indicate the variance of the runs.

Measured timing quantities

The ParallelAnalysisBase class collects detailed timing
information for all blocks and all frames and makes these data
available in the attribute ParallelAnalysisBase.timing:
We measured the time tprepare for _prepare(), the time twait

k
that each task k waits until it is executed by the scheduler, the
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Fig. 2: Strong scaling performance of the RMSD analysis task with
short (900 frames) and long (9000) frames trajectories on SDSC
Comet, where a single node contains 24 cores. The total time to
completion t total was measured for different testing configurations
(Table 1). A and D: t total as a function of processes or Dask workers,
i.e., the number of CPU cores that were actually used. The number of
trajectory blocks was the same as the number of CPU cores. B and E:
efficiency E. The ideal case is E = 1. C and F: speed-up S. The dashed
line represents ideal strong scaling S(M) = M. Points represent the
mean over five repeats with the standard deviation shown as error
bars.

time tUniverse
k to create a new Universe for each Dask task

(which includes opening the shared trajectory and topology files
and loading the topology into memory), the time tI/O

k,t to read each
frame t in each block k from disk into memory, the time tcompute

k,t to
perform the computation in _single_frame() and reduction
in _reduce(), the time tconclude

k to perform the final processing
of all data in _conclude(), and the total wall time to solution
t total.

We analyzed the total time to completion as a function of
the number of CPU cores, which was equal to the number of
trajectory blocks, so that each block could be processed in parallel.
We quantified the strong scaling behavior by calculating the speed-
up for running on M CPU cores with M parallel Dask tasks as
S(M) = t total(1)/t total(M), where t total(1) is the performance of
the PMDA code using the serial scheduler. The efficiency was
calculated as E(M) = S(M)/M. The errors of these quantities were
derived by the standard error propagation.

To gain better insight into the performance-limiting steps in
our algorithm (Fig. 1) we plotted the maximum times over all
ranks because the overall time to completion cannot be faster than
the slowest parallel process. For example, for the read I/O time
we calculated the total read I/O time for each rank k as tI/O

k =

∑
tk+τk
t=tk tI/O

k,t and then reported maxk tI/O
k .

RMSD analysis task

The parallelized RMSD analysis in pmda.rms.RMSD scaled
well only to about half a node (12 cores), as shown in Fig. 2 A, D,
regardless of the length of the trajectory. The efficiency dropped
below 0.8 (Fig. 2 B, E) and the maximum achievable speed-up
remained below 10 for the short trajectory (Fig. 2 C) and below
20 for the long one (Fig. 2 F). Overall, using the multiprocessing
scheduler and either Lustre or SSD gave the best performance and
shortest time to solution. The distributed scheduler with SSD gave
widely variable results as seen by large standard deviations over

https://docs.conda.io
https://anaconda.org/conda-forge/
https://github.com/Becksteinlab/scipy2019-pmda-data
https://github.com/Becksteinlab/scipy2019-pmda-data
https://doi.org/10.5281/zenodo.3228422
https://doi.org/10.6084/m9.figshare.8202149
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Fig. 3: Detailed per-task timing analysis for parallel components of
RMSD analysis task. Individual times per task were measured for
different testing configurations (Table 1). A and D: Maximum waiting
time for the task to be executed by the Dask scheduler. B and E:
Maximum total compute time per task. C and F: Maximum total read
I/O time per task. Points represent the mean over five repeats with the
standard deviation shown as error bars.

multiple repeats. It still performed better than when the Lustre file
system was used but overall, for a single node, the multiprocessing
scheduler always gave better performance with less variation in
run time. These results were consistent with findings in our earlier
pilot study where we had looked at the RMSD task with Dask
and had found that multiprocessing with both SSD and Lustre had
given good single node performance but, using distributed, had
not scaled well beyond a single SDSC Comet node [KPJB17].

A detailed look at the maximum times (Fig. 3) that the Dask
worker processes spent on waiting to be executed, performing
the RMSD calculation with data in memory, and reading the
trajectory frame data from the file into memory showed that the
waiting time (Fig. 3 A, D) either increased from about 0.02
s to 0.1 s for multiprocessing or was roughly a constant 1 s
for distributed (on Lustre). For reasons that were not clear, the
distributed scheduler with SSD had on average the largest wait
times, with large fluctuations, ranging from 0.1 s to 10 s (red lines
in Fig. 3 A, D). The computation itself scaled very well (Fig.
3 B, E) with only small variations, indicating that split-apply-
combine is a robust approach to parallelization, once the data are
in memory. The reading time scaled fairly well but exhibited some
variation beyond a single node (24 cores) and an unexplained
decline in performance for the longer trajectory, as seen in Fig.
3 C, F. The read I/O results indicated that both Lustre and SSD
can perform equally well. Beyond 12 cores, the waiting time
started approaching the time for read I/O (compute was an order of
magnitude less than I/O) and hence parallel speed-up was limited
by the wait time.

The second major component that limited scaling performance
was the time to create the Universe data structure (Fig. 4 A, D).
The time to read the topology and open the trajectory file on the
shared file system typically increased from 1 s to about 2 s and
thus, for the given total trajectory lengths, also became comparable
to the time for read I/O. The other components (prepare and
conclude, see Fig. 4) remained negligible with times below 10−3

s.
The parallelizable fraction of the workload consisted of the
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Fig. 4: Detailed timing analysis for other components of the RMSD
analysis task. Individual times per task were measured for different
testing configurations (Table 1). A and D: Maximum time for a task to
load the Universe. B and E: Time tprepare to execute _prepare().
C and F: Time tconclude

k to execute _conclude(). Points represent
the mean over five repeats with the standard deviation shown as error
bars.
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Fig. 5: Fraction of the total run time taken by individual steps
in the parallel RMSD calculation for distributed on up to three
nodes (Lustre-distributed-3nodes). Compute (green) and read I/O
(red) represent the parallelizable fraction of the program; all other
components are effectively serial. A Trajectory with 900 frames. B
Trajectory with 9000 frames.

compute and read I/O steps. Because this fraction was relatively
small and was dominated by the wait time from the Dask scheduler
and the time to initialize the Universe data structure (Fig. 5), the
overall performance gain by parallelization remained modest, as
explained by Amdahl’s law [Amd67]. Thus, for a highly optimized
and fast computation such as the RMSD calculation, the best
performance (speed-up on the order of 10 fold) could already
be achieved on the equivalent of a modern workstation. The
multiprocessing scheduler seemed to be the more consistent and
better performing choice in this scenario; therefore PMDA defaults
to multiprocessing. Performance would likely improve with longer
trajectories because the "fixed" serial costs (waiting, Universe
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Fig. 6: Strong scaling performance of the RDF analysis task. The
total time to completion t total was measured for different testing
configurations (Table 1). A and D: t total as a function of processes
or Dask workers, i.e., the number of CPU cores that were actually
used. The number of trajectory blocks was the same as the number of
CPU cores. B and E: efficiency E. The ideal case is E = 1. C and F:
speed-up S. The dashed line represents ideal strong scaling S(M)=M.
Points represent the mean over five repeats with the standard deviation
shown as error bars.

creation) would decrease in relevance to the time spent on com-
putation and data ingestion (see Fig. 5 B), which benefit from
parallelization [Gus88]. However, all things considered, a single
node seemed sufficient to accelerate RMSD analysis.

RDF analysis task

Unlike the RMSD analysis task, the parallelized RDF analysis in
pmda.rdf.InterRDF showed decreasing total time to solution
up to the highest number of CPU cores tested (see Fig. 6 A, D).
The efficiency on a single node remained above 0.6 for almost
all cases (Fig. 6 B, E) and remained above 0.6 for the best
case (distributed on Lustre and half-filling of nodes for the long
trajectory), up to 3 nodes (72 cores, Fig. 6 E). Even when filling
complete nodes, the efficiency for the long trajectory remained
above 0.5 (Fig. 6 E). Consequently, a sizable speed-up could
be maintained that approached 40 fold in the best case (Fig. 6
F), which cut down the time to solution from about 40 min to
under 1 min. On a single node, all approaches performed similarly
well, with the distributed scheduler now having a slight edge over
multiprocessing (Fig. 6), with the exception of the combination of
distributed with the SSD, which for unknown reasons performed
much worse than everything else (similar to the situation observed
for the RMSD case).

The detailed analysis of the individual components in Fig.
7 clearly showed that the RDF analysis task required much
more computational effort than the RMSD task and that it was
dominated by the compute component (Fig. 8), which scaled
very well to the highest core numbers (Fig. 7 B, E). However,
multiprocessing and especially distributed with SSD took longer
for the computational part at≥ 8 cores (one third of a single node),
indicating that in these cases some sort of competition reduced
performance. For comparison, serial computation required about
250 s while read I/O required less than 10 s, and this ratio was
approximately maintained as the read I/O also scaled reasonably
well (Fig. 7 C, F) Although the variance increased markedly when
multiple nodes were included such as when using six half-filled
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Fig. 7: Detailed per-task timing analysis for parallel components of
the RDF analysis task. Individual times per task were measured for
different testing configurations (Table 1). A and D: Maximum waiting
time for the task to be executed by the Dask scheduler. B and E:
Maximum total compute time per task. C and F: Maximum total read
I/O time per task. Points represent the mean over five repeats with the
standard deviation shown as error bars.

nodes, this effect did not strongly impact overall performance
because tcompute

k,t � tI/O
k,t . The differences between using all cores

on a node compared to only using half the cores on each node
were small but only using half a node was consistently better,
especially in the compute time, and hence the overall performance
of the latter approach was better. For the shorter trajectory, the
wait time was a factor in reducing performance at higher core
numbers (Fig. 7 A). The other components (tUniverse

k < 2 s, tprepare

< 3× 10−5 s , tconclude
k < 4× 10−4 s) were similar or better (i.e.,

shorter) than the ones shown for the RMSD task in Fig. 4 and are
not shown; only the time to set up the Universe played a role in
reducing the scaling performance in the Lustre-distributed-3nodes
scenario at 60 or more CPU cores.

In summary, the performance increase for a compute-intensive
task such as RDF was sizable and, although not extremely effi-
cient, was large enough (about 30-40) to justify the use of about
100 cores on a HPC supercomputer. Because scaling seemed
mostly limited by constant costs such as the scheduling wait time
(see Fig. 8), processing longer trajectories, for which more work
has to be done in the parallelizable compute and read I/O steps,
should improve the scaling behavior [Gus88].

Conclusions

The PMDA Python package provides a framework to parallelize
analysis of MD trajectories with a simple split-apply-combine
approach by combining Dask with MDAnalysis. Although still
in early development, it provides useful functionality for users
to speed up analysis, ranging from a growing library of in-
cluded tools to different approaches for users to write their
own parallel analysis. In simple cases, just wrapping a user
supplied function is enough to immediately use PMDA but
the package also provides a documented API to derive from
the pmda.parallel.ParallelAnalysisBase class. We
showed that performance depends on the type of analysis that
is being performed. Compute-intensive tasks such as the RDF
calculation can show good strong scaling up to about a hundred
cores on a typical supercomputer and speeding up the time to

https://www.mdanalysis.org/pmda/
https://dask.org
https://www.mdanalysis.org
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Fig. 8: Fraction of the total run time taken by individual steps in the
parallel RDF calculation for distributed on up to three nodes (Lustre-
distributed-3nodes). Compute (green) and read I/O (red) represent
the parallelizable fraction of the program; all other components are
effectively serial. A Trajectory with 900 frames. B Trajectory with
9000 frames.

solution from hours in serial to minutes in parallel should make
this an attractive solution for many users. For other analysis tasks
such as the RMSD calculation and other similar ones (e.g., simple
distance calculations), a single multi-core workstation seems suf-
ficient to achieve speed-ups on the order of 10 and HPC resources
would not be useful. But thanks to the design of Dask, running
a PMDA analysis on a laptop, workstation, or supercomputer
requires absolutely no changes in the code and users are free to
immediately choose the computational resource that best fits their
purpose.

Code availability and development process

PMDA is available in source form under the GNU General Public
License v2 from the GitHub repository MDAnalysis/pmda, and as
a PyPi package and conda package (via the conda-forge channel).
Python 2.7 and Python ≥ 3.5 are fully supported and tested. The
package uses semantic versioning to make it easy for users to
judge the impact of upgrading. The development process uses
continuous integration (Travis CI): extensive tests are run on all
commits and pull requests via pytest, resulting in a current code
coverage of 97% and documentation is automatically generated
by Sphinx and published as GitHub pages. Users are supported
through the community mailing list (Google group) and the
GitHub issue tracker.
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