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Abstract—It is well known that two or more genes can interact so as to enhance
or suppress incidence of disease, such that the observed phenotype differs from
when the genes act independently. The effect of a gene allele at one locus can
mask or modify the effect of alleles at one or more other loci. Discovery and
characterization of such gene interactions is pursued as a valuable aid in early
diagnosis and treatment of disease. Also it is hoped that the characterization of
such interactions will shed light on biological and biochemical pathways that are
involved in a specific disease, leading to new therapeutic treatments.

Much attention has been focused on the application of machine learning
approaches to detection of gene interactions. Our method is based upon training
a supervised learning algorithm to detect disease, and then quantifying the effect
on prediction accuracy when alleles of two or more genes are perturbed to
unmutated in patterns so as to reveal and characterize gene interactions. We
utilize this approach with a support vector machine.

We test the versatility of our approach using seven disease models, some
of which model gene interactions and some of which model biological indepen-
dence. In every disease model we correctly detect the presence or absence
of 2-way and 3-way gene interactions using our method. We also correctly
characterize all of the interactions as to the epistatic effect of gene alleles in both
2-way and 3-way gene interactions. This provides evidence that this machine
learning approach can be used to successfully detect and also characterize
gene interactions in disease.

Index Terms—machine learning, support vector machine, genetic risk factors,
gene interactions

Introduction

The mapping of an input vector of features to an output value
is well-studied as applied to both regression and classification.
In both cases there is great interest in detecting the presence
or absence of interactions of input parameters. In the case of
human disease, the interest is accompanied by the hope that
knowledge of such interactions could reveal basic information
about biochemical functioning that could inform therapies. For
example, we can search for interactions among genes that code
for proteins that are involved in metabolism of estrogen in breast
tissue for their effect on susceptibility to ER positive breast cancer.
If we found such interactions, whether enhancing or diminishing
cancer susceptibility, this could provide information on protein
pathways that could be the target of therapies for this cancer.
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Since biological interaction is difficult to quantify, approaches
for discovering gene interactions in disease typically use a def-
inition of interaction of parameters borrowed from statistics:
interaction is seen as departure from a linear model [Cordell09].
For example, the following would be a linear model of disease
penetrance (Y) as a function of allele values of gene A (Gα ) and
gene B (Gβ ):

Y = χ +αGα +βGβ

If parameters α and β could be trained so that the model
accurately represented penetrance (probability that an individual
of a given genotype would exhibit disease), then the function
would be considered linear and the input parameters Gα and Gβ

would be regarded as statistically independent (not interacting).
This approach is widely used in multiple linear regression. While
the principle is the same, a more general genotype model employs
different parameters to represents the effects of having either one
copy of the risk allele or two for each of gene A and gene B
[Cordell09]. A graphical representation of penetrance factor as
the vertical axis and input parameters along horizontal axes help
convey understanding. Figure 1 is such a graphical representation
of statistical independence, patterned on Risch’s additive disease
model (described below), which represents biological indepen-
dence. Figure 2, illustrating statistical interaction, is patterned
after Risch’s multiplicative model, which represents biological
interaction.

Background

Supervised machine learning (ML) algorithms learn a function
that maps an input vector of parameters to labeled output. This is
accomplished by utilizing knowledge of the correct result (label)
while training the model. In regression, the algorithm learns to
produce continuous values of the dependent (output) variable
given input vectors. In classification, the output is prediction
of which of two or more classes an input vector will fall into
depending on its features.

While ML algorithms such as artificial neural network (ANN)
and support vector machine (SVM) are valuable merely as black
box classifiers or for producing correct regression output, it is also
a goal to understand relationships among features that have been
discovered by the trained ML model. Some approaches, such as
examining neural network weights, are dependent on the workings
of the particular ML method, and expose how the method makes
a prediction.

http://www.youtube.com/wa?v=IA09mZRCCA8
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Fig. 1: Penetrance factor with independent input parameters. Here
the two input parameters separately influence penetrance, neither
enhancing nor diminishing the effect of the other. Their effects on
penetrance are merely additive.

0

1
2

3
4

0

50

100

150

200

250

300

350

400

0 1 2 3 4

P
en

et
ra

n
ce

 F
a

ct
o

r 

350-400

300-350

250-300

200-250

150-200

100-150

50-100

0-50

Fig. 2: Penetrance factor with interacting input parameters. Here the
two input parameters interact so as to enhance incidence of disease.
As their effect is multiplicative, the effect on penetrance is greater than
the mere additon of separate main effects of the input parameters.

Other approaches however, are agnostic to the workings of
the ML method even as they open up the ’black box’ to reveal
what relationships among input parameters were discovered. Our
method falls within this category. Such methods, that focus on
what is learned rather than how it is learned have been surveyed
[Francis02]. These include visualization methods and the com-
putation of a sensitivity value for each parameter. Sensitivities
are determined by calculating the change in average square error
in predicting the test set when that input value in each example
is perturbed to a constant value (ex: mean or median) [Potts00].
Visualization methods perturb input parameters in specified ways
designed to reveal information about the function learned by the
ML method. They have been used with a variety of ML methods,
and have been used successfully, particularly with continuous
output tasks. One such method plots a two-dimensional surface of
ANN output as two particular inputs are varied while the rest are

held constant [Mose93]. Pairwise plots are produced in this way
to visualize the relationships between input parameters. Another
visualization approach, most suited to models with continuous
inputs, discovers interactions of parameters by displaying devi-
ation from linear function. This method utilizes graphical plots of
generalized additive models to find interactions of environmental
risk factors (smoking, drinking) in lung cancer [Plate97]. While
these methods were used with an ANN they do not depend on
internal structure of the network and could be used with other
supervised learning approaches.

Our approach observes the effect of perturbing input gene
allele values to unmutated (ie: 0,1,2 -> 0) in patterns designed
to reveal whether susceptibility to disease is independently or
epistatically affected by inputs. We have developed a metric to
quantify deviation in prediction accuracy produced by epistatic
inputs as opposed to independent inputs. Here we apply our
method to an SVM, although it is also applicable to other ML
algorithms, such as neural networks.

Support Vector Machines

The Support Vector Machines (SVM) is a supervised learning
algorithm introduced by Vapnik which began to be widely used
in classification in the 1990’s. SVMs are trained with a learning
algorithm from optimization theory that searches a hypothesis
space of linear functions operating on data that has been pushed
into a high dimensional feature space [Crist97]. Basically, an SVM
is a hyperplane classifier which finds the optimal hyperplane to
separate data into classes. When dividing two classes, the optimal
hyperplane is orthogonal to the shortest line connecting the convex
hulls of the two classes, and intersecting it halfway between the
two classes at a perpendicular distance d from either class. The
support vectors are those elements of the training set that lie on
the margins of either class (at a distance d from the decision line).
It is these training examples, rather than the centers of clusters,
that are relevant to the algorithm and are critical for finding the
margins between the classes. Complexity of the algorithm may be
reduced by removing the other training examples from the kernel
expansion (described below). The unique optimal hyperplane is
found by solving the optimization problem:

minimize
1
2
||w||2

subject to yi.((w.xi)+b)>= 1

This optimization problem is solved using Lagrange multipliers
and minimizing the Lagrangian.

To allow for noise in the data that would preclude perfect
classification, a slack variable ε can be introduced in order to
relax the constraints:

subject to yi.((w.xi)+b)>= 1− εi

where εi >= 0, i = 1,2, ...,m

The amount of slack is specified by the user of an SVM in the
variable C, known as the regularization or soft-margin parameter,
which controls the error penalty according to the equation below.
Higher C weights classification errors more, allowing them more
influence on the selection of the optimal hyperplane. With very
high C, a hyperplane must be chosen such that there is virtually
no misclassification of training examples, which can lead to
overfitting. A lower value of C limits the influence of outliers
on the solution, allowing a hyperplane with a wider margin and
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a decision function with a smoother surface that may misclassify
some of the training examples. The optimization problem that is
solved when allowing for slack ε is:

minimize
1
2
||w||2 +C

m

∑
i=1

εi

subject to yi.((w.xi)+b)>= 1− εi

where εi >= 0, i = 1,2, ...,m

SVMs have the ability to find a separating hyperplane even if one
does not exist in the space of the input vector, as long as the
training data may be mapped into a higher dimensional feature
space in which such a separating hyperplane exists. A kernel
function may be employed for non-linear classification. A kernel
is a function k(xi,x j) that given two vectors in input space, returns
the dot product of their images in feature space. This is used
to compute the separating hyperplane without actually having to
carry out the mapping into higher dimensional space. The common
kernels used are radial basis, polynomial, sigmoidal, and inverse
quadratic.

Perhaps most commonly used is the radial basis kernel, which
finds the maximum margin classifier based upon the Euclidean
distance between vectors in input space. After training, the support
vectors will occupy the center of the RBF and the parameter
gamma will determine how much influence each one has over
the data space. With smaller gamma the influence of each support
vector is extended to cover more area, so fewer support vectors are
needed. Smaller gamma also allows for higher generalization and
a smoother decision function. Larger gamma allows for a more
detailed decision surface, but is prone to overfitting.

Methods

Data models and sets

For this study we used genomeSimla to create datasets to simulate
7 disease models from the literature, some of which exhibit
biological independence and some of which exhibit epistasis. For
each of these disease models we created datasets to investigate
both 2-way and 3-way interactions: 14 datasets in all. Each dataset
contained 10 gene loci, of which 2 (or 3 when investigating 3-way
interactions) were functional genes, constructed with penetrance
matrices according to the disease model under investigation. Each
gene locus was encoded as the number of mutated alleles (0,1,or
2). For each dataset a population of 1 million individuals was
constructed such that the overall disease prevalence of the pop-
ulation was .01 with case or control status designated according
to the penetrance matrix of the functional genes modeling the
disease. It was assumed that genes were in linkage equilibrium
and the Hardy-Weinberg equilibrium held. From these populations
samples were randomly drawn of 1000 case (diseased) and 1000
control individuals for each disease model.

The seven disease models investigated included three intro-
duced by Risch, three introduced by Gunther et al and one intro-
duced by Ritchie et al. Additionally, we extended each of these
models to three functional genes. Each disease model specifies
the penetrance matrix, that is, the probability for each genotype
that the disease phenotype is observed. Details below are for the
version of the disease models with two functional genes. Each
gene value sums up the number of mutated alleles, for example,
AA (unmutated) = 0, Aa (one allele mutated) = 1 and aa (both

alleles mutated) = 2. Note that these designations are codominant,
so that capitalization does not indicate a dominant gene.

For the three Risch models each element fi j of penetrance
matrix f is specified by formulation [Risch90]:

fi j = P(Y = 1|Gα = i,Gβ = j) i, j ∈ {0,1,2}.

Here P(Y=1)indicates the probability that an individual of the
genotype indicated by row i (gene A) and column j (gene B) of
the penetrance matrix is diseased, as determined by the values of
gene A = i and gene B = j.

For the Risch models, let ai a_i and b j denote the individual
penetrance values for genes A and B respectively.

1) Additivity model (biological independence):

fi j = ai +b j such that 0 <= ai,b j <= 1,ai +b j < 1

2) Heterogeneity model (biological independence):

fi j = ai +b j−aib j such that 0 <= ai,b j <= 1

3) Multiplicative model (biological interaction):

fi j = aib j

Three epistatic models are given by Gunther et al [Günther09]
as penetrance matrices. In each case the constant c denotes the
baseline risk of disease and r, r1, r2 denote risk increase or
decrease

4. EPIRR models an epistatic relationship between two reces-
sive genes, such that disease is not impacted unless both genes are
fully mutated, in which case penetrance is multiplied by the factor
r. This may increase or decrease risk of disease:

f =


BB Bb bb

AA c c c
Aa c c c
aa c c rc


5. EPIDD models an epistatic relationship between two dominant
genes, such that penetrance is multiplied by r1 if both genes
are mutated, but not fully. When both alleles of both genes are
mutated, then penetrance is multiplied by r2, typically a factor
causing more impact on disease risk:

f =


BB Bb bb

AA c c c
Aa c r1c r1c
aa c r1c r2c


6. EPIRD models an epistatic relationship between one dominant
and one recessive gene. If the recessive gene is fully mutated,
penetrance will be multiplied by r1. If additionally the dominant
gene is fully mutated then penetrance is multiplied by r2, causing a
different impact on disease. Interactions are more difficult to detect
for this disease model than for the other Gunther et al models since
there is both a main effect and an epistatic effect:

f =


BB Bb bb

AA c c c
Aa c c c
aa r1c r1c r2c
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7. MDR: This final disease model is specified by Ritchie et
al [Ritchie01] to exhibit XOR (exclusive or) interactions. The
specification is supplied as a penetrance matrix:

f =


BB Bb bb

AA 0 0 .2
Aa 0 .2 0
aa .2 0 0


Machine Learning Algorithm

Our novel method to detect gene interactions in a disease is based
upon detecting deviation in prediction accuracy when information
is removed from our entire test set by perturbing gene allele
values to zero (unmutated). Upon removing mutation information
for a functional gene, we would expect prediction accuracy to
drop. Yet when a non-functional gene is similarly perturbed, we
would expect change in prediction accuracy to be insignificant. If
mutation information is removed for two non-interacting genes,
we would expect the change in prediction accuracy to be additive.
However, if the genes are interacting, we would expect that
deviation in prediction accuracy would depart from the linear
model, as described in the Introduction and illustrated in Figures
1 and 2.

Our method is illustrated in Figure 3. For each disease model
we train a supervised ML algorithm to distinguish examples that
are diseased from those that are not. The disease phenotype is
learned by the ML algorithm as a function of the input vector
of ten gene loci. If the disease model under investigation contains
gene interactions, then we assume the ML algorithm learned them,
and we attempt to uncover this knowledge utilizing perturbations
and our metric. Our method applies to a variety of supervised
learning algorithms. In this paper we use it with a Support Vector
Machine (SVM) [Crist97], utilizing the RBF kernel. The SVM
we used is part of the scikit-learn package [scikit-learn], and is
derived from libsvm [LIBSVM].

We use a radial basis function (RBF) kernel, and need to deter-
mine parameters C and gamma, discussed above. We utilize cross
validation grid search for model selection. An SVM is constructed
with the parameters from the grid search best estimator, and is
trained with the entire training set. (Refitting the entire dataset
to the CV model having best parameters is done by default in
the call to GridSearchCV fit). Because our method is based on
detecting deviation in prediction accuracy when we later perturb
the test set, we constrain the soft margin parameter C so as to
be somewhat intolerant of error: our grid search is of C values
from 100 up to 10000. By mandating higher C, we also favor a
less smooth decision surface over tolerance of error, enabling us
to learn functions with more complexity. Our grid search is of
gamma values [0.01, 0.1, 1, 10].

After the model is selected by cross-validation grid search
and trained, then we run the test set and establish PT , which
is prediction accuracy of the test set with total information, no
perturbations. Single-gene perturbations are then run on the test
set for each of the ten gene loci in turn, perturbing that gene
to unmutated. Figure 3 depicts the single genes 2 and 7 being
perturbed, with resulting prediction accuracies P2 and P7. After
single-gene perturbations, then all possible pairs are perturbed. In
the case of ten genes this is:(

10
2

)
= 45 pairs .

Fig. 3: Detecting gene interactions with supervised machine learn-
ing. 1. Train the model (in this case SVM) to detect disease. If there
were gene interactions, we assume the model learned them. 2. Perturb
input genes of test set to unmutated in patterns selected to reveal
interactions via the effect on prediction accuracy. 3. Apply the metric
to determine if there were or were not interacting genetic risk factors
in the disease.

Figure 3 shows genes 2 and 7 being together perturbed to un-
mutated for the entire test set, resulting in prediction accuracy
P2,7 With the mutation information of these two genes removed,
we expect a drop in prediction accuracy from the unperturbed
set accuracy, PT . This deviation, PT - P2,7 is compared with the
deviations in prediction accuracy that result from the same genes
being singly perturbed. We quantify this as the metric:

m = |(PT −P2,7)− ((PT −P2)+(PT −P7))|/PT

If the deviations in prediction accuracy with the single gene per-
turbations sum up to the deviation of the double gene perturbation
then this supports a claim that there are no interactions. We allow
.03 error in each of the three deviations, so m = .09 is our cutoff for
determining if there are 2-way interactions. If m exceeds .09 we
claim that the effects on disease of gene mutations at the separate
loci are not additive, and we have found interactions. When the
selected (best predicting) model finds no interactions, then we take
an additional step. As stated above, our approach assumes that if
interactions exist, they will be found by the ML algorithm. We
found that in some cases a machine learning algorithm could find
interactions, but the best classifier among its models might detect
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disease with a decision function that did not include interactions.
To address this we take a second look for interactions with an
alternate gamma. Our alternative is the gamma that is closest to
the selected gamma, an order of magnitude larger, except when
the selected gamma is >= .1, in which case we set gamma to an
order of magnitude smaller. We rerun cross validation grid search
to find the best C with this alternative gamma, construct an SVM
with these new parameters, and train on the entire training set. We
apply the metric to the test set to look again for interactions. In
most cases where rerun is done the gamma is larger, which limits
the influence of single training examples, so that in cases where
interactions are difficult to detect a perturbation will more likely
result in a classification change which we will detect as error. If
both the best predicting and the alternative gamma model find
no interactions, then we claim that there are none. Otherwise, we
note the gene perturbations of the test data that resulted in a metric
above the cutoff as an interaction found. The principle is the same
for 3-way interactions, where the metric is:

m = |(PT −Pabc)− ((PT −Pa)+(PT −Pb)+(PT −Pc))|/PT

and the cutoff is .12, since there are 4 deviations, for each we
again allow .03.

If interactions are found, we next apply a mask and perturb
masked genes to unmutated in order to characterize the interaction.
In this study we applied 2 masks: an AND mask to determine
if interacting genes are both mutated, and an XOR mask to
determine if interacting genes have one gene mutated and the other
unmutated. Figure 4 on the left shows the regions of a penetrance
matrix that are AND in red and those that are XOR in lavender.
For example, an AND mask will only perturb genes where neither
gene A nor gene B is zero (unmutated). On the right we see that the
interacting genes of the disease model EPIDD are all in the AND
region. In our characterization runs, then, we find as expected
AND interactions but no XOR interactions (see Results).

Fig. 4: Characterizing the gene interactions that were detected.
To characterize the interactions that were detected: perturb masked
area to unmutated, observe effect on prediction accuracy. If prediction
accuracy changes significantly with a specific mask, then there are
interactions of that type. On the left we see AND mask (red) and
XOR mask (lavender). On the right we see the EPIDD disease model,
exhibiting interactions of type AND, but none of type XOR. This
correlates with the interactions that were characterized by our method
(see table 1)

Results

Our method correctly identified all gene pairs (2-way) in the 7
disease models as either interacting or independent. In the case
of the 5 disease models with 2-way interactions only the correct
pair was found to interact, the other 44 pairs were found to not
be interacting. In the 2 disease models with no interactions, all 45
pairs were found to not interact. Additionally, all interacting pairs
were characterized correctly. (see Table 1).

Disease Metric Interactions Found Actual
Model Found Actual AND XOR AND XOR
ADD .07 none none N/A N/A N/A N/A
MULT .19 (4,9) (4,9) yes no yes no
HET .05 none none N/A N/A N/A N/A
EPIRR .41 (4,9) (4,9) yes no yes no
EPIDD .15 (4,9) (4,9) yes no yes no
EPIRD .10 (4,9) (4,9) yes no yes no
MDR .48 (4,9) (4,9) yes yes yes yes

TABLE 1: Results for 2-Loci.

Disease Metric Interactions Found Actual
Model Found Actual AND XOR AND XOR
ADD .11 none none N/A N/A N/A N/A
MULT .36 (0,4,9) (0,4,9) yes no yes no
HET .08 none none N/A N/A N/A N/A
EPIRRR .69 (0,4,9) (0,4,9) yes no yes no
EPIDDD .38 (0,4,9) (0,4,9) yes no yes no
EPIRRD .24 (0,4,9) (0,4,9) yes no yes no
MDR .87 (0,4,9) (0,4,9) yes yes yes yes

TABLE 2: Results for 3-Loci.

Our method also correctly identified all gene triplets (3-way)
as either interacting or independent. In the case of the 2 disease
models with no interactions, all 120 triplets were found to be non-
interacting. In the case of the 5 disease models with interactions,
only the correct triplet and also triplets containing two of the
correct three interacting genes were found to be interacting, as
expected. Additionally, all interacting triplets were characterized
correctly. (see Table 2).
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