
20 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

SkData: Data Sets and Algorithm Evaluation
Protocols in Python

James Bergstra‡∗, Nicolas Pinto§, David D. Cox¶

http://www.youtube.com/watch?v=u5amehIiImo

F

Abstract—Machine learning benchmark data sets come in all shapes and
sizes, whereas classification algorithms assume sanitized input, such as (x,
y) pairs with vector-valued input x and integer class label y. Researchers and
practitioners know all too well how tedious it can be to get from the URL of a new
data set to a NumPy ndarray suitable for e.g. pandas or sklearn. The SkData
library handles that work for a growing number of benchmark data sets (small
and large) so that one-off in-house scripts for downloading and parsing data
sets can be replaced with library code that is reliable, community-tested, and
documented. The SkData library also introduces an open-ended formalization
of training and testing protocols that facilitates direct comparison with published
research. This paper describes the usage and architecture of the SkData library.

Index Terms—machine learning, cross validation, reproducibility

Introduction

There is nothing standard about data sets for machine learning.
The nature of data sets varies widely, from physical measurements
of flower petals ([Iris]), to pixel values of tiny public domain im-
ages ([CIFAR-10]), to the movie watching habits of NetFlix users
([Netflix]). Some data sets are tiny and others are vast databases
that push the limits of storage technology. Different data sets test
different algorithms’ abilities to make different kinds of statistical
inference. Often a single data set may be used in several ways
to evaluate multiple kinds of algorithm. This flexibility and un-
defined-ness makes it challenging to design software abstractions
for data sets.

In contrast to the great variety of data sets though, researchers
have condensed the variety of data sets to a much smaller set of
machine learning problems. For example, a great deal of machine
learning research addresses the classification problem of assigning
an integer-valued label (y) to some vector of binary- or real-valued
features (X). Many classification algorithms have been developed,
such as Support Vector Machines, Decision Trees, and Nearest
Neighbors. The reason that they are all called classification algo-
rithms is that they provide a common mathematical interface.

While the neatness of these mathematical abstractions is re-
flected in the organization of machine learning libraries such as

* Corresponding author: james.bergstra@uwaterloo.ca
‡ University of Waterloo
§ Massachusetts Institute of Technology
¶ Harvard University

Copyright © 2013 James Bergstra et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

[sklearn], we believe there is a gap in Python’s machine learning
stack between raw data sets and such neat, abstract interfaces.
Data, even when it is provided specifically to test classification
algorithms, is seldom provided as (feature, label) pairs. Guidelines
regarding standard experiment protocols (e.g. which data to use for
training) are expressed informally in web page text if at all. The
SkData library consolidates myriad little details of idiosyncratic
data processing required to run experiments on standard data sets,
and packages them as a library of reusable code. It serves as both
a gateway to access a growing list of standard public data sets,
and as a framework for expressing precise evaluation protocols
that correspond to standard ways of using those data sets.

This paper introduces the SkData library ([SkData]) for access-
ing data sets in Python. SkData provides two levels of interface:

1) It provides low-level idiosyncratic logic for acquiring,
unpacking, and parsing standard data sets so that they
can be loaded into sensible Python data structures.

2) It provides high-level logic for evaluating machine learn-
ing algorithms using strictly controlled experiment pro-
tocols, so that it is easy to make direct, valid model
comparisons.

These interfaces are provided on a data-set-by-data-set basis.
All data sets supported by SkData provide a low-level interface.
For a data set called foo the low-level interface would normally
be provided a submodule called foo.dataset. SkData provides
a high-level interface for some, but not all supported data sets. This
high-level interface would normally be provided by submodule
foo.view. The high-level modules provide one or more views
of the low-level data which make the underlying data fit the form
required by machine learning algorithms.

Relative to language-agnostic repositories (such as the [UCI]
database of machine learning data sets), SkData provides Python
code for downloading and loading diverse data representations
into more standardized in-memory formats. Anyone using these
data sets in a Python program would have to use something like
the low-level routines in SkData anyway to simply load the data.
Relative to standardized repositories such as [MLData], SkData
provides convenient downloading and loading logic, as well as
formal protocols (in Python) for model selection and evaluation.
Relative to the [Pandas] Python library, SkData provides data set-
specific logic for downloading, parsing, and model evaluation;
Pandas provides useful data structures and statistical routines.
It would make sense to use SkData and Pandas together, and
future data set modules in SkData may use Pandas internally. The

http://www.youtube.com/watch?v=u5amehIiImo
mailto:james.bergstra@uwaterloo.ca

SKDATA: DATA SETS AND ALGORITHM EVALUATION PROTOCOLS IN PYTHON 21

[PyTables] library provides a high-performance HDF5 wrapper. It
would make sense to use SkData and PyTables together, such as
for example for low-level SkData routines to store and manipulate
downloaded data.

This paper is organized into the following sections:

1) Data set access (low-level)
2) Intro to experiment protocols (high-level)
3) Protocol case study: simple cross-validation
4) The experiment protocol
5) Command-line interface
6) Current list of data sets

Data Set Access (Low-level Interface)

There is nothing standard about data sets, and SkData’s low-level
interface correspondingly comprises many modules that are not
meant to be formally interchangeable. Still, there are informal
sorts of similarities in some aspects of what users want to do with
data, at least in the context of doing machine learning. SkData’s
low-level modules provide logic for several common activities for
most of the data sets supported by the library:

• downloading,
• verifying archive integrity,
• decompressing,
• loading into Python, and
• deleting cached data.

These common activities are typically implemented by meth-
ods on singleton classes within SkData’s low-level modules. The
data set class for the Labeled Faces in the Wild ([LFW]) data
set provides a representative example of what low-level data set
objects look like. What follows is an abridged version of what
appears in skdata.lfw.dataset.
"""
<Description of data set>

<Citations to key publications>
"""

published_scores = {'PC11': .881, ...}

url_to_data_file = ...
sha1_of_data_file = ...

class LFW(object):

@property
def home(self):

"""Return cache folder for this data set"""
return os.path.join(

skdata.data_home.get_data_home(),
'lfw')

def fetch(self, download_if_missing=True):
"""Return iff required data is in cache."""
...

def clean_up(self):
"""Remove cached and downloaded files"""
...

@property
def meta(self):

"""Return meta-data as list of dicts"""
...

The next few sub-sections describe what the methods of this class
(as a representative low-level data set classes) and other elements

of the module are supposed to do. There is a convention that
this low-level logic for each data (e.g. foo) should be written
in a Python file called skdata.foo.dataset. Other projects
may implement data set classes in whatever files are convenient.
Technically, there is no requirement that the low-level routines
adhere to any standard interface, because SkData includes no
functions meant to work on any data set.

Context and Documentation

First, notice that the dataset.py file includes a significant
docstring describing the data set and providing some history
regarding its usage. This docstring should provide links to key
publications that either introduced or used this data set.

If the data set has a home page, that should be documented
here too. Many data sets’ home pages maintain a table of bench-
marks and pointers to influential model evaluation papers. It is
appropriate to reproduce such tables in this dataset.py file
either in the docstring, or, more helpfully, as a module-level
Python dictionary (e.g. the published_scores module-level
dictionary in our example). Such a dictionaries makes it easier to
produce figures and tables showing performance relative to models
from the literature.

Downloading and Deleting

Often the first order of business when dealing with a data set is
to download it. Data sets come from a range of sources, but it is
worth distinguishing those that can be downloaded freely (we will
call these public) from the rest (private). The SkData library is
suitable and useful for both public and private data, but it is more
useful for public data sets because the original download from a
canonical internet source can be automated. Whether a data set is
private or public, the dataset.py file should include checksums
for verifying the correctness of important data files when it makes
sense to do so.

Most dataset modules use SkData’s get_data_home()
function to identify a local location for storing large files.
This location defaults to .skdata/ but it can be set via
a $SKDATA_ROOT environment variable. In our code exam-
ple, LFW.home() uses this mechanism to identify a loca-
tion where it can store downloaded and decompressed data.
The convention is that a dataset called foo would use
path.join(get_data_home(), 'foo') as a persistent
cache location.

The fetch method downloads, verifies the correctness-
of, and decompresses the various files that make up the data
set. It stores downloaded files within the folder returned by
LFW.home(). If download_if_missing is False, then
fetch raises an exception if the data is not present. When
fetch() returns, it means that the data can be loaded (see
below).

If a data set module downloads or creates files, then it
should also provide a mechanism for deleting them. In our LFW
example, the clean_up method recursively deletes the entire
LFW.home() folder, erasing the downloaded data and all derived
files. Other data sets may wish to provide a more fine-grained
approach to clean-up that perhaps erase derived files, but not any
archive files that cannot easily be replaced.

Decompressing, Parsing, and Loading

Experienced machine learning practitioners are well aware that in
terms of files and formats, a data set may be just about anything.

22 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Some of the more popular data sets in machine learning and
computer vision include one or more of:

• Comma Separated Value (CSV) text files,
• XML documents (with idiosyncratic internal structure),
• Text files with ad-hoc formatting,
• Collections of image, movies, audio files,
• Matlab workspaces,
• Pickled NumPy ndarray objects, and
• HDF5 databases.

Correctly interpreting meta-data can be tricky and writing
code to simply load media collections that include files with
non-homogeneous formats, encoding types, sampling frequencies,
color spaces, and so on can be tedious.

One of the main reasons for developing and releasing SkData
was to save scientists the trouble of re-writing scripts that make
sense of data set files. A low-level data set module should include
the logic for reading, walking, parsing, etc. any and all raw archive
files. This logic should turn those raw archive files into appropriate
Python data structures such as lists, dictionaries, NumPy arrays,
Panda data frames, and/or PyTables Table objects.

For example, the low-level LFW data set class’s meta at-
tribute is computed by parsing a few text files and walking the
directory structure within LFW.home(). The meta property is
a list of dictionaries enumerating what images are present, how
large they are, what color space they use, and the name of the
individual in each image. It does not include all the pixel data
because, in our judgement, the pixel data required a lot of memory
and could be provided instead by a lazy array (see [Dealing
with Large Data] below). The LFW low-level module contains
an additional method called parse_pairs_file which parses
some additional archived text files describing the train/test splits
that the LFW authors recommend using for the development and
evaluation of algorithms. This may seem ad-hoc, and indeed it is.
Low-level modules are meant to be particular to individual data
sets, and not standardized.

There isn’t a lot more to say about low-level dataset modules in
general. Section [Current List of Data Sets] below enumerates the
data sets currently in SkData that have some degree of low-level
support, and that list continues to grow.

Intro to Experiment Protocols (High-level Interface)

Users who simply want a head start in getting Python access to
downloaded data are well-served by the low-level modules, but
users who want a framework to help them reproduce previous
machine learning results by following specific experiment proto-
cols will be more interested in using SkData’s higher-level view
interface. The next few sections describe the high-level protocol
abstractions provided by SkData’s various data set-specific view
modules.

Background: Classification and Cross-Validation

Before we get into view module abstractions for experiment
protocols, this section will introduce the machine learning method-
ology that these abstractions will ultimately provide.

SkData’s high-level modules currently provide structure for
classification problems. A classification problem, in machine
learning terms, is a scenario in which labels (without loss of
generality: integers) are to be predicted from features. If we
wish to predict the name of an individual in a photograph, or

categorize email as spam or not-spam, it is natural to look at these
as classification problems.

It is useful to set this up formally. If Y is our set of possible
labels, and X is the set of possible feature vectors, then a
classifier is a mapping (or model) m : X → Y . A classification
algorithm is a procedure for selecting a particular model from a
set M of possible models. Generally this selection is made on the
basis of data that represent the sorts of features and labels that we
believe will arise. If we write this belief as a joint density P(x,y)
over X ×Y then we can write down one of the most important
selection criteria for classification models:

`(m) = E
[
I{y6=m(x)}

]
(1)

m(∗) = argminm∈M `(m) (2)

Any function like the ` here that assigns a real-valued score to a
model can be called a loss function. This particular loss function
is called the Zero-One loss because it is the expected value of a
random variable that is either Zero (when our classifier is wrong)
or One (when our classifier predicts the label). In terms of end-of-
the-day accuracy, m(∗) is, by definition, the best model we could
possibly choose. Classification algorithms represent various ways
of minimizing various loss functions over various sets of models.

In practice, we cannot expect a mathematical expression for
P(x,y). Instead, we must content ourselves with a sample D of
< x,y > pairs. An enumeration of the various ways of using the
examples in D to select and evaluate models from M is beyond
the scope of this paper. (For more information, see e.g. [HTF09]).
SkData is designed to support the full variety of such protocols,
but in the interest of keeping this paper focused, we will only use
what is called simple cross-validation to illustrate how SkData’s
high-level view modules make it easy to evaluate classification
algorithms on a range of classification tasks.

Protocol Case Study: Simple Cross-Validation

Simple cross-validation is a technique for evaluating a learning
algorithm (e.g. a classification algorithm), on the basis of a repre-
sentative sample of independent, identically drawn (iid) < x,y >
pairs. It is helpful to think of a learning algorithm as encapsulating
the selection criterion and optimization algorithm corresponding
to Eqns 1 and 2, and as providing a mapping A : D →M from
a data set to a model. Evaluating a classification algorithm means
estimating how accurate it is likely to be on data it has never seen
before. Simple cross-validation makes this estimate by partitioning
all available data D into two disjoint subsets. The first subset Dtrain
is called a training set; it is used to choose a model m from M .
The second subset Dtest is called a test set; since this data was
not used during training, it represents a sample of all data that the
learning algorithm has never seen. Mathematically, simple cross-
validation means evaluating an algorithm A as follows:

m = A(Dtrain) (3)

`(A) =
1
|Dtest| ∑

<x,y>∈Dtest

I{y6=m(x)} (4)

The abstractions provided by SkData make it as easy to evaluate
an algorithm on a data set as Eqns 3 and 4 suggest. Conve-
niently, the [sklearn] library provides learning algorithms such
as LinearSVC that implement a methods fit and predict
that correspond exactly to the requirements of Eqns. 3 and 4
respectively. As a convenience and debugging utility, SkData

SKDATA: DATA SETS AND ALGORITHM EVALUATION PROTOCOLS IN PYTHON 23

provides a simple wrapper called SklearnClassifier that
makes it easy to apply any sklearn classifier to any SkData
classification view. Using this wrapper, evaluating an SVM on the
[Iris] data set for example, looks like this:
1 from sklearn.svm import LinearSVC
2 from skdata.base import SklearnClassifier
3 from skdata.iris.view import SimpleCrossValidation
4

5 # Create an evaluation protocol
6 iris_view = SimpleCrossValidation()
7

8 # Choose a learning algorithm
9 estimator = LinearSVC

10 algo = SklearnClassifier(estimator)
11

12 # Run the evaluation protocol
13 test_error = iris_view.protocol(algo)
14

15 # See what happened:
16 for report in algo.results['best_model']:
17 print report['train_name'], report['model']
18

19 for report in algo.results['loss']:
20 print report['task_name'], report['err_rate']
21

22 print "TL;DR: average test error:", test_error

The next few Subsections explain what these functions do, and
suggest how Tasks and Protocols can be used to encode more
elaborate types of evaluation.

Case Study Step 1: Creating a View

The first statement of our cross-validation code sample creates a
view of the Iris data set.
6 iris_view = SimpleCrossValidation()

The SimpleCrossValidation class uses Iris data set’s low-
level interface to load features into a numpy ndarray, and
generally prepare it for usage by sklearn. In general, a View may
be configurable (e.g. how to partition D into training and testing
sets) but this simple demonstration protocol does not require any
parameters.

Case Study Step 2: Creating a Learning Algorithm

The next two statements of our cross-validation code sample create
a learning algorithm, as a SkData class.

10 estimator = LinearSVC
11 algo = SklearnClassifier(estimator)

The argument to SklearnClassifier is a parameter-free
function that constructs a sklearn.Estimator instance,
ready to be fit to data. The algo object keeps track of the
interactions between the iris_view protocol object and the
estimator classifier object. When wrapping around sklearn’s
Estimators it is admittedly confusing to call algo the learning
algorithm when estimator is also deserving of that name. The
reason we call algo the learning algorithm here (rather than
estimator) is that SkData’s high-level modules expect a partic-
ular interface of learning algorithms. That high-level interface is
defined by skdata.base.LearningAlgo.

The SklearnClassifer acts as an adapter that imple-
ments the skdata.base.LearningAlgo interface in terms
of sklearn.Estimator. The class serves two roles: (1) it
provides a reference implementation for how handle commands
from a protocol object; (2) it supports unit tests for protocol
classes in Skdata. Researchers are encouraged to implement
their own LearningAlgo classes following the example of

the SklearnClassifier class. Custom LearningAlgo classes
can compute and save algorithm-specific statistics, and implement
performance-enhancing hacks such as custom data iterators and
pre-processing caches. The practice of appending a summary
dictionary to the lists in self.results has proved useful in our own
work, but it likely not the best technique for all scenarios. A
LearningAlgo subclass should somehow record the results of
model training and testing, but SkData’s high-level view modules
does not require that those results be stored in any particular way.
We will see more about how a protocol object drives training and
testing later in [The Evaluation Protocol].

Case Study Step 3: Evaluating the Learning Algorithm

The heavy lifting of the evaluation process is carried out by the
protocol() call on line 14.

14 test_error = iris_view.protocol(algo)
15

16 # See what happened:
17 for report in algo.results['best_model']:
18 print report['train_name'], report['model']
19

20 for report in algo.results['loss']:
21 print report['task_name'], report['err_rate']

The protocol method encapsulates a sort of dialog between
the iris_view object as a driver, and the algo object as a
handler of commands from the driver. The protocol in question
(iris.view.SimpleCrossValidation) happens to use
just two kinds of command:

1) Learn the best model for training data
2) Evaluate a model on testing data

The first kind of command produces an entry in the
algo.results['best_model'] list. The second kind of
command produces an entry in the algo.results['loss']
list.

After the protocol method has returned, we can loop over
these lists (as in lines 17-21) to obtain a summary of what
happened during our evaluation protocol.

The Experiment Protocol

Now that we have seen the sort of code that SkData’s high-level
evaluation protocol is meant to support, the next few sections dig
a little further into how it works.

The Protocol Container: Task

The main data type supporting SkData’s experiment protocol is
what we have called the Task. The skdata.base file defines
the Task class, and it used in all aspects of the protocol layer. A
Task instance represents a semantically labeled subsample of a
data set. It is simply a dictionary container with access to elements
by object attribute (it is a namespace), but it has two required
attributes: name and semantics. The name attribute is a string
that uniquely identifies this Task among all tasks involved in a
Protocol. The semantics attribute is a string that identifies what
kind of Task this is.

A task’s semantics identifies (to the learning algorithm)
which other attributes are present in the task object, and how
they should be interpreted. For example, if a task object has
'vector_classification' semantics, then it is expected to
have (a) an ndarray attribute called x whose rows are examples
and columns are features, and (b) an ndarray vector attribute

24 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

y whose elements label the rows of x. If a task object instead
has 'indexed_image_classification' semantics, then
it is expected to have (a) a sequence of RGBA image ndarrays in
attribute .all_images, (b) a corresponding sequence of labels
.all_labels, and (c) a sequence of integers .idxs that picks
out the relevant items from all_images and all_labels as
defined by NumPy’s take function.

The set of semantics is meant to be open. In the future, SkData
may have a data set for which none of these semantics applies.
For example SkData may, in the future, provide access to aligned
multi-lingual databases of text. At that point it may well be a
good idea to define a 'phrase_translation' task whose
inputs and outputs are sequences of words. The new semantics
string would cause existing learning algorithms to fail, but failing
is reasonable because phrase translation is not obviously reducible
to existing semantics.

The semantics identifiers employed so far in SkData include:

• 'vector_classification'
• 'indexed_vector_classification'
• 'indexed_image_classification'
• 'image_match_indexed'

Vector classification was explained above, it corresponds quite
directly to the sort of X and y arguments expected by e.g. sklearn’s
LinearSVC.fit. The indexed semantics allow learning algo-
rithms to cache example-wise pre-processing in certain protocols,
such as K-fold cross-validation. The general idea is that Tasks
with e.g. 'indexed_vector_classification' semantics
share the same X and y arrays, but use different index lists to de-
note different selections from X and y. Whenever different indexed
tasks refer to the same rows of X and y, the learning algorithm can
re-use cached pre-processing. The 'image_match_indexed'
semantics was introduced to accommodate the LFW data set in
which image pairs are labeled according to whether they feature
the same person or different people. Future data sets featuring
labeled image pairs may leverage learning algorithms written for
LFW by reusing the 'image_match_indexed' semantics.
Future data sets with new kinds of data may wish to use new
semantics strings.

Protocol Commands (LearningAlgo Interface)

Now that we have established what Tasks are, we can describe
the methods that a LearningAlgo must support in order to
participate in the most basic protocols:

best_model(task, valid=None)
Instruct a learning algorithm to find the best possible
model for the given task, and return that model to
the protocol driver. If a valid (validation) task is
provided, then use it to detect overfitting on train.

loss(model, task)
Instruct a learning algorithm to evaluate the given
model for the given task. The returned value should be
a floating point scalar, but the semantics of that scalar
are defined by the semantics of the task.

forget_task(task)
Instruct the learning algorithm to free any possible
memory that has been used to cache computations
related to this task, because the task will not be used
again by the protocol.

These functions are meant to have side effects, in the sense that
the LearningAlgo instance is expected to record statistics and

summaries etc., but the LearningAlgo instance is expected not
to cheat! For example, the best_model method should use only
the examples in the task argument as training data. The interface
is not designed to make this sort of cheating difficult to do, it is
only designed to make cheating easy to avoid.

A LearningAlgo can also include additional methods for
use by protocols. For example, one data set in SkData features a
protocol that distinguishes between the selection of features and
the selection of a classifier of those features. That protocol calls
an additional method that is not widely used:

retrain_classifier(model, task)
Instruct the learning algorithm, to retrain only the
classifier, and not repeat any internal feature selection
that has taken place.

When new protocols require new commands for learning
algorithms, our policy is to add them. As evidenced by the short
list of commands above, we have only had to do this once to date.

The SemanticsDelegator LearningAlgo

Authors of new LearningAlgo base classes may wish
to inherit from base.SemanticsDelegator instead.
The SemanticsDelegator class handles calls to e.g.
best_model by appending the semantics string to the
call name, and calling that more specialized function,
e.g. best_model_indexed_vector_classification.
While the number of protocol commands may be small, a new
LearningAlgo subclass might implement some protocol com-
mands quite differently for different semantics strings, with little
code overlap. The SemanticsDelegator base class makes
writing such LearningAlgo classes a little easier.

The SklearnClassifier uses the
SemanticsDelegator in a different way, to facilitate a
cascade of fallbacks from specialized semantics to more general
ones. The indexed image tasks are converted first to indexed
vector tasks, and then to non-indexed vector tasks before finally
being handled by the sklearn classifier. This pattern of using
machine learning reductions to solve a range of tasks with a
smaller set of core learning routines is a powerful one, and a
LearningAlgo subclass presents a natural place to implement
this pattern.

Protocol Objects

Having looked at the Task and LearningAlgo classes, we
are finally ready to look at that last piece of SkData’s protocol
layer: the Protocol objects themselves. Protocol objects (such
as iris.view.SimpleCrossValidation) walk a learning
algorithm through the process of running an experiment. To do so,
they must provide a view of the data set they represent (e.g. Iris)
that corresponds to one of the Task semantics. They must create
Task objects from subsets of that view in order to call the methods
of a LearningAlgo.

In the case study we looked at earlier, the call to
iris_view.protocol(algo) constructed two Task objects
corresponding to a training set (train) and a test set (test) of
the Iris data and then did the following:
model = algo.best_model(train)
err = algo.loss(model, test)
return err

More elaborate protocols construct more task objects, and train
and test more models, but typically the protocol methods are

SKDATA: DATA SETS AND ALGORITHM EVALUATION PROTOCOLS IN PYTHON 25

quite short. Doubly-nested K-fold cross-validation is probably
the most complicated evaluation protocol, but it still consists
essentially of two nested for loops calling best_model and
loss using a single K-way data partition. It can be useful to
implement longer protocols as iterators rather than methods so
that they can be aborted early.

Dealing with Large Data

Generally, each data set module is free to deal with large data in
a manner befitting its data set, although particular Task semantics
constrain the data representations that can be used at the protocol
layer. Two complementary techniques are used within the SkData
library to keep memory and CPU usage under control when
dealing with potentially enormous data sets. The first technique
is to use the indexed Task semantics. Recall that when using
indexed semantics, a Task includes an indexable data structure
(e.g. ndarray, DataFrame, or Table) containing the whole of
the data set D, and a vector of positions within that data structure
indicating a subset of examples. Many indexed Task instances can
be allocated at once because each indexed Task shares a pointer to
a common data set. Only a vector of positions must be allocated
for each Task, which is relatively small.

The second technique is to use the lazy array in
skdata.larray as the indexable data structure for indexed
Tasks. The larray can delay many transformations of an
ndarray until elements are accessed by __getitem__. For
example, if a protocol only requires the first 100 examples of
a huge data set, then only those examples will be loaded and
processed. The larray supports transformations such as re-
indexing, elementwise functions, a lazy zip, and cacheing. Lazy
evaluation together with cacheing makes it possible for protocol
objects to pass very large data sets to learning algorithms, and for
learning algorithms to treat very large data sets in sensible ways.
The lazy array does not make batch learning algorithms into online
ones, but it provides a mechanism for designing iterators so that
online algorithms can traverse large numbers of examples in a
cache-efficient way.

Command-line Interface

Some data sets also provide a main.py file that provides a
command-line interface for operations such as downloading, vi-
sualizing, and deleting data. The LFW data set for example, has a
simple main.py script that supports one command that downloads
(if necessary) and visualizes a particular variant of the data using
[glumpy].
python -c skdata/lfw/main.py show funneled

Several other data sets also have main.py scripts, which sup-
port various commands. These scripts are meant to follow the
convention that running them with no arguments prints a usage
description, but they may not all conform. In most cases, the
scripts are very short and easy to read so go ahead and look at
the source if the help message is lacking.

Current List of Data Sets

The SkData library currently provides some level of support for
about 40 data sets (some data sets are parametrically related, not
clearly distinct). The data sets marked with (*) provide the full
set of low-level, high-level, and script interfaces described above.
Details and references for each one can be found in the SkData

project web page, wiki, and source code. Many of the synthetic
data sets are inherited from the sklearn project; the authors
have contributed most of the image data sets.

Blobs
Synthetic: isotropic Gaussian blobs

Boston
Real-estate features and prices

Brodatz
Texture images

CALTECH101
Med-res Images of 101 types of object

CALTECH256
Med-res Images of 256 types of object

CIFAR10 (*)
Low-res images of 10 types of object

Convex
Small images of convex and non-convex shapes

Digits
Small images of hand-written digigs

Diabetes
Small non-synthetic temporal binary classification

IICBU2008
Benchark suite for biological image analysis

Iris (*)
Features and labels of iris specimens

FourRegions
Synthetic

Friedman{1, 2, 3}
Synthetic

Labeled Faces in the Wild (*)
Face pair match verification

Linnerud
Synthetic

LowRankMatrix
Synthetic

Madelon
Synthetic

MNIST (*)
Small images of hand-written digigs

MNIST Background Images
MNIST superimposed on natural images

MNIST Background Random
MNIST superimposed on noise

MNIST Basic
MNIST subset

MNIST Rotated
MNIST digits rotated around

MNIST Rotated Background Images
Rotated MNIST over natural images

MNIST Noise {1,2,3,4,5,6}
MNIST with various amounts of noise

Randlin
Synthetic

Rectangles
Synthetic

Rectangles Images
Synthetic

PascalVOC {2007, 2008, 2009, 2010, 2011}
Labeled images from PascalVOC challenges

PosnerKeele (*)

26 PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

Dot pattern classification task
PubFig83

Face identification
S Curve

Synthetic
SampleImages

Synthetic
SparseCodedSignal

Synthetic
SparseUncorrelated

Synthetic
SVHN (*)

Street View House Numbers
Swiss Roll

Synthetic dimensionality reduction test
Van Hateren Natural Images

High-res natural images

Conclusions

Standard practice for handling data in machine learning and
related research applications involves a significant amount of
manual work. The lack of formalization of data handling steps is
a barrier to reproducible science in these domains. The SkData li-
brary provides both low-level data wrangling logic (downloading,
decompressing, loading into Python) and high-level experiment
protocols that make it easier for researchers to work on a wider
variety of data sets, and easier to reproduce one another’s work.
Development to date has focused on classification tasks, and image
labeling problems in particular, but the abstractions used in the
library should apply to many other domains from natural language
processing and audio information retrieval to financial forecasting.
The protocol layer of the SkData library (especially using the
larray module) supports large or infinite (virtual) data sets
as naturally as small ones. The library currently provides some
degree of support for about 40 data sets, and about a dozen of
those feature full support of SkData’s high-level, low-level, and
main.py script APIs.

Acknowledgements

This work was funded by the Rowland Institute of Harvard, the
National Science Foundation (IIS 0963668) in the United States,
and the Banting Postdoctoral Fellowship program in Canada.

REFERENCES

[CIFAR-10] A. Krizhevsky. Learning Multiple Layers of Features from
Tiny Images. Masters Thesis, University of Toronto,
2009.

[glumpy] https://code.google.com/p/glumpy/
[HTF09] T. Hastie, R. Tibshirani, J. Friedman. The Elements of

Statistical Learning: Data Mining, Inference, and Pre-
diction. Springer, 2009.

[Iris] http://archive.ics.uci.edu/ml/datasets/Iris
[LFW] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-

Miller. Labeled Faces in the Wild: A Database for
Studying Face Recognition in Unconstrained En-
vironments. University of Massachusetts, Amherst
TR 07-49, 2007.

[Netflix] http://www.netflixprize.com/
[MLData] http://mldata.org
[Pandas] http://pandas.pydata.org
[PyTables] http://pytables.org
[SkData] http://jaberg.github.io/skdata/
[sklearn] Pedregosa et al. Scikit-learn: Machine Learning in Python, JMLR

12 pp. 2825--2830, 2011.
[UCI] http://archive.ics.uci.edu/ml/

https://code.google.com/p/glumpy/
http://archive.ics.uci.edu/ml/datasets/Iris
http://www.netflixprize.com/
http://mldata.org
http://pandas.pydata.org
http://pytables.org
http://jaberg.github.io/skdata/
http://archive.ics.uci.edu/ml/

	Introduction
	Data Set Access (Low-level Interface)
	Context and Documentation
	Downloading and Deleting
	Decompressing, Parsing, and Loading

	Intro to Experiment Protocols (High-level Interface)
	Background: Classification and Cross-Validation

	Protocol Case Study: Simple Cross-Validation
	Case Study Step 1: Creating a View
	Case Study Step 2: Creating a Learning Algorithm
	Case Study Step 3: Evaluating the Learning Algorithm

	The Experiment Protocol
	The Protocol Container: Task
	Protocol Commands (LearningAlgo Interface)
	The SemanticsDelegator LearningAlgo
	Protocol Objects
	Dealing with Large Data

	Command-line Interface
	Current List of Data Sets
	Conclusions
	Acknowledgements
	References

