PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

65

Exploring Collaborative HPC Visualization Workflows
using Vislt and Python

Hari Krishnan®*, Cyrus Harrison, Brad Whitlock*, David Pugmire§, Hank Childs|!

http://www.youtube.com/watch?v=ei_pFi2x0Uc

Abstract—As High Performance Computing (HPC) environments expand to
address the larger computational needs of massive simulations and specialized
data analysis and visualization routines, the complexity of these environments
brings many challenges for scientists hoping to capture and publish their work
in a reproducible manner.

Collaboration using HPC resources is a particularly difficult aspect of the
research process to capture. This is also the case for HPC visualization, even
though there has been an explosion of technologies and tools for sharing in
other contexts.

Practitioners aiming for reproducibility would benefit from collaboration tools
in this space that support the ability to automatically capture multi-user collabo-
rative interactions. For this work, we modified Vislt, an open source scientific
visualization platform, to provide an environment aimed at addressing these
shortcomings.

This short paper focuses on two exploratory features added to Vislt:

1. We enhanced Vislt’s infrastructure expose a JSON API to clients over
WebSockets. The new JSON API enables Vislt clients on web-based and
mobile platforms. This API also enables multi-user collaborative visualization
sessions. These collaborative visualization sessions can record annotated user
interactions to Python scripts that can be replayed to reproduce the session in
the future, thus capturing not only the end product but the step-by-step process
used to create the visualization.

2. We have also added support for new Python & R programmable pipelines
which allow users to easily execute their analysis scripts within Vislt's parallel
infrastructure. The goal of this new functionality is to provide users familiar with
of Python and R with an easier path to embed their analysis within Vislt.

Finally, to showcase how these new features enable reproducible science,
we present a workflow that demonstrates a Climate Science use case.

Index Terms—python, reproducibility, collaboration, scripting

Introduction

Reproducibility is one of the main principles of the scientific
method.

Without reproducibility, experimental trials that confirm or
deny a given hypothesis cannot be confirmed by other scientists,
potentially creating concerns about the validity of initial results.

Visualization often plays a role in the scientific method; when
exploring data sets, scientists form hypotheses about phenomena

Corresponding author: hkrishnan@Ibl.gov

9 Lawrence Berkeley National Laboratory

Lawrence Livermore National Laboratory

§ Oak Ridge National Laboratory

Il Lawrence Berkeley National Laboratory/The University of Oregon

Copyright© 2013 Hari Krishnan et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

<+

in the data, design experiments by setting up visualization param-
eters, and then carry out the experiment by applying visualization
algorithms. The resulting visualizations then confirm or deny each
hypothesis. However, since this process is regularly carried out in
an ad hoc manner and in rapid succession, reproducibility is often
a secondary concern.

Consequently, the outputs from visualization and analysis
routines often lack the information about how they were generated,
and thus how to interpret the results.

In favorable circumstances, the initial scientist performing the
analysis either took notes or remembers the details of the experi-
ment, and theoretically would be able to reproduce it. But follow-
ing scientists regularly do not have this information. Although they
can view the resulting visualizations, and make educated guesses
about how the data was processed, reproducing the result is very
difficult. This is particularly true because visualization routines
have many ’knobs’ that control how they execute.

Beginning approximately one decade ago, the visualization
community increased its emphasis on including provenance as part
of the visualization process.

For example, the VisTrails system [silva2007prov], an early
provenance advocate, produced the necessary information to recre-
ate everything about a given visualization.

This represented a leap forward in the problem, since the ad
hoc and rapid nature of visualization-based exploration could now
be automatically accounted for.

However, provenance is still far from being commonplace, and
only rarely do scientists broadcast their exact steps to create their
results.

Further, provenance is only one component of the larger
problem. Knowing the parameters that went into a visualization
is important, but these parameters are much less meaningful when
the program used to generate the results is no longer available.
This is especially problematic when ’one-off” programs are gener-
ated to create a specific visualization, a common scenario when
people are performing novel analysis. After one-off programs
generate the necessary visualizations, their code often quickly
atrophies or is lost altogether. Finally, such programs are rarely
accessible to following scientists who recreate the experiment.

Following these observations, the research described in this
paper depends on the following premises:

1. Enduring visualization frameworks are crucial for maintain-
ing reproducibility.

We also note that focusing on a single
application—as opposed to many one-offs for

http://www.youtube.com/watch?v=ei_pFi2xOUc
mailto:hkrishnan@lbl.gov

66

many problems—allows for significantly more
resources to be allocated to development, allow-
ing the application to be maintainable, reliable,
sharable, and to have important reproducibility
features, i.e., provenance.

2. These frameworks must provide constructs that enable novel
and complex analyses.

With this research, we explored adding a flexible, Python-
based infrastructure to an existing visualization framework. Our
Python system is made up of rich, composable operations that
enable the development of new, novel analyses which can then be
reincorporated into the visualization framework. This approach
enables the specialized analysis typically reserved for one-off
applications to be handled within one application, significantly
increasing the capabilities available to scientists. In this paper, we
describe the system, as well as a use case in climate science.

Finally, leading-edge simulation science increasingly involves
large teams with diverse backgrounds, and these teams need to
be able to analyze data in collaborative settings. But collaborative
analysis complicates the provenance tracking that is necessary for
reproducibility. Our system is able to perform this tracking and we
describe how it functions.

Related Work

There is growing interest in the practice of reproducible research
for simulations. Open source software, virtualization, and cloud
computing platforms have enabled workflows that can be adopted
by scientific peers with very low barriers to entry [res_cloud],
[web_repro]. Increased interest in reproducibility also is driven
by notable research retractions such as Herndon, Ash and Pollin’s
re-analysis [herndon_debt] of Reinhart and Rogoff’s work [gtod].
Conclusions from the original analysis were adopted as a high
profile economic policy driver, raising concerns about the potential
impact of analysis errors.

The spectra of approaches to reproducible research are quite
broad. In one of the most comprehensive examples, [Brown2012]
the authors provide a companion website to their paper where
they released their analysis source code, latex paper source, their
data, and a turn-key virtual machine-based workflow that allows
anyone to regenerate the bulk of the analysis used for the research.
In many contexts, each of these steps alone poses a significant
challenge. Beyond source code sharing there are several software
development environments that support presentation of a compu-
tational narrative via a notebook concept. These include IPython
[ipython] Notebook, Sage [sage], Matlab, Maple, and Wolfram
Mathematica.

Data sharing is also a key component. Systems like the Earth
Systems Grid [bernholdt2005earth] have been very successful
sharing data, but also require teams to support this sharing. Of
course, high performance computing creates additional challenges
for data sharing, since the data sets are considerably bigger. (The
ESG system faces many of these challenges as a provider of HPC
data sets.)

There are many rich visualization frameworks that provide
constructs and interface concepts understood by users. For this
work, we decided to extend Vislt [HPV_Vislt], in no small
part because of its support of Python in its parallelized server
[vscipy2012]. Other examples of such frameworks are ParaView
[HPV_PV], FieldView [FieldView], and EnSight [EnSight]. From
the perspective of a flexible infrastructure for creating custom

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

analyses out of existing primitives, the most comparable work is
that of IPython [ipython] and VisTrails [silva2007prov]. Our work
is unique in that we have melded a rich visualization framework
with a flexible infrastructure for developing new analyses, creating
an environment that offers extensibility, usability, and long-term
reproducibility.

System

Vislt is a richly-featured, massively-parallel data analysis and
visualization application which runs on hardware ranging from
modest desktop systems to large distributed memory compute
clusters. Vislt is composed of several cooperating components,
each with their own functions within the system. The main com-
ponent is a central viewer which displays results and acts as a state
manager coordinating the different components. Plotted results are
generated by a compute server component that reads files, executes
data flow networks, and sends results back to the viewer. There are
also different clients, including a graphical user interface, Python
language interface, and Java language interface. The Python and
Java language interfaces allow for complex analysis programs to
be built on top of Vislt’s infrastructure.

We extended Vislt’s existing ability to support multiple simul-
taneous clients by adding support for Web-based clients, which
typically connect on demand. The viewer is able to listen for
inbound socket connections from Web clients and establish com-
munication with them using technologies such as WebSockets. We
created new proxy classes in various languages such as JavaScript
to expose functions that enable a client to control Vislt. These
proxy classes enable the creation of lightweight, custom Web
applications that dynamically connect to existing Vislt viewer
sessions forming the core of the infrastructure needed for collabo-
rative visualization across a range of devices. For example, these
enhancements enable Vislt clients running on smart phones and
tablet computers to be connected simultaneously to Vislt services
running on a shared server.

JSON API

Vislt normally uses a binary protocol to communicate among
components. We enhanced Vislt to also support communication
using JavaScript Object Notation (JSON), which allows objects
to be represented in an easy to use ASCII form. JSON is widely
supported in browsers and Python, eliminating the need for custom
client code to transmit and decode Vislt’s binary protocol. Using
JSON as the mechanism for exchanging objects between Vislt and
Web clients enables other novel capabilities. For instance, since
JSON objects also communicate the names of fields in addition
the field values, we can traverse the JSON objects to automatically
create input property panels or provide automatically generated
classes.

Scripting API

[vscipy2012] introduced Vislt’s Python Filter Runtime, which
embeds a Python interpreter into each MPI Task of Vislt’s compute
engine. This functionality allows users to write Python scripts that
access low-level mesh data structures within VisIt’s distributed-
memory parallel pipelines. The initial Python Filter Runtime
exposed two of Vislt’s building blocks to Python programmers:

1) Python Expressions, filters which calculate derived quan-
tities on an existing mesh.

EXPLORING COLLABORATIVE HPC VISUALIZATION WORKFLOWS USING VISIT AND PYTHON 67

2) Python Queries, filters which summarize data from an
existing mesh.

Building on this infrastructure we extended the use of the
Python Filter Runtime into the context of VisIt’s Operators, which
are filters that implement general data transformations.

This functionality is implemented in a new Scripting Operator
and is supported by a Python-based Scripting API. The API allows
users to easily compose several Python and R data analysis scripts
into a sub-pipeline within VisIt. The goal of this new API is to
provide users familiar with Python and R an easier path to embed
their analysis within VisIt. To achieve this goal, the Scripting API
attempts to shield the user from Vislt’s internal filter and contract
abstractions and places a focus on writing streamlined analysis
routines. This is in contrast to Vislt’s Python Expressions and
Queries, which require users to understand these abstractions to
write filters using Python.

Scripting sub-pipelines are coordinated using a Python
dataflow network module. Our Scripting infrastructure leverages
the dataflow network’s filter graph abstraction to insert additional
filters which handle data transformations between VislIt’s internal
VTK based data model the data structures used in scripts. Python
user scripts can process both Python wrapped VTK datasets
and field values as numpy arrays. The module uses Rpy2 to
execute scripts written in R. In this context numpy arrays are the
primary data structure interface between Python and R scripts.
The module also uses a topological sort to ensure proper script
execution precedence and provides reference counting and storage
of intermediate results. This ensures that user scripts are executed
efficiently.

To support distributed-memory parallel algorithms, both
Python and R scripts have access to a MPI context. In Python
scripts MPI calls are supported via mpidpy [mpi4py]. In R scripts
MPI is supported via ppdMPI [pbdMPI].

We also provide a set of filters that encapsulate common
data access patterns for ensemble and time series analysis. These
filters are invoked using three categories of script calls: template
functions, helper functions, and visit functions:

1) Template functions: for_each_location - at each
location call a user defined kernel (written in R or Python)
with the data value and a neighborhood around the data
point. After kernel execution, the resulting values are
returned back to calling script.

2) Helper functions: visit_write - write dataset to
a file using a supported format such as NETCDF or
visit_get_mesh_info, then return details about the under-
lying mesh dataset.

3) Visit functions: Vislt operators and utility functions can
be registered with the scripting system. Therefore, within
the Python or R environment, users can exercise any
registered Vislt function and have it return results. For
example, the PeaksOverThreshold Operator in Vislt can
register a signature with the Script operator and then a
user can call this functionality within their script.

Reproducibility

Each of the clients connected to the Vislt viewer can send com-
mands and state intended to drive the Vislt session. These multiple
input streams are consolidated into a single input stream in the
viewer that lets the different clients perform actions. As actions
are performed, they can cause changes in state that need to be sent

lat (degrees_morth)

north)

lat (degrees

50 100 15

0 20
lon (degrees_cast)

Fig. 1: Extreme precipitation analysis done on an ensemble of two
CAMS.1 control runs over 1959-2007 using Generalized Extreme
Value Analysis (Top), and Peaks-over-Threshold (Bottom)

back to clients. When new state is sent back to the various clients,
they are free to respond as required, depending on their function.
For example, when the GUI receives new state, it updates the con-
trols in its windows to reflect the new state from the viewer. When
the Python interface receives new state, it transforms the state
back into the requisite Python commands needed to cause the state
change and logs the commands to a log file that can be replayed
later. This same infrastructure is used to record actions taken by
the GUI into corresponding Python code that can reproduce the
same GUI actions. We have extended Vislt’s Python recording
mechanism so it annotates the generated Python code with the
identity of the user who caused the command to be generated.
This increases the available visualization provenance information
while still producing a log file that can be replayed to restore the
state of the system in a future Vislt session. Vislt’s existing Python
interface can be used to replay the generated script. We have also
extended VisIt’s Python interface with a new WriteScript ()
function that can write Python code to reproduce the exact state of
the visualization system. This produces Python code that is much
more concise, requiring far fewer visualization operations to be
performed to restore VisIt’s state. We envision being able to build
on this capability to automatically produce streamlined domain-
specific applications that can set up their plots based on the output
from the WriteScript() function.

Evaluation

The collaboration we have had with climate scientists has proven
to be a rich test-bed for the exploration of this workflow. The
collaboration began with the integration of VisIt and R to do par-
allel statistical analysis on very large climate data sets using large

68

HPC resources. The climate scientists were interesting in using a
statistical technique called extreme value analysis [coles-2001] to
understand rare temperatue and precipitation patterns and events in
global simulations at very fine temporal resolutions. Initially, sev-
eral different extreme value analysis algorithms were implemented
and incorporated into Vislt as built-in operations. As we worked
with the climate scientists, and statisticians, it became clear that a
more flexible framework where arbitrary analyses could be easily
scripted and experimented with would prove valuable. It would
also make it easier for scientists to collaborate, verify various
techniques, and make reproducibility much easier.

Figure 1 shows early results using this new framework on es-
timated annual return values that would occur once every 20 years
on average, using Generalized Extreme Value, and Peaks-over-
Threshold, respectively. The analyses were done on an ensemble
of two CAMS.1 control runs over the period of 1959-2007 of daily
precipitation.

These analyses required a kernel to be executed at each spatial
location using precipitation values over all of the time steps. This
was supported using the API call ForEachLocation(user-kernel).
The Vislt infrastructure parallelizes the computation required to
read in all of the time steps, and aggregates all the time values
for each location. The user supplied kernel is then executed using
the vector of time-values as input. Another API call is made to
write the analysis results out in the desired format, in this case,
NETCDF. For both the examples shown in Figure 1, the same API
call was made with different user-defined kernels.

Using this capability has several advantages. First, it makes
it much easier for domain scientists to experiment with different
analysis techniques. Large, parallel visualization frameworks are
complex, large pieces of source code, and domain scientists
will rarely have the experience to make changes to perform the
analysis. This framework allows the scientists to focus on the
environment they are most familiar with, analysis kernels written
in R or Python, and leave the details of efficient parallel processing
of large scientific data to the visualization framework developers.
And second, it makes comparison and reproducibility much easier
since the required elements are just the R or Python kernel code
written by the domain scientists. The results can be shared and
verified independent of Vislt by execution of the kernel in either
Python or R environments on the same, or additional data.

Conclusions and Future Work

Reproducibility is an important element of the scientific method,
since it enables the confirmation of experimental trials that
confirm or deny a hypothesis, and visualization is a common
mechanism for evaluating experiments. Hence, it is important
that visualizations be carried out in a reproducible manner. With
this work, we demonstrated that it is possible to extend a richly
featured visualization framework with flexible analysis routines in
a way that supports reproducibility, and we also demonstrated how
capable such a system can be. Further, we considered the problem
of collaborative analysis, which is increasingly needed as scientific
teams are more and more often made up of large teams. Python
was a key element to our success. Since many packages already
have Python interfaces, it expedited incorporation of packages like
R, and provided a familiar setting for users wanting to develop
new interfaces. In total, we believe this work was impactful, since
it extends the capabilities of many user groups and does it in a
reproducible way. Finally, there are many future directions for this

PROC. OF THE 12th PYTHON IN SCIENCE CONF. (SCIPY 2013)

effort, including improved support for plotting and data retrieval
(i.e., file readers), language support beyond Python, and tighter
integration with the overall Vislt system.

REFERENCES

[silva2007prov] Silva, Claudio T and Freire, Juliana and Callahan,
Steven P. Provenance for visualizations: Reproducibil-
ity and beyond, Computing in Science & Engineering
82-89, 2007, IEEE.

Harrison, Cyrus and Krishnan, Hari. Python’s Role
in Vislt, Proceedings of the eleventh annual Scientific
Computing with Python Conference (SciPy 2012).
Reinhart, Carmen M. and Rogoff, Kenneth S. Growth in
a Time of Debt, American Economic Review, 573-78,
September, 2010

Perez, Fernando and Granger, Brian E., IPython: a
System for Interactive Scientific Computing, Comput.
Sci. Eng., 21-29 May, 2007.

W.A. Stein and others, Sage Mathematics Software,
http://sagemath.org

[repo_research_intro] Fomel, S. and Claerbout, J.F. Guest Editors’ Intro-
duction: Reproducible Research, Computing in Science
Engineering 2009, pages 5-7.

Herndon, Thomas and Ash, Michael and Pollin, Robert
Does High Public Debt Consistently Stifle Economic
Growth? A Critique of Reinhart and Rogoff, April, 2013
Brown, C Titus and Howe, Adina and Zhang, Qing-
peng and Pyrkosz, Alexis B and Brom, Timothy H
A Reference-Free Algorithm for Computational Nor-
malization of Shotgun Sequencing Data, 2012, http:
/farxiv.org/abs/1203.4802

Pieter Van Gorp and Steffen Mazanek. SHARE: a web
portal for creating and sharing executable research
papers, Proceedings of the International Conference on
Computational Science, ICCS 2011 589-597, 2011
Van Gorp, Pieter and Grefen, Paul Supporting the
internet-based evaluation of research software with
cloud infrastructure, Softw. Syst. Model. 11-28, Feb
2012

Hank Childs, Eric Brugger, Brad Whitlock, Jeremy
Meredith, Sean Ahern, David Pugmire, Kathleen Bi-
agas, Mark Miller, Cyrus Harrison, Gunther H. We-
ber, Hari Krishnan, Thomas Fogal, Allen Sanderson,
Christoph Garth, E. Wes Bethel, David Camp, Oliver
Riibel, Marc Durant, Jean M. Favre, and Paul Navratil.
Vislt: An End-User Tool For Visualizing and Analyz-
ing Very Large Data, High Performance Visualiza-
tion—Enabling Extreme-Scale Scientific Insight, 357-
372, Oct 2012

Utkarsh Ayachit, Berk Geveci, Kenneth Moreland,
John Patchett, and Jim Ahrens, The ParaView Vi-
sualization Application, High Performance Visualiza-
tion—Enabling Extreme-Scale Scientific Insight, 383-
400, Oct 2012

EnSight User Manual, Computational Engineering In-
ternational, Inc. December, 2009

Steve M. Legensky. Interactive investigation of fluid
mechanics data sets, VIS "90: Proceedings of the 1st
conference on Visualization 90 435-439, San Fran-
cisco, California, IEEE Computer Society Press
Bernholdt, David and Bharathi, Shishir and Brown,
David and Chanchio, Kasidit and Chen, Meili and
Chervenak, Ann and Cinquini, Luca and Drach, Bob
and Foster, Ian and Fox, Peter and others, The earth
system grid: Supporting the next generation of climate
modeling researc, Proceedings of the IEEE, 485-495,
2005

Wei-Chen Chen and George Ostrouchov and Drew
Schmidt and Pragneshkumar Patel and Hao Yu, pb-
dMPI: Programming with Big Data: Interface to MPI,
2012

Dalcin, Lisandro and Paz, Rodrigo and Storti, Mario
and D’Elfa, Jorge, MPI for Python: Performance im-
provements and MPI-2 extensions, J. Parallel Distrib.
Comput., May, 2008

[vscipy2012]

[gtod]

[ipython]

[sage]

[herndon_debt]

[Brown2012]

[web_repro]

[res_cloud]

[HPV_Vislt]

[HPV_PV]

[EnSight]

[FieldView]

[bernholdt2005earth]

[pbdMPI]

[mpidpy]

http://sagemath.org
http://arxiv.org/abs/1203.4802
http://arxiv.org/abs/1203.4802

EXPLORING COLLABORATIVE HPC VISUALIZATION WORKFLOWS USING VISIT AND PYTHON

[coles-2001] Stuart Coles, An Introduction to Statistical Modeling of
Extreme Values, Springer-Verlag, 2001

69

	Introduction
	Related Work
	System
	JSON API
	Scripting API
	Reproducibility

	Evaluation
	Conclusions and Future Work
	References

